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Abstract.  A finite element model of three-dimensional high speed machining is developed. In order to catch Adiabatic 
Shear Band (ASB), which is about few microns wide, the simulation uses mesh adaptation triggered by an isotropic error 
estimator. An enhanced version of the Zienkiewicz and Booromand REP in Patches technique is used. As ASB is a 
much localized phenomenon, the adaptive procedure provides highly refined meshes with strong gradients of the 
element size, which makes it quite difficult to produce satisfactory 3D meshes. Furthermore, high speed machining leads 
to very important values of strain rate, deformation and possibly to extreme mesh distortion. So, an Arbitrary Lagrangian 
Eulerian (ALE) method is employed. With the utilized splitting method and linear finite element interpolation, the 
transport of nodal variables is based on the gradient calculated in the upwind element. For variables stored at the 
integration points, a remapping procedure using patch recovery techniques is preferred. Finally, because of the very 
strong thermo-mechanical coupling taking place in ASB, several thermo-mechanical coupling schemes are studied. 
Explicit and fully implicit schemes are compared, showing that the second one offers a stabilizing effect and a better 
accuracy. All of these ingredients provide a fully automatic and process independent procedure which allows detecting 
and following the formation of Adiabatic Shear Band in High Speed Machining. The creation of 3D segmented chip is 
observed and compared to 2D reference results obtained by Baker in [1]. The influence of numerical coefficients like the 
mesh size is investigated. Other application to actual 3D high speed machining such as blanking is also presented. 

Keywords: Adiabatic Shear Band, High Speed Machining, Segmented Chip, Adaptive Remeshing, Error Estimation, 3D 
Meshing, ALE Formulation, Implicit Thermomechanical Coupling

INTRODUCTION

Adiabatic Shear Band (ASB) is a well known 
material alteration which takes place at very high 
speeds with materials having poor thermal 
conductivity. It results from the competition between 
plastic hardening and strain softening. Its formation 
can be divided into three stages as depicted in Figure 
1-a. The first one is similar to standard stress-strain 
curve of a compression test where hardening 
behaviour is predominant to softening. In the second 
stage, both phenomena become equivalent, the ASB 
begins to occur. Through the latest stage, a very 
important drop of stress (about 80% of the maximum 
value) takes place. It is followed by a huge rise of 
temperature (about 500-700°C in Figure 1-b) leading 
to the creation of a very thin band (about few microns 
wide) of high temperature and large deformation: the 
ASB.

(a) (b)

FIGURE 1.  (a) Stress-strain curve of a compression test at 
high speed issued from [2]. (b) Stress-temperature curve 
with respect to time for a compression test [3]. 

Although many researches have been conducted on 
the ASB phenomenon itself, only a few of them have 
been performed on ASB occurring in machining [1, 4, 
5]. In [4], Owen and al. considered the ASB as a pure 
damage problem. The mesh refinement is guided by an 
isotropic error estimator which captures the 
progression of plastic deformation. The region of 
possible material failure is detected by evaluating an 
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error indicator defined from a fracture criterion which 
is derived from the uncoupled integration of 
Lemaître’s damage model. The authors have 
succeeded to simulate the first ASB for a 2D high 
speed orthogonal cutting test but, the used damage 
model shows mesh dependency. To avoid introducing 
damage, ASB can be considered as a pure deformation 
process [1, 5]. In [1], Bäker and al. have succeeded to 
simulate several ASB in this way, leading to the 
formation of a segmented chip using specific 
numerical techniques and adapted geometric criteria 
for the mesh refinement. In [5], Ortiz and al. used the 
calculation of an isotropic error, obtained from the 
Hessian computation, to automatically pilot the mesh 
adaptation. The control of mesh quality results from a 
coercive criterion on mesh size gradients. With purely 
adiabatic calculations, a localized shear band is 
detected and modeled for a cylinder implosion test 
including a small defect to onset the band formation. 
As the temperature increase and consequently the yield 
stress drop is rather small, the simulated phenomenon 
cannot exactly be considered as an Adiabatic Shear 
Band. 

The aim of this paper is to use a fully automatic 
and process independent simulation procedure that 
allows detecting and following the formation of 
Adiabatic Shear Bands in 3D High Speed Machining. 

