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Abstract 

During the elaboration of standard CISEL™ cells, electroplated CuInSe2 precursors undergo a rapid thermal processing (RTP) in 
a sulfur-containing atmosphere to promote grain growth and enable sulfurization of the precursor. The aim of this work is to 
show how structural and morphological properties of the CuIn(S,Se)2-based solar cells can be modified with RTP parameters, 
namely temperature, heating rate, and sulfur addition. X-ray diffractograms show that the preferential (112) orientation of the
electrodeposited CuInSe2 precursor is maintained after annealing but the coefficient of crystallographic texture can be modified 
with specific RTP parameters. It is also shown that the quantity of sulfur incorporated in the chalcopyrite lattice can be controlled 
and reaches almost pure CuInS2 according to the sulfur quantity used during the RTP. Another effect of the RTP annealing is to 
form a Mo(S,Se)2 layer which can lead to a quasi-ohmic contact between the molybdenum and the absorber. The properties of the 
Mo(S,Se)2 buffer layer are also studied according to the process parameters and an increase of the annealing temperature or of the 
sulfur concentration tends to increase the thickness of this layer. 

© 2009 Published by Elsevier B.V. 
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1. Introduction 

Chalcopyrite-based Cu(In,Ga)(S,Se) thin film solar cells are made using many different processes ranging from 
direct evaporation of all the elements [1], sputtering of the cations which then react with chalcogens [2], spray 
pyrolisis [3], or two steps electrodeposition-annealing process [4]. A lot of work has already been published 
concerning chalcopyrite materials since they are some of the most promising semiconductors to make cost-efficient 
solar cells due to low production cost and high cells efficiency as has been demonstrated by Repins et al [5]. The use 
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of electrodeposited precursors is even more interesting than physical vapour deposition processes to achieve low 
production costs because the deposition of the precursor is done at ambient pressure and temperature, using 
industrial equipment much less expensive than sputtering coaters or evaporators. 

The as-electrodeposited CuInSe2 precursor material is nano-crystallized and does not exhibit good optoelectronic 
properties, thus an annealing step is necessary to promote grain growth and enable the formation of effective 
absorbers. The annealing step is closely linked with the electrodeposition step since the secondary phases such as 
Cu-Se binaries, elemental Se or ordered vacancy compounds (OVC) that form during the precursor deposition have 
been shown to greatly influence the structure and morphology of the absorbers [6]-[7]. The purpose of this work is 
to analyze the effect of annealing parameters such as temperature, heating rate, and sulfur pressure on the structure 
and morphology of the CuIn(S,Se)2 layer formed after rapid thermal processing in a sulfur containing atmosphere. 
During the rapid thermal processing of CuInSe2 precursors, the formation of a large Mo(S,Se)2 intermediate layer 
has been observed at the interface between molybdenum and CuIn(S,Se)2 and the effect of the annealing parameters 
on this layer are also studied. 

2. Experimental 

CuIn(S,Se)2 absorber layers were grown on Mo-coated soda-lime glass substrates with a two-step process. A 
nanocrystalline precursor layer of CuInSe2 was first deposited by electrodeposition on a molybdenum cathode in an 
acidic bath containing Cu(II), In(III) and Se(IV) electroactive species. The electrodeposition parameters were tuned 
so that the film composition achieved an overall Cu/In ratio and a stoichiometry 2Se/(Cu+3In) respectively equal to 
1.20 and 1.24. The composition of the precursors was determined using a Fischerscope X-ray XVD-SD apparatus. 
The precursors were then annealed in a sulfur atmosphere with a rapid thermal process using IR heating lamps. The 
maximum annealing temperature was set at three different values being 550°C, 600°C and 650°C. The heating rate 
for the lower temperature (550°C) was varied between 1.8°C/s and 8.8°C/s. A 60-second holding time at maximum 
temperature was used for all heating ramps after which an unassisted cooling to 100°C was allowed before taking 
the samples out. The sulfur pressure during the RTP was varied by changing the mass over volume ratio from 
0.01 g/L to 6 g/L. The real sulfur pressure in the reaction chamber could not be precisely calculated because part of 
the sulfur reacted with the CuInSe2 precursor to form a quaternary CuIn(S1-xSex) compound, thereafter named CIS 
for simplicity, but we assumed that the higher the initial ratio, the higher the maximum sulfur pressure was during 
the annealing. In all cases, the sulfur quantity was always above stoichiometry to ensure that there was enough 
sulfur in the reaction chamber to possibly replace all the selenium present in the precursor. 

