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1 Introduction 

Computational modeling of mechanical behavior during solidification is growing in importance. This 

is because thermal and microstructural simulations alone are insufficient to predict the quality of the final 

product that is desired by the casting industry.  Accurate calculation of displacements, strains, and stresses 

during the casting process is needed to predict residual stress and distortion, and defects such as the 

formation of cracks such as hot tears.  It also helps in predicting porosity and segregation.  As computing 

power and software tools for computational mechanics advance, it is becoming increasingly possible to 

perform useful mechanical analysis of castings and these important related behaviors. 

The thermomechanical analysis of castings presents a formidable challenge for many reasons: 

• Many interacting physical phenomena are involved in stress-strain formation. Stress arises primarily 

from the mismatch of strains caused by large temperature gradients, and depends on the time- and 

microstructure- dependent inelastic flow of the material. 

• Predicting distortions and residual stresses in cast products requires calculation of the history of the cast 

product and its environment over huge temperature intervals. This makes the mechanical problem highly 

non-linear, involving liquid-solid interaction and complex constitutive equations. Even identifying the 

numerous metallurgical parameters involved in those relations is a daunting task. 

• The coupling between the thermal and the mechanical problems is an additional difficulty. This coupling 

comes from the mechanical interaction between the casting and the mold components, through gap 

formation or the build-up of contact pressure, modifying locally the heat exchange. This adds some 

complexity to the non-linear heat transfer resolution. 

• Accounting for the mold and its interaction with the casting makes the problem multidomain, usually 

involving numerous deformable components with coupled interactions. 

• Cast parts usually have very complex three-dimensional shapes, which puts great demands on the 

interface between CAD design and the mechanical solvers, and on computational resources. 

• The important length scales range from microns (dendrite arm shapes) to tens of meters (metallurgical 

length of a continuous caster), with similar huge order-of-magnitude range in time scales. 

This chapter summarizes some of the issues and approaches in performing computational analyses of 

mechanical behavior, distortion and hot-tearing during solidification. The governing equations are presented 
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first, followed by a brief description of the methods used to solve them, and a few examples of recent 

applications in shape castings and continuous casting. 

2 Governing Equations 

The modeling of mechanical behavior requires solution of 1) the equilibrium or momentum equations, 

relating force and stress; 2) the constitutive equations, relating stress and strain and 3) compatibility 

equations, relating strain and displacement.  This is because the boundary conditions specify either force or 

displacement at different boundary regions of the domain Ω : 

T
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where û  are prescribed displacements on boundary surface portion uΩ∂ , and T
)

 are boundary surface 

forces or “tractions” on portion TΩ∂ . The next sections first present the equilibrium and compatibility 

equations, and then introduce constitutive equations for the different material states during solidification.  

2.1 Equilibrium and compatibility equations 

At any time and location in the solidifying material, the conservation of force (steady-state 

equilibrium) or momentum (transient conditions) can be expressed by:  

d
0

d t
∇⋅ +ρ −ρ =v

σ g  (2) 

where σ  is the stress tensor, ρ is the density, g denotes gravity, v is the velocity field and tdd/  denotes the 

total (particular) time-derivation.. Stress can be further split into the deviatoric stress tensor and the pressure 

field.  The different approaches for simplifying and solving these equations are discussed in Section  2.5. 

Once the material has solidified, the internal and gravity forces dominate, so the inertia terms in Eq. 

(2) can be neglected. Furthermore, the strains which dominate thermo-mechanical behavior during 

solidification are on the order of only a few percent, or cracks will form.  With small gradients of spatial 

displacement, xuu ∂∂=∇ / , and the compatibility equations simplify to the following[1]: 

where εεεε is the strain tensor and u is the displacement vector.  This small-strain assumption simplifies the 

analysis considerably.  The compatibility equations can also be expressed as a rate formulation, where 

strains become strain rates, and displacements become velocities.  This formulation is more convenient for a 

transient computation with time integration involving fluid flow and / or large deformation.  

In casting analysis, the cast material may be in the liquid, mushy or solid state. Each of these states 

has different constitutive behavior, as discussed in the next 3 sections. 

2.2 Liquid state constitutive models 

( )T)(
2

1
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Metallic alloys generally behave as Newtonian fluids. Including thermal dilatation effects, the 

constitutive equation can be expressed as follows. 

Isε
tl d

d

3

1

2

1 ρ
ρµ

−=&  (4) 

The strain rate tensor ε&  is split into two components: a mechanical part, which varies linearly with the 

deviatoric stress tensor s, and a thermal part. In this equation, 
lµ  is the dynamic viscosity of the liquid, ρ is 

the density, and I is the identity tensor. Taking the trace of this expression, vε ⋅∇=&tr , the mass 

conservation equation is recovered: 

0)(
d

d =⋅∇+
∂
∂=⋅∇+ vv ρρρρ
tt

 (5) 

In casting processes, the liquid flow may be turbulent, even after mold filling. This may occur because 

of buoyancy forces or forced convection like in jets coming out of the nozzle outlets in continuous casting 

processes. The most accurate approach, direct numerical simulation, is generally not feasible for industrial 

processes, owing to their complex shaped domains and high turbulence. To compute just the large-scale flow 

features, turbulence models are used, that increase the liquid viscosity according to different models of the 

small-scale phenomena. These models include the simple “mixing length” models, the two-equation models 

such as k-ε, and large eddy simulation (LES) models, which have been compared with each other and with 

measurements of continuous casting.[2-4] 

2.3 Mushy-state constitutive models 

Metallic alloys in the mushy state are two-phase liquid-solid media. Their mechanical response 

depends greatly on the local microstructural evolution, which involves several complex physical phenomena. 

