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Abstract Water resource management involves numerical simulations in order to
study contamination of groundwater by chemical species. Not only do the aqueous
components move due to physical advection and dispersion processes, but they also
react together and with fixed components. Therefore the mass balance couples trans-
port and chemistry, and reactive transport models are PDEs coupled with nonlinear
algebraic equations. In this paper, we present a global method based on the method of
lines and DAE solvers. At each time step, nonlinear systems are solved by a Newton-
LU method. We use this method to carry out numerical simulations for the reactive
transport benchmark proposed by the MoMas research group. Although we study
only 1D computations with a specific geochemical system, several difficulties arise.
Numerical experiments show that our method can solve quite difficult problems, get
accurate results and capture sharp fronts.
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1 Introduction

The behaviour of potential storage sites is governed by many complex physico-chemical
mechanisms. Numerical simulations are carried out in order to contribute to safety
evaluations and risk assessment. In this paper we focus on chemistry as well as trans-
port of the aqueous solutions. In order to take into account these two phenomena
simultaneously, we need to consider a coupled model.

Two types of methods have been described in the literature for carrying out sim-
ulations for this reactive transport model. The sequential approaches [28, 32, 30, 26,
20, 5] solve separately the equations while global approaches [27, 26, 23, 13] solve si-
multaneously the whole system. Whereas the first approach involves the consecutive
solutions of decoupled systems and allows the use of methods adapted to each model,
it requires in general very small time steps. Because of high memory requirements,
the global approach was first rejected [29], but the memory capacity of computers has
greatly improved so that high memory requirement is no longer a crucial drawback.
Moreover, a global approach requires generally fewer iterations than a sequential iter-
ative approach and may allow larger time steps. Thus, a global approach is sometimes
preferable [6, 26, 25].

In this paper, we present a global approach based on a framework of Partial Dif-
ferential Algebraic Equations (PDAEs). We consider a geochemical model composed
of homogeneous and heterogeneous reactions at equilibrium. We could also consider
kinetic reactions, with a slight modification of our method. Concerning transport, we
assume that the velocity and the diffusion tensor are independent of species and that
porosity is independent of the time variable. Because of this assumption, the trans-
port operator is linear and we can rewrite the transport equations by introducing total
variables. We assume that the coupled problem is well-posed.

The method is described in details in [12, 11]. Here we present results obtained for
the MoMas benchmark [1]. The main objective of this benchmark is to check numer-
ical methods against numerical complexity. We study the so-called 1D easy test case,
where hydrodynamics and chemistry are simplified. The 1D computational domain
is composed of two media, there are neither kinetic nor precipitation-dissolution re-
actions. On the other hand, numerical difficulties are artificially increased. Our main
objective is to get accurate results. Therefore we use a fine mesh and small tolerances
in our simulations. We check convergence in our numerical experiments and focus
on specific behaviour such as numerical oscillations. This benchmark is also studied
by other participants [16, 19, 22]. Our results are in good agreement with theirs. The
paper is organised as follows. Section 2 presents the mathematical model based on
total concentrations and on a coupled PDAE system. Then, in section 3, we describe
the numerical model based on the method of lines and a coupled discrete DAE sys-
tem. Finally, section 4 presents the results obtained with the 1D easy test case of the
MoMas benchmark.
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2 Mathematical model

We consider a groundwater chemical system containing Ne species, which interact
due to chemical reactions. In addition, the mobile species are transported by advec-
tion and dispersion. The mathematical model is thus composed of chemistry equa-
tions coupled to transport equations.

2.1 Chemistry Equations

For the geochemical system considered, we assume a thermodynamic equilibrium at
any time. Aqueous and sorption reactions can be expressed in terms of nonlinear alge-
braic equations based on mass action laws. Some species, named secondary species,
can be expressed as functions of the other ones, referred to as components [29, 21]. In
fact, components form the minimum set of species required in the model. We make
a distinction between aqueous species and fixed species. For sake of simplicity, we
assume here that all activity coefficients of the aqueous and fixed species are equal to
1, so that the species can be identified with their concentration. Thus, the mass action
laws can be written

ui(x, t) = Ku
i

nc
∏
j=1

c j(x, t)Si j , i = 1, ...nu,

vi(x, t) = Kv
i

nc
∏
j=1

c j(x, t)Ai j
ns
∏

k=1
sk(x, t)Bik , i = 1, ...nv,

(1)

where c j, j = 1, ...nc and sk, k = 1, ...ns are, respectively, the concentrations of the
nc aqueous and ns fixed components, whereas ui, i = 1, ...nu and vi, i = 1, ...nv are,
respectively, the concentrations of the nu aqueous and nv fixed secondary species. The
matrices S ∈Rnu×nc , A ∈Rnv×nc , B ∈Rnv×nc contain the stoichiometric coefficients
and the vectors Ku ∈Rnu , Kv ∈Rnv contain the equilibrium constants. By definition

of components and secondary species, the matrix
(

S 0
A B

)
is of full rank.

