
HAL Id: hal-00510558
https://minesparis-psl.hal.science/hal-00510558

Submitted on 1 Apr 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From steady-state to cyclic metal forming processes
Pierre Montmitonnet

To cite this version:
Pierre Montmitonnet. From steady-state to cyclic metal forming processes. Materials Processing
and Design, Modeling, Simulation and Applications, NUMIFORM ’07: 9th International Conference
on Numerical Methods in Industrial Forming Processes, Jun 2007, Porto, Portugal. p. 209-214,
�10.1063/1.2740813�. �hal-00510558�

https://minesparis-psl.hal.science/hal-00510558
https://hal.archives-ouvertes.fr


From Steady-State To Cyclic Metal Forming Processes 

Pierre Montmitonnet 

Cemef, UMR Ecole desMines de Paris /CNRSn°7635 -
Ecole des Mines, BP 207, 06904 Sophia-Antipolis CEDEX, France 

Abstract. Continuous processes often exhibit a high proportion of steady state, and have been modeled with steady-
state formulations for thirty years, resulting in very CPU-time efficient computations. On the other hand, incremental 
forming processes generally remain a challenge for FEM software, because of the local nature of deformation compared 
with the size of the part to be formed, and of the large number of deformation steps needed. Among them however, 
certain semi-continuous metal forming processes can be characterized as periodic, or cyclic. In this case, an efficient 
computational strategy can be derived from the ideas behind the steady-state models. This will be illustrated with the 
example of pilgering, a seamless tube cold rolling process. 

Keywords: cyclic processes; FEM modelling ; material history. 

INTRODUCTION 

Incremental processes, in which deformation is 
split in a series of steps (roll forming, ring rolling, 
cross wedge rolling, spinning, rotary forging...) 
remain a challenge even for advanced numerical 
techniques [1]. This is due to the local character of 
deformation, which requires fine local meshing in a 
generally large system, and to the large number of 
steps needed to form the whole part. Moreover, each 
step is a time-dependent thermo-mechanical process, 
requiring a time-stepping numerical scheme. 

In some cases, a cyclic character emerges from the 
analysis of the process. This is the case for the cold 
pilgering of tubes [2, 3]. This means that if the 
formulation if properly coined, it may prove sufficient 
to compute only one or a few of the numerous cycles 
in which the whole process consists. In this respect, 
such processes are intermediate between fully 
incremental forming and processes presenting a 
dominant steady state (strip / bar rolling, extrusion...). 
In the following, we describe an intermediate 
computational strategy, recycling part of the ideas 
behind the numerous steady state models proposed for 
rolling (e.g. [4-8]), adapted to the cyclic situation, 
resulting in a still computationally intensive approach, 
yet much improved in efficiency. 

DESCRIPTION OF PILGERING 

Pilgering is a seamless tube cold forming process. 
The material enters as a tubular perform with a thick 
wall and large diameter, and exits as a thinner and 
smaller tube: both thickness and diameter are reduced, 
using two main kinds of tools (fig. 1). 

The mandrel calibrates the inner surface; it is axis-
symmetrical, its diameter evolves from the preform 
inner diameter to the pilgered tube inner diameter. Its 
z-profile shape is an important process parameter, 
controlling the progression of the radial / orthoradial 
strain ratio, quite important for metal integrity, 
microstructure and texture evolution. 

The dies wear grooves, the section of which is 
basically a circle shifted from the symmetry plane (see 
fig.2). The groove section diameter evolves between 
the outer diameters of the preform and pilgered tube. 

Tool Kinematics 

The mandrel is fixed in translation as well as in 
rotation. The dies are rolling back and forth along the 
mandrel axis Oz; their movement is controlled by a 
rack-and-pinion system, ensuring rolling without 
sliding. Thus, at a given z-position, a given groove 
depth always corresponds to a given mandrel diameter, 
leaving a well defined gap for the material. This is 
called "conjugation". 
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Between each back-and-forth movement of the dies 
(a "stroke"), the preform is turned (by about 50°) and 
pushed forward by a few mm. Rotation ensures that 
although the gap where it is rolled is not exactly axis-
symmetrical, the tube will exit precisely circular from 
the deformation zone. Furthermore, after being 
advanced, the preform presents at position z a 
thickness greater than the die / mandrel gap, so that the 
next stroke will indeed reduce and elongate the tube 
(fig. 2). With this combination of rigid rotation and 
translation before the stroke, plus elongation during 
the stroke, it takes 50 to 100 strokes for a material 
point to go its helical way through the deformation 
zone, from the preform side to the finished tube side, 
being deformed sometimes in the flange area, 
sometimes near the groove bottom. Also note that it 
takes about 2500 strokes to pilger a 5.2-m long 
preform. 