An accurate description of these phenomena is useful for studying hot tearing or macrosegregation. 

Knowledge of the liquid flow in the mushy zone is necessary to calculate the transport of chemical species 

(alloying elements)[5]. Knowledge of the deformation of the solid phase is important when it affects liquid 

flow in the mushy zone by "sponge-effects".[6] In such cases, two-phase models must be used. Starting from 

microscopic models describing the intrinsic behavior of the liquid phase and the solid phase, spatial 

averaging procedures must be developed to express the behavior of the compressible solid continuum and of 

the liquid phase that flows through it [7-9]. 

If a detailed description is not really needed, such as in the analysis of residual stresses and 

distortions, the mushy state can be approximated as a single continuum that behaves as a non-Newtonian 

(i.e. viscoplastic) fluid, according to the following equations (6) to (8). Thus, the liquid phase is not 

distinguished from the solid phase, and the individual dendrites and grain boundaries are not resolved. 

thvp
εεε &&& +=  (6) 

sε
m

eq

vp

K

−= 1)(
2

3 ε&&  (7) 

Iε
t

th

d

d

3

1 ρ
ρ

−=&  (8) 



ASM Handbook, Volume 15, Casting, Division 4: Modeling and Analysis of Casting 

Processes, American Society of Metals (2008) 449-461 

 

 

4 

K is the viscoplastic consistency and m the strain rate sensitivity. Denoting 
ijijeq ss

2
3=σ  the von Mises 

equivalent stress scalar, and 
vp

ij

vp

ijeq εεε &&&
3

2=  the von Mises equivalent strain rate scalar, Eq. (7) yields 

the well known power law: m

eqeq K )(εσ &= .  Note that the preceding Newtonian liquid model is actually a 

particular case of this non-Newtonian one: Eq. (4) can be derived from Eq. (6), (7) and (8) taking 1=m  and 

lK µ3= . The solidification shrinkage is included in Eq. (8): writing 
LlSs gg ρρρ +=
 
in the solidification 

interval, (
Sρ ,

Lρ  densities at the solidus and liquidus temperatures respectively, gs, gl volume fractions of 

solid and liquid respectively), the thermal strain rate is defined as follows: 

t

g

t

g

t

s

L

SLs
LS

th

d

d

d

d
)(

1

d

d1
tr

ρ
ρρρρ

ρ
ρ

ρ
−≈−−=−=ε&  (9) 

2.4 Solid-state constitutive models 

In the solid state, metallic alloys can be modeled either as elastic-plastic or elastic-viscoplastic 

materials. In the latter class of models, one of the simpler is expressed as follows, but it should be mentioned 

that a lot of models of different complexity can be found in the literature.[10, 11] 
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The strain rate tensor ε&  is split into an elastic component, an inelastic (non reversible) component, 

and a thermal component. Equation (11) is the hypoelastic Hooke's law, where E is Young's modulus, ν the 

Poisson's coefficient, and σ&  a time derivative of the stress tensor σ . Equation (12) gives the relation 

between the inelastic strain rate tensor 
in
ε&

 

and the stress deviator, s, in which 
0σ  denotes the scalar static 

yield stress, below which no inelastic deformation occurs (the expression between brackets is reduced to 
zero when negative). In these equations, the temperature dependency of all the involved variables should be 
considered. The effect of strain hardening may appear in such a model by the increase of both the static yield 

stress 
0σ  and the plastic consistency K with the accumulated inelastic strain 

eqε , or with another state 

variable that is representative of the material structure. The corresponding scalar equation relating stress and 
inelastic strain rate von Mises invariants is: 

0 ( )meq eqKσ σ ε= + &   (14) 

Inserting this into Eq. (12) simplifies it to: 
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Although metallic alloys show a significant strain rate sensitivity at high temperature, they are often 

modelled in the literature using elastic-plastic models, neglecting this important effect. In this case, Eq. (15) 

still holds, but the flow stress is independent of the strain rate. It may depend on the accumulated plastic 

strain because of strain hardening. 

2.5 Implementation Issues 

One of the major difficulties in the thermomechanical analysis of casting processes is the concurrent 

presence of liquid, mushy and solid regions which move with time as solidification progresses. Several  

different strategies have been developed, according to the process and model objectives. 

• A first strategy consists in extracting the solidified regions of the casting domain based on the 

thermal analysis results. Then, a small-strain thermo-mechanical analysis is carried out on just this 

solid subdomain, using a standard solid-state constitutive model. Beside difficulties with the 

extraction process, especially when the solidified regions have complex unconnected shapes, this 

method may have numerical problems with the application of the liquid hydrostatic pressure onto 

the new internal boundary of the solidified region.  However, this simple strategy is very convenient 

for many practical problems, especially when the solidification front is stationary, such as the 

primary cooling of continuous casting of aluminum,[12] and steel[13, 14].  For transient problems, such 

as the prediction of residual stress and shape (butt-curl) during startup of the aluminum DC 

continuous casting process, the domain can be extended in time by adding layers.[12] 

• A second strategy considers the entire casting, including the mushy and liquid regions. The liquid, 

mushy and solid regions are modeled as a continuum by adopting the constitutive equations for the 

solid phase (Section  2.4) for all regions by adjusting material parameters such as K, m, E, ν, σ0, and 