NUMERICAL MODEL 

Thermo-Mechanical Equations 

The weak form of the momentum and 
incompressibility equations result into a mixed 
velocity-pressure formulation that is discretized by an 
enhanced (P1+/P1) quasi-linear interpolation based on 
a 4-noded tetrahedron element. Mechanical equations 
are implicitly solved by using Newton-Raphson 
algorithm, state variables are updated at each time 
increment by an explicit Euler scheme. The heat 
equation is solved by using the standard Galerkin 
formulation with a linear interpolation. The 
temperature time discretization uses a two time step 
scheme which is detailed in [6].  

Isotropic Error Estimation  
and mesh adaptation 

The goal of mesh adaptation triggered by error 
estimator is to confer to simulations an automatic 
fashion. In case of ASB, the adaptive strategy must be 
capable of detecting phenomena and automatically 
refining the mesh accordingly. 

Definition of the Interpolation Error 

For incompressible flows, the error related to the 
spherical part of the stress tensor is neglected. In the 
used [8] Zienkiewicz-Zhu approach, the exact error is 
estimated by approximating the exact solution s by a 

recovered superconvergent solution 
~

hs  that is 

computed from the finite element one hs . The 
estimation is then written in the energy norm: 
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Where 
hhs

.
,  are discretized deviatoric stress and 

strain rate tensors and 
hs  is the material viscosity. 

Size maps for adaptive remeshing strategies 

The optimality condition of the new mesh requires 
that the error is uniformly distributed among the new 
elements. The standard adaptive remeshing strategy, 
AST1, determines an optimized mesh optT   that should 
satisfy a prescribed global accuracy imp .
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Where opt
e  is the contribution of element e on the 

optimal mesh to the global estimated error, and eh  is 
the size of element e.

In 3D, the number of elements of the optimal mesh 
is given by: 
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The optimal size of the element is finally computed 
by using the following equation: 

e

p

e

imp
opt
e hh

32
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    (4) 

Where p is the interpolation degree which is taken 
equal to 1. 

For some problems, the computational cost 
resulting from mesh adaptation becomes higher and 
higher, so there is a risk to exceed computer 
capabilities. Consequently, a second approach, AST2, 
consists in determinating an optimized mesh optT  for a 
prescribed number of elements impNeblt  providing the 
best possible accuracy. The optimal element size is 
still given by (4) but with the value of the global 
accuracy imp as follows: 
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The error being uniformly distributed on the new 
elements, it is given by: 
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ALE Method: The Splitting Formulation 

As ASB is a much localized phenomenon, the 
adaptive procedure provides highly refined meshes 
with strong gradients of the elements size, leading to 
unsatisfactory meshes. To avoid this and extreme mesh 
distortions due to machining conditions, an ALE 
method is employed. At each time step, it solves the 
thermal and mechanical equations using a pure 
Lagrangian formulation. This constitutes the first step 
of the implemented ALE splitting method [8]. 

Mesh Velocity Calculation 

The second step of the ALE splitting method 
consists in computing the mesh velocity w, which can 
be different from the material one. w must satisfy the 
volume conservation condition on the boundaries: 

0.nvw     (7)
Where v is the material velocity and n is either a 

consistent normal to the work piece on the free surface 
or the outside contact normal.  

w is computed to optimize the elements quality, 
independently from the material deformation. The 
relationship between the material grid time derivatives 
of any variable  is given by: 

vw
tdt

d mg     (8)

The mesh velocity nw  of any node n is calculated by 
an iterative algorithm that computes the new location 
of nodes using a centring algorithm: 
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And then: 
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Where n  is the set of elements contiguous to node 
n (i.e. which contain n), gex  is the barycentre of 
element e, 1it

eC  is a weight factor insuring the mesh 
quality (see eq. (11) and (12)).  

In order to optimize the mesh so that is obeys the 
optimal mesh size map opt

eh , the weight factors of eq. 

(9) are turned into a combination of an adaptive 
coefficient 1it

eCa  and a plain geometric coefficient 
1it

eCf  (which allows insuring the elements quality): 
11
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Where eV  is the volume of element e, ep  is its 
perimeter, and  is an adimensional constant such 
that Cf  is equal to 1 for a perfect tetraedra.  is a 
smoothed Heaviside function, such that 

fC  is equal 
to 0 if Cf  is larger than the critical value 

critCf  and else 
equal to 1 (with a smooth variation between 0 and 1). 