FIGURE 1. Principle of the cold pilgering process, showing 
the mandrel, the two dies (pictured here without their driving 
axes for better visibility), and the preform being pilgered 
(named "transition"). 

Analysis Of The Strain And Stress Pattern 

FIGURE 2. Cross-section of the tube / die / mandrel system 
at a given z-position. Thin line: mandrel section; thick line: 
die groove section; grey : section of the tube "transition". 

Figure 2 compares the geometry of the system, in 
cross-section at a definite position z. Before the stroke 
(i.e. after turning and advancing, left), (i) the tube is 
thicker than the gap, (ii) its symmetry planes are 
turned ~ 50° with respect to those of the dies, resulting 
in the absence of any plane of symmetry (only central 

symmetry remains), (iii) the thickness is highest in the 
8 ~ 50° area, which was in the flange area during the 
previous stroke. In the flange area, a side relief is 
managed to let the tube ovalize slightly without being 
pinched. The thickness has a minimum at 6 ~ 140°, 
which comes from the groove bottom. As for the gap, 
it has a minimum at groove bottom (6 ~ 90° or 270°) 
and a maximum in the flange area (6 ~ 0 or 180°). 

As a result, most of the thickness reduction occurs 
in a wide area around the groove bottom, with a 
maximum at 8 ~ 70 to 80° (see fig.5), under a large 
compressive an. This reduction, by incompressibility, 
results both in orthoradial and longitudinal flow. A 
slight 8-elongation takes place, as metal escapes the 
thinner gap towards the thicker areas; this flow is 
obviously restricted by the geometry, so that the 8-
stress is always strongly compressive everywhere; the 
metal flow is dominantly elongation in the z-direction. 

In the flange area, due to the side-relief, the 
available space is largest; if the preform advance is 
chosen small enough, the result is an absence of 
contact of the tube with the mandrel and die flange. 
Therefore, an ~ 0, and the thickness increases slightly 
(en > 0). Elongation takes place only because the 
material is forced to yield by the elongation of 
neighboring material in the groove bottom. This results 
in a highly tensile azz. 

CYCLICITY VERSUS STEADY STATE 

Looking at fig.2 again, it is important to realize that 
once the tube on the right side of the figure has been 
turned and advanced before the next stroke, the system 
will be in exactly the same state as before the stroke 
(left part of the figure). This ensures that in spite of the 
semi-continuous and repetitive nature of the process, 
the finished product is constant and homogeneous to a 
good accuracy. This is true for the geometry, and also 
for the strains, which are just the translation of the 
difference between the tube and gap geometries; and 
therefore also for the stresses. This periodic character 
from a Eulerian point of view (i.e. in a referential fixed 
to the frame of the machine) is an essential practical 
and theoretical feature. It is confirmed e.g. by the 
vertical pilgering force recording of fig. 3, where 
forward and return rolling show by distinct peaks, one 
big (forward) and one small (return) forming a cycle. 
To a good "industrial accuracy", this basic cycle 
repeats identically all along the rolling of a preform -
to the probable exception of both ends. 

Of course, for the material points, there is no 
periodicity: strain accumulates, stresses change as the 
point moves helicoidally around the mandrel, 
sometimes in the flange area, sometimes in the groove 
bottom, with the different stress and strain states 
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described above. So the Eulerian point of view is 
cyclic, the Lagrangian point of view is not. Simply, the 
same stress and strain patterns are cyclically 
reproduced, but applied to different particles. 

1; 

3000 4000 5000 6000 7000 
time ( 500 units = 100 ms ) 

FIGURE 3. The measured pilgering force shows the 
periodic nature of the process. The minimum force (8000 
daN) is a pre-compression imposed to the dies to avoid the 
"pilgering slit" (die separation changing the gap geometry). 