ρ according to temperature.  For example, liquid can be treated by setting the strains to zero when 

the temperature is above the solidus temperature.  This ensures that stress development in the liquid 

phase is suppressed. In the equilibrium equation, Eq. 2, acceleration terms are neglected, and a 

small-strain analysis can be performed. The primary unknowns are the displacements, or 

displacement increments. This popular approach can be used with structural finite element codes, 

such as MARC[15] or ABAQUS[16] and with commercial solidification codes or special-purpose 

software, such as ALSIM[17] / ALSPEN,[18] CASTS,[19] CON2D,[20, 21] Magmasoft,[22] and Procast[23, 

24]   It has been applied successfully to simulate deformation and residual stress in shape castings ,[25, 

26]  DC casting of aluminum,[12, 17, 18, 27-29] and continuous casting of steel[20, 30] Despite its efficiency, 

this approach may suffer from several drawbacks. First, it cannot properly account for fluid flow and 

the volumetric shrinkage that affects flow in the liquid pool, fluid feeding into the mushy zone, and 

primary shrinkage depressions that affect casting shape. In addition, incompressibility of the metal 

in the liquid state is accounted for by increasing Poisson's ratio close to 0.5, which sometimes makes 

the solution prone to numerical instability[31, 32] 

• A third strategy has been recently developed, which addresses the above issues.  It still simulates the 

entire casting, but treats the mass and momentum equations of the liquid and mushy regions with a 

mixed velocity-pressure formulation. The primary unknowns are the velocity (time derivative of 

displacement) and pressure fields, which makes it easier to impose the incompressibility constraint 

(see section  4). Indeed, the velocity-pressure formulation is also applied to the equilibrium of the 

solid regions, in order to provide a single continuum framework for the global numerical solution. 

This strategy has been implemented into codes dedicated to casting analysis such as THERCAST,[30, 

33, 34] and VULCAN[35].  If stress prediction is not important so that elastic strains can be ignored, 
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then this formulation simplifies to a standard fluid flow analysis, which is useful in the prediction of 

bulging and shape in large-strain processes. 

2.6 Example of Solid-State Constitutive Equations 

Material property data are needed for the specific alloy being modeled and in a form suitable for the 

constitutive equations just discussed. This presents a significant challenge for quantitative mechanical 

analysis, because measurements are not presented in this form, and only rarely supply enough information 

on the conditions to allow transformation to an alternate form. As an example, the following elastic-visco-

plastic constitutive equation was developed for the austenite phase of steel[36] by fitting constant strain-rate 

tensile tests[37, 38]and constant-load creep tests[39] to the form required in Eqs. (10)-(13). 
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This equation, and a similar one for delta-ferrite, have been implemented into the finite-element codes 

CON2D[20] and THERCAST[40] and applied to investigate several problems involving mechanical behavior 

during continuous casting. 

Elastic modulus is a crucial property that decreases with increasing temperature. It is difficult to 

measure at the high temperatures important to casting, owing to the susceptibility of the material to creep 

and thermal strain during a standard tensile test, which results in excessively low values. Higher values are 

obtained from high-strain-rate tests, such as ultrasonic measurements.[41]  Elastic modulus measurements in 

steels near the solidus temperature range from ~1 GPa [42] to 44 GPa.[43]  with typical modulus values ~10 

GPa near the solidus.[44-46] 

The density needed to compute thermal strain in Eqs. (4), (8) or (13) can be found from a weighted 

average of the values of the different solid and liquid phases, based on the local phase fractions. For the 

example of plain low carbon steel, the following equations were compiled[20] based on solid data for ferrite 

(α), austenite (γ), and delta (δ) [47, 48] and liquid (l) measurements.[49] 

3
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Specialized experiments to measure mechanical properties for use in computational models will be an 

important trend for future research in this field. 

3 Thermomechanical coupling 

Coupling between the thermal and mechanical analyses arises from several sources. First, regarding 

the mechanical problem, besides the strain rate due to thermal expansion and solidification shrinkage, the 

material parameters of the preceding constitutive equations strongly depend on temperature and phase 

fractions, as shown in the previous section. Second, in the heat transfer problem, the thermal exchange 

between the casting and the mold strongly depends on local conditions such as the contact pressure or the 

presence of a gap between them (as a result of thermal expansion and solidification shrinkage). This is 

illustrated in Figure 1 and discussed hereunder. 

3.1.1 Air gap formation: conductive-radiative modeling 

In the presence of a gap between the casting and the mold, resulting from their relative deformation, 

the heat transfer results from concurrent conduction through the gas within the gap and from radiation. The 

exchanged thermal flux, qgap, can then be written: 

1
11
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)(

44

−+

−
+−=
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TT
TT

g

k
q

εε
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(18) 

 

with ( )gask T  the thermal conductivity of the gas, g the gap thickness, 
cT  and 

mT  the local surface 

temperature of the casting and mold, respectively, 
cε  and 

mε  their gray-body emissivities, σ the Stefan-

Boltzmann constant. It is to be noted that the conductive part of the flux can be written in more detail to take 
into account the presence of coating layers on the mold surface: conduction through a medium of thickness 

coatg , of conductivity ( )coatk T . It can be seen that the first term tends to infinity as the gap thickness tends to 

zero: this expresses a perfect contact condition, 
cT  and 

mT  tending towards a unique interface temperature. 

