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1 INTRODUCTION


Flexible
 polyurethane
 foams
 are
 usually
 applied
 in


car
 seat
 parts.
 Optimisation
 of
 the
 manufacturing


process,
 as
 well
 as
 part
 quality
 may
 be
 improved


through
numerical
modelling.
Flexible
PU
foams
are


produced
 in
 a
 one
 shot
 process
 in
 which


(poly)isocyanate,
 polyols
 and
 water
 are
 mixed


simultaneously
 with
 suitable
 stabilisers,
 catalysts


and
cell(size
control
agents.
The
chemical
reactions


begin
 immediately,
 with
 foam
 rise
 starting
 a
 few


seconds
 after
 mixing
 and
 being
 completed
 in
 a


matter
 of
 minutes.
 Curing
 continues
 for
 several


hours,
eventually
leading
to
a
solid
cellular
material


[1,2].


The
 two
 primary
 reactions
 are
 the
 curing
 reaction,


which
 leads
 to
 formation
 of
 polyurethane,
 and
 the


expansion
 reaction,
 producing
 polyurea
 and
 carbon


dioxide,
 with
 simultaneous
 expansion
 of
 CO2


bubbles
 (foaming)
 and
 polymerization
 of
 the


mixture.
 The
 first
 step
 of
 the
 expansion
 is
 bubble


nucleation,
 where
 CO2
 molecules
 dissolved
 in
 the


mixture
 initiate
 micro(bubbles,
 under
 the
 effect
 of


pressure
decrease
at
the
exit
of
the
injection
syringe


into
 the
mould.
 At
 a
macroscopic
 scale,
 the
 nuclei


can
 be
 modelled
 by
 an
 initial
 porosity
 of
 the


gas/polymer
 mixture.
 Two
 mechanisms
 have
 to
 be


distinguished
 at
 this
 scale:
 the
 expansion
 by


difference
 of
 pressure
 and
 by
 gas
 creation.
 During


fabrication
of
this
foam,
the
rheological
properties
of


its
 skeleton
 evolve
 from
 a
 viscous
 liquid
 to
 a


viscoelastic
(or
elastic)
solid.


The
 objective
 of
 the
 present
 work
 is
 the


identification
 of
 several
 parameters
 of
 a
 numerical


model
of
 foam
expansion
developed
at
CEMEF
[3]


by
comparison
between
experiments
in
a
cylindrical


mould
and
numerical
computations.


Section
2
presents
the
physical
assumptions
and
the


equations
of
the
model.
The
first
part
of
section
3
is


devoted
to
the
presentation
of
the
experiment
used
to


identify
some
parameters
of
the
model.
The
last
part


of
 section
 3
 shows
 a
 comparison
 between
 these


experiments
and
numerical
simulations.



2 MODELLING


The
 objective
 of
 the
 model
 is
 to
 predict
 at
 a


macroscopic
 level
 the
 expansion
 of
 the
 foam


(corresponding
 to
 domain
 8m
 characteristic
 of
 the


foam
 sample
 shown
 on
 Fig.
 1.)
 into
 a
 mould


(domain
 8).
 It
 is
 based
 on
 the
 conservation


equations
 (mass
 and
 stress
 balance),
 which
 are


written
 by
 considering
 that
 8m
 is
 a
 homogenized


medium
 (polymer
 8l
 +
 gas
 bubbles
 8bi,


i=1,2,…,Nbubbles).
The
 interactions
between
polymer


and
gas
bubbles
are
described
by
the
evolution
of
the


porosity
φ 
 [1,4].
The
 free
 surface
between
8m
and


air
8a
(see
Fig.
1.)
is
a
result
of
the
numerical
model


ABSTRACT:
 The
 quality
 (cellular
 homogeneity,
mechanical
 properties)
 of
 polyurethane
 foam's
 structures


mainly
 depends
 on
 the
 manufacturing
 process,
 during
 which
 two
 concomitant
 (principal)
 exothermic


chemical
 reactions
 take
 place:
 the
 first
 one
 creates
 CO2
 into
 the
 fluid
 matrix
 (germination
 of
 bubbles,


expansion
and
coarsening
of
the
foam)
and
the
second
one
leads
to
the
polymerization.
In
order
to
validate
a


model
developed
at
CEMEF,
an
original
experiment
(RheoFoam
System)
has
been
created.
It
consists
in
an


instrumented
injection
mould
(closed
or
opened
cylindrical
cavity)
in
which
the
viscoelastic
foam
inflates.
It


allows
measuring
simultaneously
 the
evolution
of
 some
 technological
parameters
 (the
 rise
of
 the
 foam,
 the


pressure
distribution
on
the
bottom
of
the
mould
and
the
temperature
evolution
inside
the
foam)
which
are
a


macroscopic
signature
of
the
evolution
of
the
cellular
microstructure.
These
temperature
and
pressure
fields


are
then
compared
to
those
obtained
using
the
numerical
simulation.
The
results
are
discussed.
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(section
3.2).


