This is similar to what occurs in steady-state phases 
of continuous processes, strip rolling e.g.: the velocity, 
temperature, strain and stress fields are time-
independent in a fixed frame (once end effects are 
neglected), although material points do undergo a 
time-dependent history as they move along their 
streamlines. This analogy is the basis for the treatment 
we propose for such cyclic problems as pilgering. 

Steady-State Formulation Algorithm 

The steady-state formulations are well known. 
Although based on different numerical techniques, 
they all obey the same principle [4-8]. Focusing on the 
mechanics, leaving aside thermal transfer for clarity: 

1) as the shape of the product during deformation is 
not known, choose a starting geometry Q0 which will 
remain fixed in space (Eulerian - or quasi-Eulerian -
formulation). Generally the initial width is kept, but if 
a better guess can be made, convergence towards the 
final shape will be all the faster. 

2) assume initial stress and strain fields to be zero 
(if a relevant strain map e.g. can be introduced, 
convergence of velocity field resolution is improved). 

3) apply the boundary conditions (BCs): free 
surfaces, contact and friction surfaces, tensions at 
entry and exit. 

The latter require sufficient lengths before entry 
and after exit to be meshed, so that the approximations 
on BCs do not interfere with the stress field; this is 
similar to Saint-Venant's principle. This sometimes 
(for wide strips) cumbersome condition may be 
relaxed using an imposed force (rather than imposed 

tension stress), necessarily complemented with a 
homogeneous velocity condition in entry/exit sections. 

4) solve for the time-independent velocity v(x,y,z), 
generally by Newton-Raphson's iterative technique. 

5) from v(x,y,z), compute streamlines, solving : 

dx dy dz 
(1) 

6) integrate all history-dependent variables (strain, 
stress if elastic-plastic behaviour is assumed, internal 
or microstructural variables and functions...) along the 
streamlines, based on their evolution equation, e.g.: 

s.dt (2) 

This reconstructs the material history of any 
particle (the Lagrangian point of view). 

7) this gives a full solution, but computed on an 
approximate domain shape Q0- An improved free 
surface shape can be computed, solving its stationarity 
equation (3) for new positions of free surface nodes in 
each cross-section (a variety of techniques have been 
proposed [4-8]): 

v.n = 0. (3) 

A mesh regularization step may follow if spread 
(widening) is strong. 

8) on this new domain Q1; a new solution v(x,y,z) 
is sought, starting an iterative process until 
convergence of Q to Qconv ĉonv is a fixed point of the 
transformation, i.e. starting from Qconv, computing the 
velocity field, solving for the shape of the free surfaces 
satisfying eq.(3), Qconv is resumed. 

Generalization to cyclic processes 

Due to the periodic nature of the pilgering process, 
the mechanical state (geometry, strain and stress...) at 
the beginning of a stroke is also a fixed point of a 
transformation which involves the plastic displacement 
field induced by the rolling of the dies and the rigid 
body movement of the preform before the stroke 
(rotation + translation). The difference is that the result 
required is not a time-independent state (summarized 
by v(x,y,z)), but a whole time-dependent deformation 
process. The following algorithm has been derived to 
exploit the similarity and cope with the differences: 

1) the geometry of the domain has to be initialized; 
the closer to reality, the faster the iterative process will 
converge towards the fixed point. Here, the geometry 
is the assumed shape of a "transition", i.e. the tube 
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being formed, comprising a short section of the 
preform and of the finished tube. The choice has been 
based upon (i) the gap between the mandrel and die, z-
section by z-section; (ii) where the gap is not filled 
(side-relief), assumptions have been derived from 
experimental 3D measurements of a "transition" 
obtained by interrupted rolling [9]. 

2) the strain has to be carefully initialized, as it 
accumulates stroke after stroke in such an incremental 
process. If the strain were zero, the required number of 
stroke computations for convergence would be the real 
number for a material point to cross the whole 
deformation zone, i.e. ~ 70. As will be shown, a much 
faster convergence can be obtained if the initial strain 
map is consistent with the geometry. We have chosen: 

s=Ln - ^ - (4) 
{S(z)J 

where S represents the area of the cross section. 
This estimate (pure elongations) neglects shear 
components, and possible reversing strains such as 
thickening in the side relief / thinning in the groove 
bottom. The iterative process will have to correct these 
approximations. 