Convective phase 

A first order linearization of eq. (13) yields a quick 
and simple way to transport P1 nodal variables.  

tttt
LAG

tt
ALE wv .     (13) 

As  is linear,  is constant on each element, so 
the gradient tt  is computed in the upwind 
element. This method can not straightforwardly be 
applied to transport the P0 variables that are stored at 
integration points (the barycentres of the elements) 
because their finite element gradient is not known. 
Therefore, a Lagrangian like transport has been 
preferred. A recovered continuous solution is directly 
constructed on patches centred at integration points. 
For more details about the utilised ALE formulation, 
see [8]. 

THERMOMECHANICAL COUPLING 

ASB is a highly-coupled thermo-mechanical 
phenomenon: the heat generated by deformation 
makes the yield stress decrease, leading to more heat 
creation. In the following, several thermo-mechanical 
coupling schemes are investigated, from less to more 
coupled ones. 

Description of Coupling Formulations 

Incremental Thermo-Mechanical Coupling 

At each time step, the mechanical equations are 
first solved using thermal data computed at the 
previous time increment, and then the heat equation is 
solved with newly calculated mechanical values. This 
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scheme is very fast but requires using very small time 
step to model strong coupled problems.  

 Strong Thermo-Mechanical Coupling,  
 by Using a Fixed Point Algorithm 

The scheme is initialized by the incremental one, 
the iteration are carried out using the newly calculated 
temperature value, until variations are small between 
successive iterations. This scheme provides a strong 
coupling but, as a fixed point algorithm, its 
convergence is not ensured. 

Strong Thermo-Mechanical Coupling, 
 by Using the Newton-Raphson’s Algorithm 

With T corresponding to the temperature, the fully 
coupled thermo-mechanical problem (v, p, T,) is 
implicitly solved by using the Newton-Raphson 
algorithm. A single system is iteratively solved until 
convergence. This method strongly couples the 
thermo-mechanical equations. As a higher order 
algorithm, it is more robust and efficient but requires 
solving larger systems, so requiring more 

computational time (about 
2/3

3
4 in 3D).  

Comparisons on a compression test 

The three previous methods are compared on a 
25% hot compression test performed at 1 m/s (Figure 
2).  

FIGURE 2.  Hot Compression test performed on ¼ of a 
cylindrical sample at 1 m/s. 

The sample consists of a Titanium alloy 
(Ti6AlV4). which is described by the following visco-
plastic constitutive laws (14) (see table 1 for 
corresponding numerical values). 

1..

,
m

TKeT  (14) 

Where m the strain rate sensibility coefficient and 
.

the equivalent strain rate. 

TABLE 1. Numerical Values of Parameters Used in 
the Previous Visco-plastic Constitutive Law. 

Parameter Numerical Value 
K 43,872 MPa 

 0.00564 K-1

m 0.152 

The used mesh is made of 2,800 nodes and 13,500 
elements. 

Weak Physical Coupling 

In figure 3, it can be observed that all schemes give 
exactly the same results in terms of temperature and 
strain rate, which allows validating the algorithms. As 
expected, the incremental coupling method is the 
fastest one (338 s) whereas the fully coupling scheme 
is the longest (2,139 s). It shows that incremental 
coupling is both accurate and fast in case of non 
intense physical coupling. 

FIGURE 3.  Strain rate distribution (s-1) for the Incremental, 
Fixed Point and Fully Implicit (c) schemes. 

Strong Physical Coupling 

In order to test stronger physical coupling, the 
value of  has been decreased to 0.00282 K-1. It turns 
out that the incremental algorithm does not provide the 
same results as the other schemes (Fig. 4). This 
confirms that the incremental coupling scheme is 
inaccurate when the physical thermo-mechanical one 
is intense.  
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    (a)           (b)
FIGURE 4.  Maximum strain rate (a) and temperature (b) 
for the weak (blue-square) and strong (red-line) coupled 
schemes as a function of time. 

Very Strong Physical Coupling 

The physical coupling is further increased by 
dividing by 3 the initial value of  (0.00188). It turns 
out that, not only the incremental method provides 
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very different results (Fig. 5) but also the fixed point 
method does not converge at any time steps contrarily 
to the fully implicit one. It shows that, in case of 
intense physical coupling, the implicit is a mandatory.  

 (a)   (b)
FIGURE 5.  Strain rate distribution (s-1) for the Incremental 
(a) an Fully Implicit (b) schemes 

APPLICATION TO MACHINING 

Physical Model 

 The constitutive equation for the Ti6AlV4 
presented in more details in [1, 6] is written as:  

MT

Tn

T
TT

CTKT

exp

ln1,, .