After annealing and sulfurization, a few chosen samples followed the standard CIS-based process at the Institute 
of Research and Development on Photovoltaic Energy (IRDEP) in order to be completed into the solar cells. This 
consisted in a cyanide etching to remove Cu(S,Se) binaries which form on the absorber surface during annealing [8], 
followed by the formation of a CdS buffer layer by chemical bath deposition. Both undoped and aluminium-doped 
zinc oxide was then sputtered on top as window layer. 

Samples were characterized by means of X-Ray diffraction (XRD), Raman spectroscopy, and scanning electron 
microscopy (SEM) using a Hitachi TM-1000 microscope for surface observation and a field emission gun Zeiss 
Gemini DSM 982 microscope for cross-section observation. Raman microprobe measurements were made using a 
HR800-UV Horiba-Jobin Yvon spectrometer coupled with an Olympus metallographic microscope. The spectra 
were measured on the absorber using as excitation the red line of an He-Ne laser ( =632.8nm). The spectra obtained 
were fitted with Gaussian-Lorentzian profiles using the LabSpec software. Eventually, XRD analyses were 
performed in the -2  Bragg-Brentano geometry with a Panalytical X’Pert Pro MRD diffractometer using the K
emission line of a copper anticathode.  

3. Results and Discussion 

3.1.  Effect of temperature 

Fig. 1 shows SEM surface micrographs after cyanide etching taken from samples annealed at three maximum 
temperatures 550°C, 600°C and 650°C with an 8.8°C/s heating rate and a sulfur concentration of 1 g/L. 
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a) b) c)
Fig. 1 : SEM top-view micrographs of CuIn(S,Se)2 absorbers annealed at a) 550°C, b) 600°C, c) 650°C maximum temperature after cyanide

etching

Samples annealed at higher temperature have larger grains due to a more pronounced coarsening during grain
growth (Fig. 1). For higher annealing temperature some grains are favored and tend to grow more than others
resulting in a less homogeneous morphology showing both small and large grains while at 550°C all grains have
almost the same size. This is typical of preferential grain growth where a family of crystallites oriented in a specific
way is favored over other crystallographic orientations. This observation can be related to the diffractograms of Fig.
2 which show that the sample annealed at 650°C is the one with the highest (112) orientation of the chalcopyrite
phase. To better point out this preferential orientation, the chalcopyrite reflections were identified and fitted with
pseudo-voigt profiles to deduce the intensities and estimate the texture coefficient (TC) as described in [9]. TC(112)
values larger than 1 indicate a preferred orientation of the material with (112) dense planes parallel to the sample
surface.
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Fig. 2 :X-Ray diffractograms of samples annealed at 550, 600 and 650°C maximum temperature. The CIS phase is marked with asterisks, the 
CuS covellite with + signs and Mo(S,Se)2 with # 

TC(112) increases from 2.0 to 2.1 and up to 2.4 for the maximum annealing temperature of 550°C, 600°C and
650°C respectively. This correlates well with the SEM micrographs and means that the (112)-oriented grains are
favored during grain growth and grow at the expense of others which tend to disappear all the more as the annealing
temperature is higher. When the maximum annealing temperature increases, there is very little peak-refinement of 
the CIS reflections even though the grains coarsen significantly. This can be explained considering that CIS grains 
seen by SEM include a large number of twins [10] and an increase of the grain size is not necessarily accompanied
by a refinement of the XRD reflections.