3) initializing the stress to zero has been found 
sufficient. This is due to the behavior of residual 
stresses in elasto-plasticity, which decay exponentially 
with further imposed plastic strain [10]. 

4) BCs are to be imposed: contact / friction 
surfaces, free surfaces; spurious movements of the 
tube and preform ends are avoided, in the real process 
by tube guides, in the computation by canceling vx and 
vy components in extreme sections. 

5) the streamline concept does not apply in this 
non-steady-state process. Particle trajectories must be 
computed instead. Suppose the computation of a stroke 
has been performed. At the last time-step, the total 
displacement field is stored. Take a material point at 
an arbitrary initial position on the preform side. Apply 
the abovementioned displacement, then the rigid body 
movement; this gives a new position in the fixed 
domain. Its own total displacement can be extracted by 
interpolation, and added as the effect of the next 
stroke, together with another rigid body movement; 
this process can be iterated until the material point 
leaves the deformation zone on the finished tube side. 
All this treatment is a post-processing of the one-
stroke results, requiring no further FEM computation. 

6) the mechanical field history (e.g. stress a(t)) is 
picked up from the result files at all successive 
positions determined by this post-processing along the 
ca. 70 (not computed) strokes, and appended to form 
the complete history of the material point along the 
ca. 70 strokes. 

7) All this has been obtained by computing one 
stroke only. It is however important to realize that this 
procedure makes sense only if this computed stroke 
represents the real one, i.e. if the initial state is the 
fixed point. Due to the assumptions on initialization 
(of geometry, strain and stresses), this cannot be the 
case. This is why the one-stroke FEM computation has 
to be iterated a few times, until the fixed point is 
observed, before the abovementioned post-processing 
may be started. This is identical to the "free surface 
iterations" of steady-state formulations. 

APPLICATION TO PILGERING 

This procedure has been applied to the pilgering of 
a zircaloy 4 tube destined for the nuclear industry. The 
details of the operation can be found elsewhere [2, 3]. 
Forge3® has been used as the FEM solver, and only 
the cyclic post-processing tool is specific. Each stroke 
computation comprises 1200 to 1500 time-steps and 
lasts about one CPU-day on a 2 GHz PC. The first test 
of the procedure consists in checking that the geometry 
and mechanical fields do converge to a fixed point 
when several stroke computations are chained. 

z (mm) 
FIGURE 4. Progressive stabilization of strain along the 
"iterative" stroke computation process: the strain z-profile 
evolves from its initialization, shear-less guess to the final 
state. The insert represents the strain initialization, eq.(4) 
(blue: s =0 ; red: e=1.8). 

This has been verified for all variables, but is 
illustrated here only for the strain, for the sake of 
brevity. Figure 4 shows the strain profile along a 
generator of the transition, the initialization strain as 
well as the profiles after a growing number of strokes. 
The strain increases in the first few strokes (up to 4 or 
5), because the successive computations add the 
initially neglected strains; then it stabilizes. 

Figure 5 presents the radial strain component on 
the external surface, after stroke 1 and after stroke 4. 
The position and intensity of the maximum strain, near 
the groove bottom, evolves along the iterative process, 
again due to the correction of initial approximations. It 
stabilizes after 4 strokes. In this centro-symmetrical 
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process, it seems that everything in fact stabilizes 
when each material point has rotated by 180° or more. 

FIGURE 5. Progressive stabilization of strain along the 
"iterative" stroke computation process: the "transition" tube 
is seen from the front, showing the radial strain component 
on the external surface. Top: first stroke computation; 
bottom: 4th stroke. The thick blue lines points to the 
maximum radial strain. 

Once convergence is obtained, the material point 
mechanical history can be extracted. As an example, 
the azz stress component is pictured in fig.6. It consists 
in an alternation of tension ( > 0, during strokes where 
the point is in the side relief) and compression peaks 
( < 0, near the groove bottom). Note that each peak is 
in fact the whole history of one stroke, and can be 
finely resolved if necessary, provided every time-step 
or so in the (converged) one-stroke computation has 
been stored, in order not to degrade the information. 
Indeed, it has been shown [3] that storing too sparsely 
may decrease or erase peaks, because the stress at the 
very moment when the die was rolling on the material 
point at its position during stroke n°« might be absent. 