Precipitation-dissolution reactions are governed by different laws from aqueous
and sorption reactions. Again, we assume that the activity of a precipitated species is
equal to one and we identify a precipitated species by its number of moles per unit
of volume pi. In the general case, precipitated species do not exist at any time, thus
their fraction can be zero. This general model involves nonsmooth nonlinear equa-
tions and can be written as a complementary problem [4]. Here, we assume that the
number of precipitated species np is known and constant in time. With this restriction,
precipitation-dissolution laws are differentiable and can be written

pi ≥ 0, i = 1, ...np,

1 = K p
i

nc
∏
j=1

c j(x, t)Ei j , i = 1, ...np.
(2)

As previously, E ∈ Rnp×nc is the matrix of stoichiometric coefficients and Kp ∈
Rnp is the vector of equilibrium constants related to precipitation.
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We rewrite the previous laws in a logarithmic form. Indeed, all concentrations
must have positive values. This chemical constraint is guaranteed by using loga-
rithms. With ln(c), ln(s) and p as primary unknowns, the new chemical model is
given by 

u(x, t) = exp( ln(Ku) + S ln(c(x, t))),
v(x, t) = exp( ln(Kv) + A ln(c(x, t)) + B ln(s(x, t))),

0 = ln(Kp) + E ln(c(x, t)),
p ≥ 0.

(3)

The model is completed by mass balance equations applied to components. We
define T and W as the vectors of total concentrations related to, respectively, aqueous
and fixed components and denote by C and F, respectively, the aqueous and fixed
parts of the total concentrations of aqueous component T. The mass balance equa-
tions are 

Ti(x, t) = Ci(x, t)+Fi(x, t), i = 1, ...nc,

Ci(x, t) = ci(x, t)+
nu
∑
j=0

S jiu j(x, t), i = 1, ...nc,

Fi(x, t) =
nv
∑
j=0

A jiv j(x, t)+
np

∑
j=0

E ji p j(x, t), i = 1, ...nc,

Wi(x, t) = si(x, t)+
nv
∑
j=0

B jiv j(x, t), i = 1, ...ns.

(4)

In a closed system, both W and T are given; in a reactive transport system, W is
assumed to be constant, whereas T depends on the transport operator.

By combining equations (3) and (4), we get a nonlinear system of (nc + ns + np)
equations, with (nc +ns +np) unknowns ln(c), ln(s), p. This system is completed by
the constraint p≥ 0 and can be written as


T(x, t)−C (ln(c(x, t)))−F (ln(c(x, t)), ln(s(x, t)),p(x, t))

W(x, t)−W (ln(c(x, t)), ln(s(x, t)))
ln(Kp)+E ln(c(x, t))

= 0,

p≥ 0,

(5)

where C , F and W express, respectively, C, F and W, as functions of the primary
unknowns ln(c), ln(s) and p. We assume that for any T, the system (5) has a unique
solution and that Newton’s method converges locally towards this solution. This as-
sumption is critical to obtain a well-posed mathematical model and to ensure conver-
gence of the numerical model. We rewrite the chemical model as{

Φ(ln(c), ln(s),p,T) = 0,
p≥ 0.

(6)

If there is no precipitation dissolution reaction, the model simplifies to

Φ(ln(c), ln(s),T) = 0 (7)
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2.2 Transport Equations

Now we consider the transport of aqueous species by advection and dispersion. For a
species c, the transport operator L (c,x) is given by:

L (c,x) = ∇.(a(x).c−D(x).∇(c)) (8)

with D the effective diffusivity tensor and a the average velocity. We assume that
these two parameters are independent of the species and of the time but they may
depend on space. Due to this assumption, we obtain a transport equation for each
aqueous component, by using the total variables Ti and Ci. For sake of simplicity,
we consider no sink/source terms. Here, we use a TC formulation [18, 21], where T
is the differential variable and where the operator L is applied to the variable C. The
mass conservation equations can be expressed for each total concentration Ti as

ε(x)
∂Ti

∂ t
(x, t)+L (Ci(x, t),x) = 0, i = 1, ...nc, (9)

where ε is the porosity of the medium, assumed to be independent of time but spa-
tially variant.

These partial differential equations are completed by boundary conditions and
initial conditions.