The reality is somewhat different, showing always non perfect contact conditions. Therefore, the conductive 

heat exchange coefficient gkh gascond =  should be limited by a finite value 
0h , corresponding to the “no-

gap” situation, and depends on the roughness of the casting surface. Specific examples of these gap heat 
transfer laws are provided elsewhere for continuous casting with oil lubrication,[13] and mold flux.[50] 

3.1.2 Effective contact : heat transfer as a function of contact pressure 

With effective contact, the conductive heat flux increases with the contact pressure according to a 

power law.[51]  Still denoting 
0h  as the heat exchange coefficient corresponding to no gap and no contact 

pressure, the interfacial heat flux is: 

))(( 0 mc

B

ccontact TTAphq −+=  (19) 

with 
cp  the contact pressure, A and B two parameters which depend on the materials, the presence of 

coating or lubricating agent, the surface roughness, and the temperature. The parameters and possibly the 

laws governing their evolution need to be determined experimentally. 
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Figure 1. Modeling of the local heat transfer coefficient in the gap and effective contact situations. 

4 Numerical solution 

The thermal-mechanical modeling equations just presented must be solved numerically, owing to the 

complex shape of the casting process domain, and the highly nonlinear material properties. The calculation 

depends greatly on the numerical resolution of time and space.  Although finite-difference approaches are 

popular for heat transfer, solidification, and fluid flow analyses, the finite element formulation is usually 

preferred for the mechanical analysis, owing to its historical advantages with unstructured meshes and 

accurate implicit solution of the resulting simultaneous algebraic equations.  The latter are discussed below.  

4.1 Finite element formulation and numerical implementation 

In the framework of the small strain approach presented above (section  2.5), having displacements for 

primitive unknowns, the weak form of the equilibrium equation, Eq. (2), neglecting inertia terms, is written 

as: 

0)(d: **** =⋅−⋅−∀ ∫∫∫
ΩΩ∂Ω

dVdSdV uguTuεσu ρ

 

(20) 

where T is the external stress vector. The vector test-functions 
*

u  can be seen as virtual displacements in a 

statement of virtual work.   

If the third strategy described in section  2.5 is adopted, with velocity and pressure as primary 

unknown variables, the weak form of the momentum equation (Eq. (2)) is written as[52]:  
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(21) 

The first equation, contains vector test-functions 
*

v , which can be seen as virtual velocities in a 

statement of virtual power. Unlike Eq. (20), the pressure p is a primary variable, and only the deviatoric part 

of the constitutive equations is involved (to determine the stress deviator s). This is why the second equation 

is needed, which consists of a weak form of the incompressibility of inelastic deformations. 

Gap width g (m) 

kgas 
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Equations (20) and (21) are spatially discretized using the standard finite-element method, as 

explained in detail in many references.[52]  Combined with time discretization using finite differences, this 

leads to a set of non-linear equations to be solved at each time increment. In the context of the displacement 

strategy, Eq. (20), this leads to: 

0)( =UR

 

(22) 

where R is the vector of the nodal equilibrium residues (number of components: 3 x number of nodes, in 

dimension 3), and U is the vector of nodal incremental displacements (same size). 

Adopting the velocity-pressure strategy, Eq. (21), leads to a set of non-linear equations: 

0),(' =PVR

 

(23) 

where R' is the vector of the nodal residues (number of components: 4 x number of nodes, in dimension 3), 

V is the vector of nodal velocities (size: 3 x number of nodes) and P is the vector of nodal pressures (size: 

number of nodes). 

The global finite-element systems (22) or (23) are usually solved using a full or modified Newton-

Raphson method, [31, , 2004 #3715] which iterates to minimize the norm of the residue vectors R or R'.  

Alternatively, explicit methods may be employed at this global level.  

At the local (finite element) level, an algorithm is also required to integrate the constitutive equations, 

when they depend on strain-rate or strain. When the constitutive equations are highly non-linear, an implicit 

algorithm is useful to perform time integration at each Gauss point in order to provide better estimates of 

inelastic strain at the local level.[53-55] 

4.2 Boundary conditions: modeling of contact conditions. Multidomain approaches 

At the interface between the solidifying material and the mold, a contact condition is required to 

prevent penetration of the shell into the mold, while allowing shrinkage of the shell away from the mold to 

create an interfacial gap: 

: 









=⋅
≥

≤⋅

0)(

0

0

g

g

nσn

nσn

 (24) 

where g is the local interface gap width (positive when air gap exists effectively, as in section  3.1.1) and n is 

the local outward unit normal to the part. Eq. (24) can be satisfied with a penalty condition, which consists in 

applying a normal stress vector T proportional to the penetration depth (if any) via a penalty constant χp: 

nσnT gp −−== χ  (25) 

Here again, the brackets denote the positive part: a repulsive stress is applied only if g is negative 

(penetration). Different methods of local adaptation of the penalty coefficient χp have been developed, 

including the augmented Lagrangian method.[56]  More complex and computationally expensive methods, 

such as the use of Lagrange multipliers may also be used.[57] 

The possible tangential friction effects between part and mold can be taken into account by a friction 

law, such as a Coulomb model for instance. In this case, the previous stress vector has a tangential 

component, Tτ, given by: 
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1
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mold

cf p vv
vv

T −
−

−= µτ  (26) 

where nσn ⋅−=−= ncp σ  is the contact pressure, and µf the friction coefficient. 