20 30 40 
Stroke number 

FIGURE 6. Stress history (axial a^ component) of a 
material point all along its trajectory in the deformation zone 
(70 strokes). 

These peak stresses (or peak strain components, 
which can be reconstructed in the same way) are 
essential to understand low-cycle fatigue problems 
encountered in pilgering, to try and design laboratory 
mechanical tests reproducing it, on the way to "defect-
free tools". 

OTHER CYCLIC PROBLEMS 

There are other "cyclic" problems in the metal 
forming industry. Can they benefit from the same, or 
similar techniques? Take for instance the case of hot 
forging. The tool temperature is an important feature, 
impacting both its service life, and the heat transfer 
from the part to the tool. It is therefore important to 
account for it, but a cyclic state establishes in a few 
tens to a few hundred parts (fig. 7). 

Computing hundreds of strokes just to be sure that 
the thermal regime of the die has been properly 
accounted for is costly. Yet any model neglecting this 
is suspect. The problem would be solved in one single 
computation if the thermal field within the die were 
known and used as one of the data. Convergence to the 
cyclic state would be accelerated if using not the real 
thermal field, but a good approximation of it; but such 
a guess is difficult. 

In [11], another approach has been proposed, based 
on the low cost of purely thermal computations as 
compared to mechanical resolution. In a first step, a 
coupled thermo-mechanical computation in the part is 
made, choosing a homogeneous initial die temperature. 
The heat flux from the part to the die (|>(t) is extracted 
from the results. Then, the following strokes are 
computed as a much simpler problem: thermal transfer 
in the die only, with (|>(t) as an entry. This can be 
repeated until the thermal cycle is stable, i.e. the fixed 
point of the transformation has been obtained. If 
necessary, a coupled die + part computation can be 
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introduced every n' stroke, to update §(t), accounting 
for the current thermal field in the die. Overall, a CPU 
time division by a factor 12 has been claimed. 

200 300 400 500 600 700 
Time (s) 

FIGURE 7. Computed surface temperature of the hot 
forging tools: evolution with number of pieces forged (each 
piece gives a temperature peak). 

Note that this procedure is quite different from the 
one described above for pilgering: no initialization 
assumption is made, but the analysis of the process 
tells that the influence of the die temperature on the 
mechanical flow in the part should be small, and the 
time-saving comes from the decoupling of the two 
problems. An advantage is that the successive 
computations correspond to realistic, successive states 
of the systems, so that one of the results of the 
computation is how many parts must be forged before 
the thermal stabilized cyclic state is reached, and how 
much the parts forged initially differ from those forged 
once it has been reached. In the procedure described 
for pilgering, the 4 or 5 strokes computed are just 
successive corrections to an arbitrary initial state, they 
do not correspond to any physical reality. 

In fact, this thermal problem is not strictly cyclic, 
as shown in fig.7, due to the slow drift of the 
temperature with part number. This is the fundamental 
reason of the different treatments. 

CONCLUSION 

Periodic, semi-continuous processes require highly 
intensive computations if all the strain steps are to be 
computed using to a purely Lagrangian formulation. If 
their cyclic nature is recognized, convergence 
acceleration to the stabilized cycle can be achieved, 
allowing to compute far less steps (here 4 or 5 as 
compared to 70 ... or 2500). The proposed technique 
is based on a careful initialization of the geometry and 
strain field, which has been refined using accurate 

experimental measurements. Of course this method, 
which introduces some degree of Eulerian point of 
view, is inadequate if end effects are to be computed. 

It consists in fact in accelerating convergence by a 
more precise approximation of the "steady-state" (or 
rather cyclic state here), i.e. the fixed point of the 
transformation made in one deformation step. This is 
not so different from improving the free surface shape 
guess in a steady-state formulation of rolling 
processes. The last example on hot forging however 
shows that (quasi)cyclic problems in forming may be 
of widely different natures, and require problem-
specific solutions based on a careful analysis of the 
characteristics of the problem under study. 
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