2.3 Global System of Partial Differential Algebraic Equations (PDAE)

The global system couples chemistry equations with transport equations. The trans-
port equations are written for each aqueous component, whereas the chemistry equa-
tions are expressed at each point of the computational domain. We get a system of
PDAEs, with T, C, ln(c), ln(s) and p as unknowns :

ε
∂Ti
∂ t (x, t)+L (Ci(x, t),x) = 0, i = 1, ...nc,

Φ(ln(c(x, t)), ln(s(x, t)),p(x, t),T(x, t)) = 0,
Ci(x, t)−Ci(ln(c(x, t)), ln(s(x, t)),p(x, t)) = 0, i = 1, ...nc,

+initial conditions,
+boundary conditions.

(10)

We assume that the system (10) has a unique solution in a suitable function space.
We also assume that it is possible to write the equations in weak form and to develop
a rigorous mathematical framework.

3 Numerical model

We present now the global system, which couples chemistry and transport. In the
method called Direct Substitution Approach [23, 13], the variables Ci in the transport
equations are replaced by the function Ci. This approach couples strongly chemistry
with transport. We therefore prefer to keep C as unknown and to add equations in-
volving the functions Ci.
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In [12, 11], we describe in detail the numerical method we propose and we com-
pare it with other methods. Here, we recall briefly the outline of our global approach.

In order to solve the global system (10), we use the method of lines [17]. This
method is a general procedure for the solution of time-dependent partial differen-
tial equations involving the transformation of the partial differential equations into
Ordinary Differential Equations (ODE) or Differential Algebraic Equations (DAEs).
This method has a rigorous mathematical basis and can use efficient and robust
DAE solvers for initial value ODE/DAEs. Let us assume that spatial discretization
is achieved by any classical Eulerian method such as the finite difference, the finite
volume or the finite element methods. Let nx be the number of cells (or more specif-
ically the number of degrees of freedom) in the mesh. Then the discrete system can
be written as 

ε
dT
dt (t)+Ld ∗C(t)+ f = 0,

Φd(ln(c(t)) ln(s(t)) p(t),T(t)) = 0,
C(t)−Cd(ln(c(t)) ln(s(t)) p(t)) = 0,

T(0) = Tinit ,

(11)

with Ld and f the matrix and the vector obtained after spatial discretization of the
transport operator, respectively, Φd the chemistry nonlinear system written at each
discrete point, and the function Cd written also at each discrete point.

The system (11) is a differential algebraic system (DAE) of index 1 [3], [12]. It
contains ncnx differential equations and (2nc + ns + np)nx algebraic equations. We
assume that it has a unique solution in an suitable function space, and that the com-
puted solution converges towards the solution of (10) when the cell size approaches
zero. Again, this is a critical assumption in order to set up the numerical model in a
mathematical framework. Let Y = (T C ln(c(t)) ln(s(t)) p(t)).

Global methods based on a Direct Substitution Approach [23, 13] reduce the
number of unknowns in the system by eliminating T and C and keeping only the
chemistry unknowns (ln(c(t)) ln(s(t)) p(t)). This substitution is generally done after
time discretization by an implicit first-order Euler scheme. In our method, we prefer
to keep all the unknowns in order to use a general DAE solver. This approach reduces
coupling, at a price of a larger nonlinear system to solve. By classical transformations,
the system (11) can be writteng(t,Y(t), ˙Y(t)) = 0,

Y(t0) = Y0,
Ẏ(t0) = Ẏ0.

(12)

where Ẏ denotes the time derivative of Y.
In order to solve this system, we use a variable-order (from 1 to 5), variable-

coefficient, Backward Differentiation Formula (BDF) in fixed-leading-coefficient form
[2]. The BDF of order q is given by the multistep formula

q

∑
i=0

αn,iYn−i = (tn− tn−1)Ẏn, (13)

where Yn and Ẏn are approximations to Y(tn) and Ẏ(tn), respectively.
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We define

G(Yn) = g(tn,Yn,
1

(tn− tn−1)

q

∑
i=0

αn,iYn−i). (14)

Then, each time step requires the solution of the system of nonlinear algebraic
equations

G(Yn) = 0. (15)

We solve this system by a modified Newton method [24, 10]. Each Newton iteration
gives a linear system of equations of the form

J[Yk+1
n −Yk

n] =−G(Yk
n), (16)

where J is an approximation of the Jacobian of the function G. In order to save com-
putational time, the Jacobian is kept unchanged during several Newton iterations and
possibly several time steps, leading to a modified Newton method. The updating strat-
egy for the Jacobian is embedded in the DAE solver [2].