Fig.
 1.
 left:
 Scheme
 of
 the
 mould
 containing
 PU
 mixture


(gas+polymer,
8m)
and
the
air
(8a).
The
contact
with
the
mould


is
 assumed
 perfectly
 sticking
 (v.n=0)
 ;
 right:
 a
 sample
 of
 PU


foam
(average
radius

2cm).





Due
 to
 the
 fact
 the
 chemical
 reactions
 are
 strongly


exothermal,
 the
 model
 takes
 into
 account
 the


thermo(mechanical
couplings.


2.1 Global�mass�conservation�

The
global
mass
conservation
leads
to
the
following


local
equation
in
8m:
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v

φ
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1
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(1)





where
v�is
the
expansion
velocity
of
the
foam.


2.2 Kinetics�evolution�laws�

Gas
 creation
 and
 curing
 reactions
 are
 governed
 by


chemical
 kinetics,
 whose
 conversion
 rates
 are


supposed
to
follow
evolutions
law
[1,2].
Concerning


gas
 creation,
 the
 following
 Kamal
 law
 is
 assumed


[5]
in
8m:
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where
 α
 is
 the
 characteristic
 rate
 of
 gas
 creation,

1−

gλ 
 its
 characteristic
 time
 (depending
 on
 the


temperature)
 and
 Eg
 and
 υg
 the
 exponents
 of
 this


reaction.
Dg
 represents
 the
 diffusion
 coefficient
 of


gas
into
the
polymer.
Assuming
a
perfect
gas
law
in


the
 bubbles,
 the
 porosity
 development
 can
 be


macroscopically
written
[3]
in
8m
by:
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where
p
is
the
hydrostatic
pressure
in
the
foam.
The


polymerization
 reaction
 leads
 to
 the
 viscosity


increase
 of
 the
 matrix
 as
 a
 function
 of
 the


temperature
 up
 to
 a
 gel
 point.
 The
 curing
 rate
 is


supposed
to
follow
also
a
Kamal
law
[5]
in
8m:
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β 
 is
 the
 characteristic
 rate
 of
 the
 cure,

1−

pλ 
 its


characteristic
 time
 and
 ?p
 and
 υp
 two
 exponents
 of


the
reaction.



2.3 Quasi5static�balance��equations�

Experimentally,
the
global
expansion
of
PU
foams
is


slow
 (the
 strain
 rate
 is
 about
 10
(2

s
(1
).
 Assuming
 a


quasi(static
evolution,
the
balance
equations
reduced


to
[3]:
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where
 σ 
is
the
Cauchy
stress
tensor,
 ε(v) 
the
strain


rate
 tensor, ε(v):ε(v)2=γ� 
 the
 second
 invariant
 of


the
strain
rate
tensor,
η�the
viscosity
of
the
mixture,


pa
 the
 pressure
 in
 the
 air.
 The
 interface
 conditions


assume
the
continuity
of
the
normal
velocity
and
the


normal
 stress
 (the
 interfacial
 tension
 is
 neglected,


this
is
a
strong
hypothesis).





2.3���Energy�balance�




From
 thermodynamical
 considerations,
 the
 heat


equation
can
be
written
by:


�

�

� � � � � � ���������(6)


where
 βαδ ,H 
 are
 the
 enthalpies
 of
 both
 reactions,


Cρ 
 is
 the
 heat
 capacity
 and
 Tλ 
 the
 thermal


conductivity.


2.4 Rheological�coupling�

The
 matrix
 is
 considered
 as
 a
 shear(thinning


fluid,
 whose
 behaviour
 is
 expressed
 by
 a
 Carreau


law:
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where
 η0
 is
 the
 Newtonian
 plateau
 viscosity,
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following
 a
 classical
 Arrhénius
 law,
 a
 is
 a


characteristic
 time
 and
m
 the
 power(law
 exponent.


Expansion
 and
 curing
 reactions
 will
 modify
 the


viscosity
of
the
fluid
through
two
functions
f�and
g,


which
 follow
 the
 model
 developed
 by
 Castro
 and


Macosko
[6]:
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where
 gelβ

 is
 the
 gel
 point
 and
 f0,� f1,� f2� and
 ng
 are


positive
constants.



3 ESTIMATION
OF
SOME
RHEOLOGICAL


PARAMETERS


The
characteristic
value
of
several
parameters
can
be


found
in
literature
(see
Table
1).
Some
of
 them
can


be
 identified
 using
 dynamic
 rheology
 experiments


[7].







Table.
1.
Values
of
parameters
used
in
the
model.