C. Broussillou et al. / Energy Procedia 2 (2010) 9–17 11



Cedric Broussillou / Energy Procedia 00 (2010) 000–000

Increasing the annealing temperature also has an effect on the Mo(S,Se)2 layer that forms between the
molybdenum and CIS layer. The intensity at 33° next to the (004)/(200) reflections of CIS rises with the temperature
because of the hexagonal Mo(S,Se)2 (100) and (101) reflections respectively at 32.7° and 33.5° (insert in Fig. 2).
This increase of the diffracted intensity is due to an increase of the Mo(S,Se)2 thickness as mentioned in [11], which
is coherent with the drop of the (110) molybdenum noticed when the maximum annealing temperature goes from
550°C to 650°C. When the material is annealed at higher temperature, sulfur diffuses more easily through the CIS 
which results in more molybdenum being transformed into Mo(S,Se)2 [12].

3.2. Effect of heating rate

Fig. 3 shows micrographs of samples after cyanide etching annealed at a temperature of 550°C, the heating rate
being respectively set at 1.8°C/s, 2.4°C/s and 8.8°C/s with a sulfur concentration equal to 6 g/L. There is little
morphological difference between the three samples; grains are small for all of them even though a small increase in
average grain size from 200nm to 300nm can be observed when the material is heated faster. An image analysis of 
Fig. 3 SEM micrographs was used to calculate the percentage of surface voids and values equal to 15.4 %, 17.5 %
and 20.1 % for the respectively, 1.8°C/s, 2.4°C/s and 8.8°C/s heating rates were found. Thus, when the heating rate
increases, there is an increase in surface open porosity which goes along with the grain growth observed. The fact
that an increase of the grain size is accompanied by an increase in the surface porosity is probably due to the high
growth and sulfurization rate of the grains which grow from a few nanometers before annealing to hundreds of
nanometers within only a few minutes. Furthermore there is a 12% decrease in lattice volume when the CuInSe2 is 
transformed into CuInS2 and this volume change is more easily accommodated when the heating rate is slower, thus
resulting in less porosity for slower heating rates. 

5µm 5µm

 a) b) c)
Fig. 3 : SEM top-view micrographs of CI(S,Se)2 absorbers annealed with heating rate set at a) 1.8°C/s, b) 2.4°C/s, c) 8.8°C/s after cyanide

etching

The diffractograms of Fig. 4, and the graph of Fig.5 show that the CIS (112) diffracted intensity more than
doubles for the sample heated at 1.8°C/s compared to the material heated at 2.4°C/s. It then stays at the same level 
when the sample is heated faster than 2.4°C/s. This proves that the CIS is better crystallized with a heating rate of
2.4°C/s compared to 1.8°C/s and reaches saturation for heating rates above 2.4°C/s. The diffractogram of the sample
heated at 8.8°C/s is not shown here for clarity but is very much alike to the one heated at 2.4°C/s. The same
behavior is observed regarding the evolution of the crystallites size which is around 180nm after annealing with
1.8°C/s heating rate and increases to 220nm for heating rates faster than 2.4°C/s (Fig. 5).
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Fig. 4 :X-Ray diffractograms of samples annealed at 550°C with heating rate equal to 1.8°C/s and 2.4°C/s. CIS phase is marked with asterisks 
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Fig. 5 : Evolution of CIS (112) reflection XRD intensity and evolution of the crystallites size inferred from Scherrer formula using the full width 
at half maximum FWHM of the (112) CIS reflection as a function of heating rate

Raman spectroscopy measurements of Fig. 6 show that the peak intensity of the A1 mode of Se-Se in
CuIn(S,Se)2 at 210cm-1 increases and the shoulder that can be assigned to CuAu ordered phase contribution at
305cm-1 decreases when the material is heated faster. The CuAu polytype evolution proves that the crystalline
quality of the chalcopyrite improves when the material is heated faster. 
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Fig. 6 : Dependence of the A1 Se-Se and CuAu ordered Raman contributions over the A1 S-S chalcopyrite as a function of heating rate