The matrix J, of size (3nc +ns +np)nx, where nx is the number of discrete points,
is sparse and nonsymmetric. We can reduce the size of the matrix down to (nc +ns +
np)nx, by using a substitution approach, keeping only the chemistry unknowns as in
the DSA approach. In this paper, we keep all the unknowns and we solve the lin-
ear system (16) by a direct nonsymmetric-pattern multifrontal method [8, 9]. Direct
methods are quite efficient for solving systems with consecutive multiple right-hand
sides, since the factorization, which is the most time consuming part, is done only
once.

We have implemented our method by using the IDA solver [14] from SUNDI-
ALS [15], developed by the Lawrence Livermore National Laboratory. Linear solvers
provided by IDA are a dense direct solver, a banded direct solver and a Krylov matrix-
free iterative solver. We have interfaced a sparse direct multifrontal solver by adding
a module based on UMFPACK [7].

We have implemented two methods for spatial discretization [11]. In the first
version, we use a cell-centered finite volume method with a centered scheme for the
diffusive flux and a first-order upwind approximation for the advective flux. This
version is restricted to 1D domains with a fixed cell size. In the second version, we
use a finite difference scheme with also an upwind approximation for advection, by
interfacing the software MT3DMS [31]. Here, the cell size can be variable.

4 Results on the MoMas benchmark

We carried out several numerical experiments for validating our method [12]. We did
also some numerical experiments with 2D domains [11]. Here, we consider numerical
experiments using the MoMas benchmark [1] and present results for the so-called 1D
easy test case, which is not so easy. This model is purely theoretical and is built in
order to illustrate complexity of reactive transport models. The hydrodynamic model
is simple with two media. The chemistry model is also simple with few species, and
with only aqueous and sorption reactions. However, physical data are chosen in order
to increase numerical difficulties. For example, hydrodynamic heterogeneities are
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quite large and reaction constants vary over several orders of magnitude. We present
results for two sets of transport conditions, with the same velocity but with different
diffusion tensors. These two test cases exhibit different kinds of difficulties.

4.1 Description of MoMas benchmark

Since this 1D easy test case of MoMas benchmark does not refer to a physical ex-
periment, the units used are L for length, T for time and m for amount of substance.
The computational domain is composed of two media: a dominant medium A and
a medium B at the middle of the domain (Figure 1). The medium B has a higher
porosity (ε = 0.5 for medium B versus ε = 0.25 for medium A) and initially a higher
reactivity (W = 10 m.L−3 for medium B versus W = 1 m.L−3 for medium A).

1 1

OUTFLOW

Impermeable boundary

Impermeable boundary

0.1

INFLOW
Medium A Medium A

     B
Medium 

Fig. 1 Computational domain of the 1D easy test case of MoMas benchmark.

The geochemistry system is composed of four aqueous components and one
fixed component, along with five secondary aqueous species and two secondary fixed
species. Stoichiometric coefficients and equilibrium constants are given in Table 1.
Mass action laws for each secondary species are read by rows and mass balance equa-
tions for each component are read by columns. For example, the mass action law for
the species u4 is given by

u4 = K4

4

∏
j=1

c
S4, j
j = 0.1 · (c1)0 · (c2)−4 · (c3)1 · (c4)3m.L−3. (17)

Two different sets of transport parameters are applied in this domain, called ad-
vective and dispersive conditions. These two conditions have the same pore velocity
value a = 5.5×10−3L.T−1 but different dispersion values (Table 2).

Boundary conditions are defined by prescribed total concentrations at inflow bound-
ary and prescribed zero concentration gradient at the outflow boundary. At the inflow
boundary, prescribed concentrations vary in time: the injection period is the time in-
terval [0 T,5000 T ] and the leaching period is the time interval [5000 T,6000 T ]. Data
are given in Table 3. Because we use logarithms in our model, concentrations cannot
be equal to zero; therefore initial and boundary values which are prescribed to zero
are approximated by 10−20 in our implementation.

We present in subsections 4.2, 4.3, the figures suggested in the benchmark defi-
nition. More results can be found in [11]. Since we use an adaptive time step auto-
matically chosen by the DAE solver, we do not run specific numerical experiments
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c1 c2 c3 c4 s K

u1 0 -1 0 0 0 10−12

u2 0 1 1 1 0 1.
u3 0 -1 0 1 0 1.
u4 0 -4 1 3 0 0.1
u5 0 4 3 1 0 10+35

v1 0 3 1 0 1 10+6

v2 0 -3 0 1 2 10−1

Table 1 Stoichiometric coefficients and equilibrium constants for the 1D easy test case of MoMas bench-
mark.