Resolution
 of
 the
 model
 in
 an
 axisymmetric


configuration
 and
 comparison
 with
 well


instrumented
 experiments
 allow
 to
 identify
 more


precisely
these
parameters.






3.1�Experiment�







Fig.
2
shows
the
experimental
cylindrical
mould:


the
 cylinder
 is
 closed
 after
 the
 components
 of
 PU


have
been
mixed
and
put
at
the
bottom
of
the
mould.


Pressure
 and
 temperature
 are
 recorded.
 Gas
 outlet


during
 the
 expansion
 (gas
 initially
 present
 in
 the


mould
 +
 degassed
 CO2)
 is
 also
 measured
 and


correlated
to
the
expansion
velocity
of
the
foam.





































Fig.
2.
Photograph
and
Scheme
of
the
experimental
mould.





After
 opening
 of
 the
mould,
 one
 recovers
 a
 typical


foam
cylinder
as
shown
on
Fig.
3.


































Fig.
3.
Photograph
of
a
typical
foam
cylinder
manufactured


using
the
RheoFoam.





3.2�Numerical�resolution�and�comparisons�

Equations
 (1(8)
 are
 highly
 coupled
 and
 non(

linear.
The
numerical
method
is
based
on
a
splitting


technique
(used
by
[8]
in
the
case
of
the
microscopic


simulation
 of
 PU
 expansion):
 at
 one
 time
 step,


knowing
T,�φ 
and
β,
velocity
and
pressure
fields
are


first
 determined
 through
 a
 mixed
 finite
 element


method,
 verifying
 stability
 conditions
 [9].
 The


velocity
is
then
used
to
compute
temperature
T,�gas


production
 α
 and
 solidification
 rate
 β.
 Finally,
 the


moving
interface
between
the
gas(liquid
mixture
and


air
is
computed,
introducing
a
characteristic
function


of
 the
mixture
 as
 additional
 unknown
 in
 each
 time


interval
[10]
and
solved
by
a
volume
of
fluid
method


(V.O.F.)
 associated
 with
 a
 Space(Time


Discontinuous
 Galerkin
 technique.
 The
 model
 has


been
implemented
in
the
Rem3D®
software
[3].







Using
characteristic
values
of
parameters
 (see
 table


1),
 a
 numerical
 simulation
 is
 performed
 under
 the


same
 conditions
 than
 the
 experiment
 described


above,
 and
 then
 optimized
 in
 order
 to
 obtain
 a


computed
 foam
 size
 equivalent
 to
 the
 experimental
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one.
 At
 that
 time
 the
 optimization
 loop
 The


expansion
results
are
shown
on
fig.
4:
the
gas
rate
is


plotted
on
a
cross
section
of
 the
numerical
cylinder


respectively
for
80,
100
and
150
s.
(see
also
Figure


5).
 Due
 to
 the
 fact
 no
 nucleation
 mechanism
 has


been
taken
into
account,
the
gas
rate
can
be
directly


correlated
 to
 the
 characteristic
 length
 of
 the
 foam


cells.
One
observes
 that
 the
 larger
 ones
 are
 located


close
to
the
top
of
the
foam.















































Fig
 4.
 Results
 of
 numerical
 simulation
 with
 Rem3D:


expansion
of
the
PU
in
the
closed
mould
after
80,
100
and


120s.








Fig.
 5
 shows
 the
 good
 agreement
 between
 the


experimental
 and
 numerical
 velocity
 fields
 up
 to


about
100s
(after
optimization
of
parameters
of
table


1).




Fig.
5.
Evolution
of
numerical
and
experimental
height
of


the
foam
during
expansion.





After
 100s,
 agreement
 is
 less
 good,
 due
 to
 a
 bad


description
 of
 the
 gas
 outlet
 during
 the
 expansion:


this
 specific
 mechanism
 requires
 to
 improve
 the


numerical
 description
 of
 the
 free
 surface
 of
 the


foam,
 and
 to
 apply
 on
 it
 a
 more
 physical


permeability
 condition.
 The
 viscoelasticity
 and
 the


surface
tension
have
also
to
be
accounted
for.
Other


experiments
 are
 then
needed
 for
 a
better
 estimation


of
the
parameters.


4 CONCLUSIONS


In
this
paper,
a
simple
experiment
of
expansion
has


been
 performed
 in
 order
 to
 identify
 the
 rheological


parameters
of
the
foam
expansion
model.
The
results


show
 the
 good
 agreement
 between
 simulation
 and


experiment
 up
 to
 the
 polymerization
 step,
 but
 the


restrictive
 assumptions
 (no
 viscoelasticity,
 no


permeability
 of
 the
 free
 surface)
 lead
 to


discrepancies
close
to
the
gel
point.
We
work
now
to


overcome
these
limitations.
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