There is more selenium left in the absorber when the heating rate is higher (Fig. 6). This can be explained by
considering the annealing mechanisms described elsewhere [7], which suggest that free selenium is lost by
evaporation for T>250°C and that CuSe binaries decompose in Cu2-xSe and Se during the heating above 380°C and 
so the longer the annealing, the more selenium evaporates. Since the holding time was kept constant for all samples,
then, when varying the heating rate, the total heating time was also modified ranging from 2 to 6 minutes. Therefore,
a faster heating rate means a shorter total annealing time which explains that less selenium is lost. A higher
concentration of selenium in the absorber then explains the larger grains noticed on Fig. 3 since it has been shown in
[7] that CuSe binaries melting at 520°C tend to greatly enhance the film morphology.

As a consequence, the higher diffracted intensities for the CIS reflections of samples annealed at 2.4°C/s
compared to those heated at 1.8°C/s can be explained considering that the faster the precursor is heated, the more
selenium stays in the film which enables better morphology and an increase of the crystallites size. 

An increase of the S-rich Mo(S,Se)2 signal with the heating rate is detected on the Raman spectra in Fig. 7. Such
a significant increase of the Mo(S,Se)2 signal with the heating rate is rather surprising since the growth of this layer 
is known to be controlled by diffusion of chalcogens into the molybdenum [12], and thus should be controlled by
annealing time and temperature [13] rather than heating rate.

Fig. 7 : Cross Section Raman spectra obtained on absorbers heated at 1.8°C/s ; 2.4°C/s and 8.8°C/s showing the presence of MoS2

The increase of the Mo(S,Se)2 is confirmed by XRD analysis showing that an increase of the heating rate triggers
an augmentation of the diffracted intensity for the (100) reflection of the hexagonal Mo(S,Se)2 at 32.7°. The increase
is, however, much less obvious on XRD diffractograms than that observed on the Raman spectra. The very high
intensities observed in Raman spectra are actually due to a resonance phenomenon between the excitation laser and
the vibration modes of the MoS2. This explains why Raman spectroscopy is more sensitive than XRD to detect
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MoS2 variations. More information regarding the resonance phenomenon can be found in [14]. The increase of
Raman and diffracted Mo(S,Se)2 signals with the heating rate could be explained either considering that, when
heated faster, the strain rate imposed on the molybdenum by the glass substrate due to thermal expansion mismatch
is higher which can support diffusion of chalcogens in the molybdenum or because the sulfur pressure increases
more rapidly when the heating rate is faster. Further studies are to be conducted to clarify the mechanisms behind
this phenomenon.

3.3.  Effect of sulfur concentration

Precursors were annealed at 650°C with a heating rate of 2.1°C/s and sulfur concentration varying from 10 mg/L
to 1g/L. SEM cross-section micrographs taken on samples annealed with sulfur concentration of 33 mg/L and 400
mg/L show that a higher sulfur concentration results in a morphology with smaller grains Fig. 8. 

 a) b)
Fig. 8 : SEM cross-section micrographs of CuIn(S,Se)2 after cyanide etching annealed with sulfur concentration equal to a) 33 mg/L and b)

400 mg/L

Raman spectroscopy and X-Ray diffraction analysis was used to reveal the structural differences caused by an 
increase of sulfur concentration on the absorber. In the Raman spectra, the A1[Se-Se], A1[S-S] and CuIn5S8 Raman
peaks shift towards higher wavenumber when the sulfur concentration increases (Fig. 9). Besides, although the
lowest amount of sulfur used is already stoichiometrically sufficient to completely replace the selenium in the layer, 
there is a significant Raman signal corresponding to Se-Se vibration modes of the chalcopyrite visible for the lower
sulfur concentrations which disappears when the sulfur concentration increases. This means that the more sulfur is
added to the precursor before annealing the more sulfur is incorporated to the absorber after RTP and can reach
almost pure CuInS2. This observation is confirmed by the XRD analysis in [15] that shows that the (112) d-spacing
of the chalcopyrite crystal can shift from the pure CuInSe2 value at 3.34Å to almost pure CuInS2 value at 3.20Å
according to the sulfur quantity used.