Medium A Medium B
Advective case 5.5×10−5 3.3×10−4

Dispersive case 5.5×10−2 3.3×10−1

Table 2 Values of the dispersion coefficient D (L2.T−1) as functions of the medium and of the transport
conditions for the 1D easy test case of MoMas benchmark.

c1 c2 c3 c4 s
Initial values of the total concentrations ( m.L−3)

Medium A 0. -2. 0. 2. 1.
Medium B 0. -2. 0. 2. 10.

Prescribed total concentrations at the inflow boundary (m.L−3)

Injection t ∈ [0;5000] (T.) 0.3 0.3 0.3 0.
Leaching t ∈ [5000;6000] (T.) 0. -2. 0. 2.

Table 3 Boundary and initial conditions for the 1D easy test case of MoMas benchmark.

with a fixed time step and we do not study the behaviour when the time step ap-
proaches zero. On the other hand, we study the convergence behaviour when the cell
size approaches zero. Since no reference solution is provided in the benchmark def-
inition, we cannot define easily a convergence criterium. Thus we choose to plot the
concentrations for various cell sizes and to analyse qualitatively the behaviour. For
all species and for both transport conditions, we observe convergence when we refine
the mesh. However, we also observe some numerical artefacts such as oscillations and
slower convergence in some specific zones of the time interval or the spatial domain.
We choose to present these particular behaviours and try to give some explanation.

All the results presented are obtained with the first version of our software, using
a finite volume method and a fixed cell size in the domain, except for some com-
plementary results. The grey boxes represented in some of the figures enclose a par-
ticular zone where we have enlarged the plot in order to provide some additional
information.

In all computations, for both advective and dispersive test cases and for all mesh
sizes, we use the same tolerances in the DAE solver: ATOL = 10−12 and RTOL =
10−9. We did not try to reduce computational time by using larger thresholds because
we aimed at obtaining accurate results.
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4.2 Results for the advective test case

We carried out simulations with a varying number of cells in order to check conver-
gence (nx = 50,100,200,400,800,1600,2100,3200). We observe a global conver-
gence and observe that the sharp fronts are well captured when we refine the mesh.
Our results are in good agreement with those of other participants in this MoMas
benchmark [16, 19, 22]. Because we want to illustrate that our global approach is
able to solve difficult numerical problems with high accuracy, we choose to present
the results obtained with a fine mesh (nx = 1600 cells). Figures 2-5-6-8-10-11 show
the results obtained for the advective condition. Figures 2-5-6 plot the evolution of
some species at a given point in function of time whereas Figures 8-10-11 show the
evolution of some species at a given time in function of space. In order to illustrate
some numerical difficulties, we show zooms with a coarser mesh (nx = 800) and a
finer mesh (nx = 3200).

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  500  1000  1500  2000  2500  3000

Time (T.)

Concentration (m.L.−3)

Fig. 2 Elution curve of total dissolved concentration C3 at x = 2.1L for the advective 1D easy test case
with nx = 1600 cells.

We first comment on results at the outflow point. Regarding the elution curve for
the total aqueous component C3 at x = 2.1L, we focus on the time period [2250 : 2500]
as shown by the grey box in Figure 2. This time interval is chosen to illustrate the
oscillatory behaviour of the curve. We plot the concentration for three spatial grids in
Figure 3 and observe oscillations for the two coarser grids. However, when the mesh
is refined, the amplitude of the oscillations decreases and the frequency increases so
that no oscillation is visible with the finest grid.

We used also the second version of our software, with a finite difference method
and a variable cell size. In Figure 4, we plot the same concentration for two different
spatial grids, with a coarse mesh and a fixed cell size and with a mesh refined around
medium B. Both grids have nx = 420 cells. We observe that oscillations disappear for
the mesh refined around medium B.

Therefore, we conclude that these oscillations are due to the numerical scheme.
Also we conclude that local refinement is a cheap way to remove these oscillations.
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 0.238

 0.24

 0.242

 0.244

 0.246

 0.248

 0.25

 2250  2300  2350  2400  2450  2500  2550

Time (T.)

Concentration (m.L.−3)

nx=800
nx=1600
nx=3200

Fig. 3 Elution curve of total dissolved concentration C3 at x = 2.1L for the advective 1D easy test case:
from Figure 2, zoom on oscillations with three spatial grids.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  500  1000  1500  2000  2500  3000

Time (T.)