The previous approach can be extended to the multidomain context in order to account for the 

deformation of mold components. The local stress vectors calculated by Eq. (25) can be applied onto the 

surface of the mold, contributing then to its deformation. For most casting processes, the mechanical 

interaction between the cast product and the mold is sufficiently slow (i.e. its characteristic time remains 

significant with respect to the process time) to permit a staggered scheme within each time increment: the 

mechanical problem is successively solved in the cast product and in the different mold components. A 

global updating of the different configurations is then performed at the end of the time increment. This 

simple approach gives access to a prediction of the local air gap size g, or alternatively of the local contact 

pressure pc, that are used in the expressions of the heat transfer coefficient, according to Eqs. (18) and 

(19).[58] 

4.3 Treatment of the regions in the solid, mushy and liquid states 

4.3.1 Solidified regions: Lagrangian formulation 

In casting processes, the solidified regions generally encounter small deformations. It is thus natural to 

embed the finite element domain into the material, with each node of the computational grid corresponding 

with the same solid particle during its displacement. The boundary of the mesh corresponds then to the 

surface of the casting. This method, called Lagrangian formulation, provides the best accuracy when 

computing the gap forming between the solidified material and the mold. It is also the more reliable and 

convenient method for time integration of highly non-linear constitutive equations, such as elastic-(visco)-

plastic laws presented in section  2.4. 

4.3.2 Mushy and liquid regions: ALE modeling 

When the mushy and liquid regions are modeled in the same domain as the solid (cf. discussion in 

section  2.5), they are often subjected to large displacements and strains arising from solidification shrinkage, 

buoyancy, or forced convection. Similar difficulties are generated in casting processes such as squeeze 

casting, where the entire domain is highly deformed. In these cases, a Lagrangian formulation would 

demand frequent remeshings in order to avoid mesh degeneracy, which is both computationally costly, and 

detrimental to the accuracy of the modeling. It is then preferable to use a so-called arbitrary Lagrangian 

Eulerian formulation (ALE). In an Eulerian formulation, material moves through the computational grid, 

which remains stationary in the “laboratory” frame of reference. In the ALE formulation, the updating of the 

mesh is partially independent of the velocity of the material particles in order to maintain the quality of the 

computational grid. Several methods can be used, including the popular “barycentering” technique which 

keeps each node at the geometrical centroid of a set of its neighbors. This method involves significant extra 

complexity to account for the advection of material through the domain, and the state variables such as 

temperature and inelastic strain must be updated according to the relative velocity between the mesh and the 

particles. In doing this, some surface constraints must be enforced in order to ensure mass conservation, 

expressing that the fluxes of mesh velocity and of fluid particle velocity through the surface of the mesh 

should remain identical. A review on the ALE method in solidification modeling is available, together with 

some details on its application.[33] 
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4.4 Thermomechanical coupling 

Because of the interdependency of the thermal and mechanical analyses, as presented in section  3, 

their coupling should be taken into account all during the cooling process. In practice, the cooling time is 

decomposed into time increments, each increment requiring the solution of two problems: the energy 

conservation and the momentum conservation. With the highly nonlinear elastic-visco-plastic constitutive 

equations typical of solidifying metals, the incremental steps required for the mechanical analysis to 

converge are generally much smaller than those for the thermal analysis. Thus, these two analyses are 

generally performed in succession and only once per time increment. However, in the case of very rapid 

cooling, these solutions might be preferably performed together (including thermal and mechanical 

unknowns in a single set of non-linear equations), or else separate but iteratively until convergence at each 

time increment, otherwise the time step has to be dramatically reduced. 

5 Model Validation 

Model validation with both analytical solutions and experiments is a crucial step in any computational 

analysis and thermo-mechanical modeling is no exception. Weiner and Boley[59] derived an analytical 

solution for unidirectional solidification of an unconstrained plate with a unique solidification temperature, 

an elastic-perfectly-plastic constitutive law and constant properties. The plate is subjected to sudden surface 

quench from a uniform initial temperature to a constant mold temperature. 

This benchmark problem is ideal for estimating the discretization errors of computational thermal-

stress models, as it can be solved with a simple mesh consisting of one row elements, as shown in Figure 2. 

Numerical predictions should match with acceptable precision using the same element type and mesh 

refinement planned for the real problem. For example, the solidification stress analysis code, CON2D[20] and 

the commercial code ABAQUS were applied for typical conditions of steel casting.[21]   

 

Figure 2. One-dimensional slice-domain for modeling solidifying plate. 

Figure 3 and Figure 4 compare the temperature and stress profiles in the plate at two times. The 

temperature profile through the solidifying shell is almost linear. Because the interior cools relative to the 

fixed surface temperature, its shrinkage generates internal tensile stress, which induces compressive stress at 

the surface. With no applied external pressure, the average stress through the thickness must naturally equal 

zero, and stress must decrease to zero in the liquid. Stresses and strains in both transverse directions are 

equal for this symmetrical problem. The close agreement demonstrates that both computational models are 

numerically consistent and have an acceptable mesh resolution. Comparison with experimental 

measurements is also required, to validate that the modeling assumptions and input data are reasonable. 
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Figure 3. Temperatures through solidifying plate at different times comparing analytical solution and 
numerical predictions. 
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Figure 4. Transverse (Y and Z) stress through solidifying plate at different times comparing analytical 
solution and numerical predictions. 