0

.

*
. *

 (15) 

Where  and  respectively are the equivalent 
stress and deformation. ,,, **

MTTnK  and C are 
constant values that are given in [9]. 

Because of extreme temperature rise in ASB, 
material parameters like conductivity and heat capacity 
are regarded as temperature dependant. A linear 
interpolation between points at 24°C and 1200°C, 
which details can be found in [6], is used. 

Finally, it is assumed that there is no heat transfer 
between the deformed material and the cutting tool, 
which is also considered as perfectly rigid. Friction on 
the cutting edge is regarded as negligible as such 
speeds [1]. 

Orthogonal cutting 

In order to evaluate the numerical model, results 
have first been compared to Bäker’s [1] for a high 
speed orthogonal cutting configuration described in 
Figure 6 (Dimensions are summarized in table 2). 

FIGURE 6.  High speed orthogonal cutting configuration 

TABLE 2. Orthogonal Cutting Test Values 
Described in Figure 6. 

Value description Numerical value 
Length (a) 0.28 mm 
Width (b) 0.04 mm 
Height (c) 0.15 mm 
Cutting depth (d) 0.04 mm 
Cutting angle (e) 10° 
Roundness of the tool (f) 3 mm 
Cutting speed (g) 50 m/s 

In order to model plane strains, symmetry planes 
have been added on both lateral faces of the 3D mesh, 
which has a maximum of 29,000 nodes and 140,000 
elements. 

Comparison with Baker’s Results 

Figure 7 shows that both models give same results 
in terms of strain distribution, which has also been 
confirmed by analyzing the cutting force evolution in 
[6]. The difference between chip curvatures is 
explained by the different tool edge radii used in both 
models, the one utilized here being more realistic. 
From those results, obtained after four days on a P IV, 
3.20 GHz with 2Go of RAM, it can be concluded that 
the developed model is capable of simulating ASB in 
3D orthogonal cutting without any preliminarily 
information (Figure 8) for the numerical model. 

 (a)  (b) 
FIGURE 7.  Strain distribution for present (a) and Bäker (b) 
models. The scale has been cut to 3.0.  

FIGURE 8.  Strain distribution in a 3D segmented chip  
    obtained by high speed orthogonal cutting (50 m/s) 

d

b

c
a

e

g

f

1141



Numerical Investigation 

Figure 9 shows that mesh refinement automatically 
occurs where Von Mises stress drops, allowing the 
detection of ASB formation.  

FIGURE 9.  Von Mises stress distribution and 
corresponding mesh at the establishment of the first ASB. 

In order to evaluate the accuracy and reliability of 
the results, it is required to check the mesh 
dependency. Table 3 presents the bandwidth obtained 
for several model sizes. It shows a relative difference 
of about 3.4 % when multiplying by 2 the number of 
elements in the ASB, which indicates that the 
computed ASB width converges to a finite value 
which does not depend on the mesh size.  

TABLE 3. Band Width for Different Model Sizes.  
Elements number 

of  the models 
Elements 

number in ASB 
Band width 

(µm)
54,000 (a) 4-5 3.49 
130,000 (c) 8 3.40 
260,000 (d) 10 3.38 

Blanking

A 3D blanking test is considered in order to study 
more actual 3D simulation of ASB. Problem 
dimensions (Fig. 10) are taken close to the previous 
orthogonal cutting values with the same material (see 
Table 4).  

     
FIGURE 10.  High speed blanking test configuration 

TABLE 4. 3D Blanking Test Conditions Described in 
Figure 10. 

Value description Numerical value 
(a) 0.093 mm 
(b) 0.045 mm 
Cutting speed (c) 50 m/s 
(d) 0.3 mm 
(e) 0.085 mm 
(f) 0.08 mm 
Edge radii 0.003 mm 

Number of nodes and elements of the 
corresponding mesh are respectively limited to 29,000 
and 140,000. 

Application to Blanking 

In Figure 11, the Von Mises drop band captured by 
mesh adaptation is observed. Consequently, a high 
temperature band appears. These results, obtained after 
24 hours of calculations, indicate the ASB formation. 
It confirms the capability of the code to simulate ASB 
in various 3D cutting configurations. It has been 
noticed that such ASB formation is not observed under 
more conventional (size, speed, material) 
configurations.  

FIGURE 11.  Von Mises, temperature and mesh 
distributions for the high speed blanking test 
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