Concentration (m.L.−3)

regular mesh
non regular mesh

Fig. 4 Elution curve of total dissolved concentration C3 at x = 2.1L for the advective 1D easy test case.
Results with a coarse grid with a fixed cell size and with a grid locally refined around medium B. Both
grids use nx = 420 cells.

Oscillations are also observed for the elution curve of the aqueous component c3
at the outflow point. They are still visible in Figure 5 because the time scale of the
figure is refined here. However, they disappear when we refine the mesh.

Concerning the elution curve for the aqueous secondary species u1 at x = 2.1L,
no oscillation is visible (Figure 6) and the sharp fron is quite accurate. However,
convergence is slower near this sharp front than in other areas. When we focus on
the time interval [5400 : 5500] in Figure 7, we observe some differences between the
three spatial grids, which are larger than in other areas.

Therefore, we observe that both the finite volume and the finite difference meth-
ods converge experimentally when the cell size approaches zero. However, locally at
some point or at some time, the distance between two curves (for two cell sizes) may
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 0.17
 0.172
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 0.18
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 0.184
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 0.188

 0.19

 850  900  950  1000  1050  1100

Time (T.)

Concentration (m.L.−3)

Fig. 5 Elution curve of component c3 at x = 2.1L for the advective 1D easy test case with nx = 1600 cells.

 0
 2e−07
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 8e−07
 1e−06

 1.2e−06
 1.4e−06
 1.6e−06
 1.8e−06

 2e−06

 5000  5200  5400  5600  5800  6000

Time (T.)

Concentration (m.L.−3)

Fig. 6 Elution curve of species u1 at x = 2.1L for the advective 1D easy test case with nx = 1600 cells.

not decrease in a monotone way. The behaviour is improved by local refinement, thus
some a posteriori error estimation could be very useful for this test case.

After these comments on the concentrations at the outflow point, we analyse the
results at a given time. Regarding the concentration profile of the aqueous secondary
species u1 at t = 10T , in Figure 8, we observe a high peak between x = 0.015L and
x = 0.05L; since convergence is slower in this area, Figure 9 shows a zoom of the
peak with the three spatial grids. We observe that the peak becomes more accurate
when we refine the mesh.

Figure 10 shows the concentration profile for the sorbed component s at the be-
ginning of the injection period, for t = 10T , near the left boundary of the domain. In
the benchmark definition, it is required to plot the result in the space interval [0 : 0.06]
which is quite small; therefore, we show results with only a fine mesh with nx = 1600
cells, in order to use 45 cells in the space interval. With a coarser mesh, the concen-
tration peak observed is not so sharp.
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Fig. 7 Elution curve of species u1 at x = 2.1L for the 1D advective easy test case: from Figure 6, zoom
with three spatial grids.
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Fig. 8 Concentration profile for the advective 1D easy test case of species u1 at t = 10.T with nx = 1600
cells.

Finally, the concentration profile of aqueous secondary species u2 at time t =
5010T is shown in Figure 11. Here too, we still observe convergence when we enlarge
the critical zone (Figure 12).

We now discuss computational requirements of our global method for this test
case. Computations are done on an Intel Pentium 4 with a frequency of 3 GHz, a
memory RAM of 1 Gb and a memory cache of 1 Mb, under the operating system
Linux Fedora Core 6. We use a unit time based on the CPU time required for a BLAS3
operation. More specifically, this operation is the product of two (1000 × 1000) real
matrices. We make this computation twice, either with the BLAS function from the
ATLAS implementation of BLAS library or with three classical loops of computation.
Both units are called respectively Ublas and Uno blas. For sake of information, we get
Ublas = 0.43 seconds and Uno blas = 8.5 seconds. The BLAS library is optimised to
perform basic linear algebra operations. In our software, only the sparse linear solver
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Fig. 9 Concentration profile for the advective 1D easy test case of species u1 at t = 10.T.: from Figure 8,
zoom on peak for three spatial grids.
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Fig. 10 Concentration profile for the advective 1D easy test case of fixed component s at t = 10.T. with
nx = 1600 cells.

uses BLAS3 operations, so that the effective computational time unit is in between
Ublas and Uno blas.

In Table 4, we give the computing times expressed in these two units for a varying
mesh size. Results are given here for the first version with a fixed cell size in the
domain. We observe a complexity of about O(n1.8

x ). Two effects induce this nonlinear
complexity: the factorization of the matrix follows a power law, and the number of
time steps increases when we refine the mesh. We could adapt the various parameters
of the DAE solver and refine only locally the mesh in order to reduce the CPU time.

