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ABSTRACT: A recent explicit FE formulation with modified linear tetrahedral elements is adapted for high
speed metal forming simulation. This formulation both enables the use of efficient adaptive non structured
meshers, and tackles the locking effect in quasi-incompressible cases. We implement this formulation for the
infinitesimal elastic plastic case. The anti-locking modification effect will be underlined on two 3D bench
marks: an elastic compression test and an elastic-plastic bar impact test.
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1 INTRODUCTION

Explicit codes using simple hexahedral elements
have exhibited a great success in impact and metal
forming simulations in the last decades. They allow
dealing easily with complex material behaviours and
contact cases. Unfortunately, automatic remeshing
algorithms on hexahedra are not as efficient as on
tetrahedra, and may fail for complex geometries. In
addition, the standard linear tetrahedral element
exhibits volumetric-locking effect for
incompressible and quasi-incompressible materials
simulations (such as large plastic deformations for
example).

Several authors have proposed different methods in
order to tackle the volumetric locking problem on
tetrahedral elements.

Mixed elements (such as the mini-element P1'P1) or
second order elements would avoid locking effect,
but the numerical cost would be too big for explicit
simulations.

B-bar or F-bar methods [1] need the definition of
element patches, and are therefore not so automatic.
Characteristic-Base Split (CBS) methods, imported
from fluid dynamics [2,3] is a good approach to
avoid locking with time inexpensive methods. It is

yet quite widely used.

The idea of pressure average in finite elastic-plastic
strain is presented in reference [4]. This formulation
seems to have a bigger critical time step than the
CBS formulation and similar results [5]. This
formulation is modified in [6], by working on the
spherical part of the strain instead of the pressure.
This more general formulation facilitates the dealing
of multi-material simulations, is only introduced for
infinitesimal elasticity without remeshing.

Recently, strain averaged formulations are proposed
to avoid both volumetric and bending locking [7,8].
But those formulations need to be stabilized for
hourglassing, and no solution is proposed for
explicit formulations for the moment [9].

This article introduces the extension of the explicit
infinitesimal elastic formulation introduced in [6], to
infinitesimal elastic-plastic case with remeshing
possibilities.

The modified anti-volumetric-locking linear
tetrahedral element will be first described (paragraph
2). Then, the anti-locking effect of this formulation
will be underlined on elastic (paragraph 3) and
elastic-plastic  (paragraph 4) 3D benchmarks.
Finally, we will rapidly conclude on current abilities
of the formulation, possible enhancements and on its
interests for high-speed metal forming simulations.



2 FORMULATION OF THE MODIFIED ANTI-
VOLUMETRIC-LOCKING LINEAR
TETRAHEDRON

2.1 Notations

Tablel. Notations used in this article

Variable Signification
v nodal velocity
by nodal coordinates
At time step
element volume
J ratio of total element volume variation
averaged on the adjacent elements
e 7 non modified and modified infinitesimal
> strain tensor
& strain rate tensor
xponent “node” .. .
¢ poo:“el t”ode precise if the value is nodal or elemental
subscript precise the time step number of the value
[ f int external and internal nodal force vectors

2.2 General presentation of the explicit formulation

Our formulation is based on a classical explicit
resolution of the dynamical mechanical equations,
with a lumped mass matrix. We use a first order
explicit central differences time integration scheme
(equations 2, 3). Our plastic solver uses an isotropic
radial return map algorithm. Classical Rayleigh
damping type and linear bulk viscosity are used to
damp at least high frequency oscillations.

2.3 The anti-volumetric-locking formulation

This formulation is based on a standard linear
tetrahedral explicit formulation, with a modification
of the infinitesimal strain tensor by substituting its
spherical part by the ratio of total element volume
variation averaged on the adjacent elements, J.
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Considering standard linear tetrahedra, the volume
variation constraint is imposed at each element. In a
classical 3D mesh, there are about 6 times more
elements than nodes. Thus, in case of quasi-
incompressibility, the problem is over-constrained
and locking occurs. In our modified formulation, the
volume variation constraint is only imposed at each
node. It is enough to decrease sufficiently the
number of constraints to avoid locking in cases of
quasi-incompressibility.

We use a single method in order to both update the
ratio of total volume variation of the elements and to
average it on the surrounding elements. This method
allows updating the averaged volume variation J
without cumulating errors dues to the update
procedure.