[S]=643mg/L

[S]=233mg/L

[S]=33mg/L

Fig. 9 : Representative Raman spectra of samples annealed with respectively 33, 233 and 643 mg/L sulfur concentration
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Complete sulfurization of the absorber, when the sulfur quantity increases, is accompanied by a decrease of the
FWHM for the A1 [S-S] mode of the chalcopyrite (Fig. 10) and a decrease of the relative area of the A1 [Se-Se]
contribution (Fig. 11). The decrease of the FWHM shows that the crystalline quality of the S-rich CuIn(S,Se)2
improves when the sulfur concentration increases up to 273 mg/L and then stays the same for higher sulfur values
corresponding to completely sulfurized absorbers.
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The decrease of the A1 [Se-Se] over A1 [S-S] ratio is in good agreement with the micrographs of Fig. 8 and
observations from the previous paragraph which states that higher amount of selenium in the absorber results in a 
more coarsened morphology. However, increased coarsening is usually associated with better crystalline quality of
the chalcopyrite which is not the case here since the FWHM of the A1 mode of the S-rich CuIn(S,Se)2 chalcopyrite 
phase is lower for samples having a higher sulfur content. This phenomenon can be understood by taking into
account that, for the lower concentration used, there is not enough sulfur incorporated in the absorber to produce 
homogeneous and well-crystallized S-rich CuIn(S,Se)2. Morphology coarsening and crystalline quality improving
are thus linked phenomena but the presence of the former does not necessarily trigger the latter.

The increase of the sulfur concentration results in an increase of the detrimental secondary phases such as CuAu
ordered CIS and CuIn5S8 spinel-type structure (Fig. 12 a) and b)). Increasing the sulfur concentration from 10mg/L
to 1g/L also resulted in an increase of the Mo(S,Se)2 layer thickness from 110nm to 220nm as seen on SEM 
observations.
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Fig. 12: Relative Area of a) the CuAu ordered phase and b) the CuIn5S8 over the CIS chalcopyrite as a function of the sulfur concentration

calculated from Raman spectroscopy measurements
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Conclusions 

This work demonstrated that morphological and structural properties of the absorber are very dependent on the 
RTP parameters such as annealing temperature, heating rate and sulfur concentration. A higher temperature causes 
primarily an increase in CIS grain size with a higher (112) preferential crystallographic orientation which is 
consistent with preferential grain growth where (112)-oriented crystallites are energetically favored compared to 
other orientations. The interfacial Mo(S,Se)2 layer which grows due to sulfur and selenium diffusion into the 
molybdenum shows stronger signals as exhibited by Raman spectroscopy and X-Ray diffraction when the 
temperature increases but also when the heating rate increases. Temperature dependence was expected due to its 
formation mechanism by diffusion but the heating rate dependence needs more investigation to elucidate how the 
heating rate influences the formation of this layer. An increase of the heating rate results also in an increase in the 
CIS grain size and a better crystalline quality of the chalcopyrite with less Cu-Au ordered phase present. This 
improvement may be due to less selenium being lost when the material is heated faster and it is known that 
elemental Se and CuSe binaries present in the absorber during annealing have a positive impact on crystalline 
quality and morphology. Eventually, sulfur concentration in the reaction chamber has an effect on the sulpho-
selenide concentration in the CuIn(S,Se)2 absorber and also on the amount of detrimental secondary phases such as 
Cu-Au ordered phase or spinel-type structure. These results helped to better understand how RTP parameters 
influence the structure and morphology of the absorber which in turn will enable a better control of the final 
properties of the solar cells. 
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