4.3 Results for the dispersive test case

As for the advective test case, we carried out simulations with a varying number
of cells (nx = 42,84,168,336,672,1344). Here too, we use the first version of the
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Fig. 11 Concentration profile of species u2 at t = 5010.T for the 1D advective easy test case with nx =
1600 cells.
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Fig. 12 Concentration profile for the 1Da dvective easy test case of species u2 at t = 5010.T. : from Figure
11, zoom on the peak with three spatial grids.

mesh size nx CPU time (in Ublas) CPU time (in Uno blas)
50 698 35

100 2511 127
200 8537 432
400 29929 1514
800 111565 5644
1600 379080 19177
3200 1358701 68734

Table 4 CPU time obtained for different mesh sizes for the advective test case in units of time with BLAS
function (Ublas) and in units of time without BLAS function (Uno blas).
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method with a finite volume method and a fixed cell size. We also obtain a global
convergence and observe that the sharp fronts are well captured when we refine the
mesh. As for the advective test case, we choose to present the results obtained with
a fine mesh (nx = 672 cells). The method gives accurate results with a coarser mesh
than for the advective condition.

Figures 13-15-18-20-22 show the different results obtained concerning the dis-
persive 1D easy test case. Figures 13-15-18 present the evolution of some species in
function of time, whereas Figures 20 and 22 show the evolution of some species in
function of space. For this test case also, we present simulations results with a coarser
mesh (nx = 336) and a finer mesh (nx = 1344), in order to illustrate some numerical
difficulties.
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Fig. 13 Elution curve of total dissolved concentration C3 at x = 2.1L for the dispersive 1D easy test case
with nx = 672 cells.
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Fig. 14 Elution curve of total dissolved concentration C3 at x = 2.1L for the dispersive 1D easy test case:
from Figure 13, zoom on oscillations with three spatial grids.
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We first comment on results at the outflow point. Concerning the elution curve for
the total dissolved concentration C3 at x = 2.1L, we focus on time period [280 : 310]
as shown by the grey box on Figure 13 in order to underline numerical difficulties.
Oscillations are indeed visible on Figure 14. As for the advective test case, the am-
plitude of the oscillations decreases and the frequency of the oscillations increases
when we refine the mesh. However, the oscillations seem to be less important than
for the advective test case (Figure 3).
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Fig. 15 Elution curve of species u1 at x = 2.1L for the dispersive 1D easy test case with nx = 672 cells.
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Fig. 16 Elution curve of species u1 at x = 2.1L for the dispersive 1D easy test case: from Figure 15, zoom
on oscillations with three spatial grids.

We observe a similar behaviour for the elution curve of the species u1; when we
enlarge the area plotted in Figure 15, corresponding to the time interval [100 : 140],
we observe oscillations (Figure 16) which are no longer visible for the finest mesh.
Here too, oscillations are not so important as in the advection test case.
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Fig. 17 Elution curve of species u1 at x = 2.1L for the 1D easy test case with varying dispersion conditions
and with nx = 50 cells.

In order to analyse this numerical artefact, we run other test cases with the same
chemistry but with transport conditions where diffusion coefficients increase from the
advective condition to the dispersive condition (Figure 17). Although we still observe
some oscillations in the dispersive case, their amplitude clearly increases when the
diffusion coefficients decrease. We suspect that the first-order upwind scheme used
for advection induces numerical dispersion. This artefact has a reduced impact if the
model includes physical dispersion.
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Fig. 18 Elution curve of species u2 at x = 2.1L for the dispersive 1D easy test case for nx = 672 cells.

Regarding the species u2, we enlarge the area plotted in Figure 18, corresponding
to two peaks of concentration. In this time interval, we observe a slower convergence
than in the whole time interval, but no numerical oscillations (Figure 19).

For all the species, we observe convergence when we refine the mesh. A fine
mesh is necessary at some point or at some time in order to reduce oscillations or to
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Fig. 19 Elution curve of species u2 at x = 2.1L for the dispersive 1D easy test case: from Figure 18, zoom
on two peaks for three spatial grids.

improve accuracy. Adaptive mesh refinement based on a posteriori error estimation
could be very useful in order to reduce computational cost and to preserve accuracy.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  0.5  1  1.5  2

time (T.)

Concentration (m.L.−3)

Fig. 20 Concentration profile of total dissolved concentration C2 at t = 10.T for the dispersive 1D easy
test case with nx = 672 cells.

After these comments on the data expressed as functions of time, we comment on
the data expressed as functions of space.

In Figure 20, we plot the concentration profile of the total dissolved concentration
C2 and we enlarge the grey area in Figure 21, corresponding to the spatial interval [0 :
0.5]. We choose this zone because convergence is slower here. Locally, the distance
between two curves does not decrease regularly when we refine the mesh. Some error
estimation could be useful here to analyse in more details the convergence behaviour.