6 Example Applications 

6.1 Sand Casting of Braking disks 

The finite element software THERCAST for thermomechanical analysis of solidification[34] has been 

used in the automotive industry to predict distortion of grey-iron braking discs cast in sand molds.[60]   

Particular attention has been paid to the interaction between the deformation of internal sand cores and the 

cast parts. This demands a global coupled thermomechanical simulation, as presented above. Figure 5 

illustrates the discretization of the different domains involved in the calculation. The actual cooling scenario 

has been simulated: cooling in mold for 45 min, shake out and air cooling for 15 min. Figure 6 shows the 

temperature evolution at different points in a horizontal cross section at mid-height in the disc, revealing: 

solidification after 2 min, and solid state phase change after 20 min. The calculated deformation of the core 



ASM Handbook, Volume 15, Casting, Division 4: Modeling and Analysis of Casting 

Processes, American Society of Metals (2008) 449-461 

 

 

13 

blades shows thermal buckling due to the very high temperature, and constraint of their dilatation, as shown 

in Figure 7. This deformation causes a difference in thickness between the two braking tracks of the disc. 

Such a defect needs heavy and costly machining operations to produce quality parts. Instead, process 

simulation allows the manufacturer to test alternative geometries and process conditions in order to minimize 

the defect. 

Similar thermomechanical calculations have been made for plain discs, leading to comparisons with 

residual stress measurements by means of neutrons and X-ray diffraction.[61]  As shown in Figure 8, 

calculations are consistent with measurements to within 10 MPa. 

    

Figure 5. Finite element meshes of the different domains: part, core, and two half molds. 
 

 

 

 

Figure 6. Temperature evolution in the part at different points located in the indicated section. 
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Vertical section 

 

 

Figure 7. Deformation of core blades in a radial section, after a few seconds of cooling. On the left, 
displacements are magnified (x100). The temperature distribution is superimposed. On the right, the 
difference in thickness between the two braking tracks is shown. 

 

 

   

 

Figure 8. Residual hoop stresses (left) and radial stresses (right) in a radial section on as-cast plain discs 
made of grey iron. Top line: calculated values; bottom line: measured values. 

 

6.2 Continuous Casting of Steel Slabs 

Thermomechanical simulations are used by steelmakers to analyze stresses and strains both in the 

mold and in the secondary cooling zone below. One goal is to quantify the bulging of the solidified crust 

between the supporting rolls which is responsible for the tensile stress state in the mushy core, which in turn 

induces internal cracks and macrosegregation[62, 63]  Two and three-dimensional finite element models have 

been recently developed, for the entire length of the caster using THERCAST, as described elsewhere.[40, 64]   

The constitutive models were presented in section  2. Contact with supporting rolls is simulated with the 

penalty formulation discussed in section  4.2, adapting penalty coefficients for the different rolls 

continuously to control numerical penetration of the strand.  
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Figure 9 shows results for a vertical-curved machine (strand thickness 0.22 m, casting speed 0.9 

m/min, material Fe-0.06wt%C) at around 11 m below the meniscus. The pressure distribution reveals a 

double alternation of compressive and depressive zones. First, the strand surface is in a compressive state 

under the rolls where the pressure reaches its maximum, 36 MPa. Conversely, it is in a depressive (tensile) 

state between rolls, where the pressure is minimum (-9 MPa). Near the solidification front (i.e. close to the 

solidus isotherm), the stress alternates between tension (negative pressure of about –2 MPa) beneath the 

rolls, and compression in between, (2 to 3 MPa). These results agree with previous structural analyses of the 

deformation of the solidified shell between rolls, such as those carried out in static conditions by 

Wünnenberg,[65] Miyazawa and Schwerdtfeger[62] or by Kajitani et al.[66] on small slab sections moving 

downstream between rolls and submitted to the metallurgical pressure onto the solidification front.  

The influence of process parameters on the thermomechanical state of the strand can then be studied 

using such numerical models. An example is given in Figure 10, presenting the sensitivity of bulging to the 

casting speed. It can also be seen that bulging predictions are sensitive to the roll pitch, a larger pitch 

between two sets of rolls inducing an increased bulging. These numerical simulations can then be used to 

study possible modifications in the design of continuous casters, such as the replacement of large rolls by 

smaller ones in order to reduce the pitch and the associated bulging.[67] 
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Figure 9. Predictions in the middle of the secondary cooling zone, about 11 m below the meniscus. The finite 
element mesh, (top left) features a fine band of 20 mm. The pressure distribution (right) reveals alternating 
stress, including tension near the solidification front (the mushy zone is materialized by 20 lines separated 
by an interval lg∆  = 0.05). 
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Figure 10. Slab bulging calculated at two different casting speeds: 0.9 m/min and 1.2 m/min. The slab 
bulging increases with the casting speed.[67] 
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7 Hot tearing analysis 

Hot tear crack formation is one of the most important consequences of stress during solidification. Hot 

tearing is caused by a combination of tensile stress and metallurgical embrittlement. It occurs at temperatures 

near the solidus when strain concentrates within the interdendritic liquid films, causing separation of the 

dendrites and intergranular cracks at very small strains (on the order of 1 percent). This complex 

phenomenon depends on the ability of liquid to flow through the dendritic structure to feed the volumetric 

shrinkage, the strength of the surrounding dendritic skeleton, the grain size and shape, the nucleation of 

supersaturated gas into pores or crack surfaces, the segregation of solute impurities, and the formation of 

interfering solid precipitates. The subsequent refilling of hot tears with segregated liquid alloy can cause 

internal defects that are just as serious as exposed surface cracks.  The hot tearing of aluminum alloys is 

reviewed elsewhere.[68]  Hot tearing phenomena are too complex, too small-scale, and insufficiently 

understood to model in detail, so several different criteria have been developed to predict hot tears from the 

results of a thermal-mechanical analysis.   