At each time step, the increment ratio of volume
variation is computed for each element. Then, it is
interpolated at the nodes of the mesh. Next, it is
possible to deduce the new ratio of the total variation
of volume using the nodal value at the precedent
time step (that could have been remapped in case of
remeshing) and multiplying it by the current
increment ratio of volume variation. Finally, the
updated element averaged ratio of total volume
variation is interpolated at the integration point of
each element using the nodal values and the shape
functions. The mathematical description of this
procedure can be seen in the next section, equations

(6) to (8).
2.4 Programming box :

The steps to solve a time increment from time step n
to time step n+1 are summarized here:
a) Explicit nodal resolution and coordinates

update :
Vi, = Va- iy
el 3 28 g
node < et d
X, =x,+At- Vn+% 3)

b) Deduction of strain rate and infinitesimal
strain tensors:

£, y =Sym( grad [vn+ Y D 4)
£, =€, +€n+y2 - At ®)]

¢) Calculation of the nodal incremental volume
variation using a non weighted average:

V node i icelt elt
ontl — n+l 6
{ V } ; dim+ 1{ } ©)

n

d) Updating of the ratio of the nodal total
volume variation:



V node i V node i V node i
_ntl —| —ntl x| = (7)
VO Vn VO

e) Deduction of the averaged element total
volume variation J:

. ieelt, 1 %4 node i
[Jn+l] "= z |:n_+1:| (8)

moded dim+1[ 7,

f) Modification of element strain:

Eumtts e U, -0l O
g) Classical mechanical calculus of element
stress from modified strain tensor:

c,. = f(Z ., internal variables) (10)

3 ELASTIC COMPRESSION TEST
3.1 Description of the test

The test consists in the 20% longitudinal
compression of a cylinder. The material is linear
elastic and quasi-incompressible (Young modulus:
3000 Pa; Poisson ratio: 0.49). The initial dimensions
of the cylinder are 10 mm diameter and 10 mm
height. The results are observed when the
equilibrium state is reached. The contact is non-
sliding. In this case, volumetric locking is likely to
appear in the region near the tools [6].

3.2 Results

We can now analyse the effect of anti-locking
modification. First, the stress is stabilized and the
over-estimation of the stress in the region near the
tools is tackled. We can observe for example the
longitudinal stress repartition in the parts obtained
with standard linear tetrahedra and modified linear
tetrahedra in figure 1. In the standard formulation, a
checkerboard effect is visible in region near the
tools. This problem is solved in the modified
formulation. The repartition of longitudinal stress in
the cut is also much smoother for the modified
formulation than for the standard one. We should
also notice than we use the same scale for figures
1.A and 1.B. This scale is adapted to figure 1.B.
However, in 1.A, the range of values is 4 times
greater (the minimum value is 868daPa and the
maximum value is +398daPa).

Fig. 1. Longitudinal stress in daPa in the elastic part for 20%
longitudinal compression after that the equilibrium is reached,
for standard linear tetrahedra (A) and modified linear
tetrahedra (B).

Then, geometrical effects of locking are tackled as
well. Final radii of the cylinder versus the height are
plotted in figure 2, for both modified and
unmodified formulations. The non-modified linear
tetrahedron underestimates the deformation of the
elements in contact with the tools. Those elements
lock. This problem is solved when using the
modified formulation. We obtain, for both modified
and non-modified formulations the same final
shapes as in reference [6].
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Fig. 2. Comparison of the final cylinder shapes (radius along
the height) for the standard linear tetrahedron and the modified
linear tetrahedron.

4 ELASTIC-PLASTIC BAR IMPACT TEST
4.1 Description of the test

This elastic-plastic benchmark is very often studied
to test explicit codes and anti-volumetric-locking
formulations, because of its dynamics characteristics
and its high sensibility to volumetric locking
[2,4,5,9]. A cylindrical copper rod (32.4mm length
and 3.2mm radius) moving at 227 m/s impacts a



rigid wall. There is no friction between the wall and
the rod. The copper is supposed to be elastic-plastic
with linear hardening (Young modulus: 117 GPa ;
Poisson ratio: 0.35; initial yield stress: 0.4 GPa;
hardening modulus: 0.1 GPa).

4.2 Results

In the bar impact test, geometrical effects of the anti-
locking modification are easily visible (see cuts in
figure 3). With standard tetrahedra, the strain is not
localized at the impact location as it should be, but is
scattered in the whole rod. The final impact radii of
cylinders are 5.85 mm for standard linear tetrahedra
and 7.09 mm for modified linear tetrahedra. Those
results are in good agreement with impact radii
obtained in the literature (between 7.0 and 7.1 mm)
[2,4,5,9].
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Fig. 3. Equivalent plastic strain in an axial cut of the rod at the
end of the bar impact test for standard linear tetrahedra (A) and
modified linear tetrahedra (B).

5 CONCLUSIONS

In this article, we extend an anti-volumetric-locking
modification proposed in reference [6], inspired
from “averaged nodal pressure” formulations [4], to
infinitesimal plasticity. A very simple and thus quick
formulation is obtained, that can be used with

automatic adaptive remeshing. The hypothesis of
small deformations is justified even for quite
important final strain, because of the small critical
time step in explicit metal forming simulations.

However, great rotations are not taken in account,
and the formulation can’t deal with bending locking.
An “averaged nodal strain” formulation could be
envisaged, but no explicit anti-hourglassing
stabilization is proposed for it yet [7,8,9]. Some
critical cases must then be considered with care.

This promising formulation will be now coupled
with contact and thermal analysis, and tested on

various complex high speed metal forming
processes.
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