Finally, results for the fixed component s are shown in Figure 22. Here, the first
peak in the space domain [0;0.25] is not correctly captured if the mesh is too coarse.
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Fig. 21 Concentration profile of total dissolved concentration C2 at t = 10.T for the dispersive 1D easy
test case: from Figure 20, zoom on the local minimum for three spatial grids.
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Fig. 22 Concentration profile for dispersive easy test case 1D for concentration of fixed component s at
t = 10.T. for nx = 672 cells.

Now, we discuss computational requirements for this dispersive test case. The
CPU times obtained for different mesh sizes are given in Table 5 with the same units
as for the advective test case.

mesh size CPU time (in Ublas) CPU time (in Uno blas)
42 1403 71
84 2582 131

168 10772 545
336 32340 1636
672 122416 6193

1344 672350 34013

Table 5 CPU time obtained for different mesh sizes for the dispersive test case in time units with BLAS
function (Ublas) and in time units without BLAS function (Uno blas).
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The observed CPU complexity is about in O(nx
2.4), with a higher exponent than

in the advective case. We must further analyse this computational complexity. In par-
ticular, we must analyse the frequency of Jacobian updates.

4.4 Discussion

We have presented results as suggested in the benchmark definition. They are in good
agreement with those of other participants in the benchmark study [16, 19, 22].

In both advective and dispersive test cases, we observe convergence of the con-
centrations when we refine the mesh. However, locally, around some sharp fronts
for example, convergence is slower than in other areas and the distance between the
values does not seem to decrease in a monotone way. Also, for the two transport con-
ditions, we observe oscillations in the concentrations of some chemical species. Since
a refinement of the mesh clearly reduces these oscillations, we can assume that they
are related to the numerical scheme. Moreover, these oscillations are more important
for advection-dominated test cases. We suspect that the first-order upwind advection
scheme induces numerical dispersion. The reactive transport model is not a classical
advection-diffusion equation because of the coupling with chemistry. Here, it is non-
linear and couples the time derivative ∂T

∂ t with the transport operator L (C) through
the chemistry algebraic equations. Thus, the classical properties of the first-order up-
wind scheme for advection and the centered scheme for diffusion are probably no
longer true. In particular, it seems that the global method is not a TVD scheme.

For the same number of cells, the dispersive test case requires more CPU time than
the advective test case. On the other hand, a coarse mesh yields enough accuracy in
the dispersive case. We need to further analyse the computational complexity. Also,
we plan to reduce the size of the linear systems by substitution in order to reduce the
cost of the direct sparse linear solver. We choose to present accurate results where
most of the oscillations are removed. Therefore, we use a sufficiently refined mesh
and sufficiently small tolerances in the DAE solver. As a result, CPU requirements are
quite high for these 1D test cases. In order to reduce CPU time, we have developed
a second version where it is possible to locally refine the mesh. Preliminary results
where we refine locally around medium B are quite satisfactory. We get accurate
results with a smaller number of cells, thus with a reduced CPU time. Adaptive mesh
refinement would be very useful for these test cases.

5 Conclusion

In this paper, a global method based on a method of lines and a system of DAE has
been defined and used for reactive transport problems. In a first step, spatial discreti-
sation leads to a discrete system of DAE. In a second step, implicit time discretisation
is applied. At each time step, nonlinear equations are solved by a modified Newton-
LU method. The DAE solver includes an adaptive time step and a strategy to update
the Jacobian only when necessary.
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Our global method is applied on the 1D easy test case proposed in the MoMas
benchmark. This test case is representative of the difficulties arising in reactive trans-
port simulations: strongly nonlinear systems with sharp fronts and stiff reactions. We
checked experimentally convergence of numerical results by refining the mesh. For
both transport conditions defined in the benchmark, we observe oscillations. Since
they are damped by refining the mesh, we assume that these oscillations are due to
numerical dispersion. Indeed, it is not clear whether the coupled numerical scheme is
monotone.

We present results with high CPU requirements, because our tolerance thresholds
in the DAE solver are very small and because we use a fine mesh in order to get
accurate results. We already could reduce the time by refining the mesh only locally,
without loosing too much accuracy. We plan to further cut down the time by applying
a substitution approach at the linear level, which reduces the matrix size.

Currently, our method has been applied to specific geochemistry systems. We
reckon that it is not difficult to introduce kinetic reactions and activity coefficients.
It is harder to deal with minerals, since the nonlinear system becomes non differen-
tiable. We plan to use semismooth Newton methods for solving these problems.
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