7.1 Thermal-analysis Criteria 

Casting conditions that produce faster solidification and alloys with wider freezing ranges are more 
prone to hot tears. Thus, many criteria are solely based on thermal analysis. One [69] simply compares the 

local time spent between two critical solid fractions 
1sg  and 

2sg  (typically 0.9 and 0.99, respectively), with 

the total local solidification time (or a reference solidification time). The “hot cracking susceptibility” is 
defined as: 

40.090.0

90.099.0

tt

tt
HCSClyne −

−
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(27) 

7.2 Classical mechanics criteria 

Criteria based on classical mechanics often assume cracks will form when a critical stress is exceeded, 

and they are popular for predicting cracks at lower temperatures[70-73]. This critical stress depends greatly on 

the local temperature and strain rate. Its accuracy relies on measurements, such as the submerged split-chill 

tensile test for hot tearing.[74-76] 

Measurements often correlate hot tear formation with the accumulation of a critical level of 
mechanical strain while applying tensile loading within a critical solid fraction where liquid feeding is 
difficult. This has formed the basis for many hot-tearing criteria. That of Yamanaka et al.[77] accumulates 

inelastic deformation over a brittleness temperature range, which is defined, for example as [ ]99.0,85.0∈sg  

for a Fe-0.15wt%C steel grade. The local condition for fracture initiation is then: 

cr
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(28) 

in which the critical strain 
crε  is 1.6% at a typical strain rate of 4103 −×  s-1. Careful measurements during 

bending of solidifying steel ingots have revealed critical strains ranging from 1 to 3.8%.[77, 78]  The lowest 

values were found at high strain rate and in crack-sensitive grades (e.g. high-sulfur peritectic steel).[77]  In 

aluminum rich Al-Cu alloys, critical strains were reported from 0.09 to 1.6% and were relatively 

independent of strain rate.[79]  Tensile stress is also a requirement for hot tear formation.[77]  The maximum 

tensile stress occurs just before formation of a critical flaw.[79] 
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The critical strain decreases with increasing strain rate, presumably because less time is available for 

liquid feeding, and also decreases for alloys with wider freezing ranges. Won et al[80] suggested the 

following empirical equation for the critical strain in steel, based on fitting measurements from many bend 

tests: 

0.3131 0.8638

0.02821
cr

BT
ε

ε
=

∆&
 

(29) 

where ε&  is the strain rate and ∆TB is the brittle temperature range, defined between the temperatures 

corresponding to solid fractions of 0.9 and 0.99. 

7.3 Mechanistically-based criteria 

More mechanistically-based hot-tearing criteria include more of the local physical phenomena that 

give rise to hot tears. Feurer,[81] and more recently Rappaz et al.[82] have proposed that hot tears form when 

the local interdendritic liquid feeding rate is not sufficient to balance the rate of tensile strain increase across 

the mushy zone. The criterion of Rappaz et al. predicts fracture when the strain rate exceeds a limit value 

that allows pore cavitation to separate the residual liquid film between the dendrites: 
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in which lµ  is the dynamic viscosity of the liquid phase, 2λ  is the secondary dendrite arm spacing, pm is the 

local pressure in the liquid ahead of the mushy zone, pC is the cavitation pressure, vT is the velocity of the 

solidification front. The quantities R and H depend on the solidification path of the alloy: 
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where the integration limits are calibration parameters which also have physical meaning.[83]  The upper limit 

T1 may be the liquidus or the coherency temperature, while the lower limit T2 typically is within the solid 

fraction range of 0.95-0.99.[84] 

7.4 Case Study: Billet Casting Speed Optimization 

A Lagrangian model of temperature, distortion, strain, stress, hot tearing has been applied to predict 

the maximum speed for continuous-casting of steel billets without forming off-corner internal cracks.  The 

two-dimensional transient finite-element thermal-mechanical model, CON2D[20, 21] has been used to track a 

transverse slice through the solidifying steel strand as it moves downwards at the casting speed to reveal the 

entire 3-D stress state. The 2-D assumption produces reasonable temperature predictions because axial (z-

direction) conduction is negligible relative to axial advection.[50] In-plane mechanical predictions are also 

reasonable because bulging effects are small and the undiscretized casting direction is modeled with the 

appropriate condition of generalized plain strain.  Other applications with this model include the prediction 

of ideal taper of the mold walls,[85] and quantifying the effect of steel grade on oscillation mark severity 

during level fluctuations [86]. 

The model domain is an L-shaped region of a 2-D transverse section, shown in Figure 11. Removing 

the central liquid region saves computation and lessens stability problems related to element “locking”.  
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Physically, this “trick” is important in two-dimensional domains because it allows the liquid volume to 

change without generating stress, which mimics the effect of fluid flow into and out of the domain that 

occurs in the actual open-topped casting process.  Simulations start at the meniscus, 100 mm below the mold 

top, and extend through the 800-mm long mold and below, for a caster with no sub-mould support.  The 

instantaneous heat flux, given in Eq. (32), was based on plant measurements.[45]  It was assumed to be 

uniform around the perimeter of the billet surface in order to simulate ideal taper and perfect contact 

between the shell and mold. Below the mold, the billet surface temperature was kept constant at its 

circumferential profile at mold exit. This eliminates the effect of spray cooling practice imperfections on 

sub-mold reheating or cooling and the associated complication for the stress/strain development. A typical 

plain carbon steel was studied (0.27%c, 1.52%Mn, 0.34%Si) with 1500.7 °C liquidus temperature, and 

1411.8 °C solidus temperature.  Constitutive equation and properties are given in Sections  2.4 and  2.6. 
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Figure 11. Model domain. 

Sample results are presented here for one-quarter of a 120 mm square billet cast at speeds of 2.0 and 

5.0 m/min. The latter is the critical speed at which hot-tear crack failure of the shell is just predicted to 

occur.  The temperature and axial (z) stress distributions in a typical section through the wideface of the steel 

shell cast at 2.0 m/min are shown in Figure 12 and Figure 13 at four different times during cooling in the 

mold. Unlike the analytical solution in Figure 3, the surface temperature drops as time progresses. The 

corresponding stress distributions are qualitatively similar to the analytical solution (Figure 4). The stresses 

increase with time, however, as solidification progresses. The realistic constitutive equations produce a large 

region of tension near the solidification front. The magnitude of these stresses (and the corresponding 

strains) are not predicted to be enough to cause hot tearing in the mold, however.  The results from two 

different codes reasonably match, demonstrating that the formulations are accurately implemented, 

convergence has been achieved, and that the mesh and time-step refinement are sufficient.   
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Figure 12. Temperature distribution along the solidifying slice in continuous casting mold. 
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Figure 13. Lateral (y and z) stress distribution along the solidifying slice in continuous casting mold. 

Figure 14(a) shows the distorted temperature contours near the strand corner at 200 mm below the 

mold exit, for a casting speed of 5.0 m/min. The corner region is coldest, owing to two-dimensional cooling. 

The shell becomes hotter and thinner with increasing casting speed, owing to less time in the mold. This 

weakens the shell, allowing it to bulge more under the ferrostatic pressure below the mold. 

Figure 14(b) shows contours of “hoop” stress constructed by taking the stress component acting 

perpendicular to the dendrite growth direction, which simplifies to σx in the lower right portion of the 

domain and σy in the upper left portion. High values appear at the off-corner sub-surface region, due to a 



ASM Handbook, Volume 15, Casting, Division 4: Modeling and Analysis of Casting 

Processes, American Society of Metals (2008) 449-461 

 

 

21 

hinging effect that the ferrostatic pressure over the entire face exerts around the corner. This bends the shell 

around the corner and generates high subsurface tensile stress at the weak solidification front in the off-

corner subsurface location. This tensile stress peak increases slightly and moves towards the surface at 

higher casting speed. Stress concentration is less and the surface hoop stress is compressive at the lower 

casting speed. This indicates no possibility of surface cracking. However, tensile surface hoop stress is 

generated below the mold at high speed in Figure 14(b) at the face center due to excessive bulging. This 

tensile stress, and the accompanying hot-tear strain, might contribute to longitudinal cracks which penetrate 

the surface. 
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Figure 14. Distorted contours at 200 mm below mold exit. 

Hot tearing was predicted using the criterion in Eq. (28) with the critical strain given in Eq. (29). 

Inelastic strain was accumulated for the component oriented normal to the dendrite growth direction, 

because that is the weakest direction and corresponds to the measurements used to obtain Eq. (29). Figure 

14(c) shows contours of hot-tear strain in the hoop direction. The highest values appear at the off-corner sub-

surface region in the hoop direction. Moreover, significantly higher values are found at higher casting 

speeds. For this particular example, hot-tear strain exceeds the threshold at 12 nodes, all located near the off-

corner subsurface region. This is caused by the hinging mechanism around the corner. No nodes fail at the 

center surface, in spite of the high tensile stress there. The predicted hot-tearing region matches the location 

of off-corner longitudinal cracks observed in sections through real solidifying shells, such as the one 

pictured in Figure 15. The bulged shape is also similar. 
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Figure 15. Off-corner internal crack in break-out shell from a 175 mm square bloom. 

Results from many computations were used to find the critical speed to avoid hot tear cracks as a 

function of section size and working mold length, presented in Figure 16.[46]  These predictions slightly 

exceed plant practice, which is generally chosen by empirical trial and error. This suggests that plant 

conditions such as mold taper are less than ideal, that other factors limit casting speed, or those speeds in 

practice could be increased. The qualitative trends are the same. 

This quantitative model of hot tearing provides many useful insights into the continuous casting 

process. Larger section sizes are more susceptible to bending around the corner, so have a lower critical 

speed, resulting in less productivity increase than expected. The trend towards longer molds over the past 

three decades enables a higher casting speed without cracks by producing a thicker, stronger shell at mold 

exit. 
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Figure 16. Comparison of critical casting speeds, based on hot-tearing criterion, and typical plant practice.[87] 

8 Conclusions 

Mechanical analysis of casting processes is growing in sophistication, accuracy, and phenomena 

incorporated. Quantitative predictions of temperature, deformation, strain, stress, and hot tearing in real 

casting processes are becoming possible. Computations are still hampered by the computational speed and 

limits of mesh resolution, especially for realistic three-dimensional geometries and defect analysis.  
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