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SIMULATION OF THE ANISOTROPIC BEHAVIOR OF TITANIUM
ALLOYS DURING SHEET METAL FORMING

B. Revil-Baudard1∗, E. Massoni1

1 Mines ParisTech, CEMEF - Centre de Mise en Forme des Matériaux, CNRS UMR 7635, BP 207, 1
rue Claude Daunesse, 06904 Sophia Antipolis Cedex, France

ABSTRACT: This paper introduces a constitutive elastoplastic model based on anisotropic yield criterion. An evolving
anisotropy during simulation is considered. The anisotropy axes are updated with the deformation gradient. An anisotropic
yield criterion, an isotropic hardening and a kinematic hardening model the plastic behavior of titanium alloys. Different
plastic yield criteria are compared to show the accuracy of each plasticity model for the simulation of forming processes.

KEYWORDS: Anisotropy, Plasticity, Finite element method, Yield criteria, Hexagonal closed packed metals

1 INTRODUCTION

Understanding the anisotropic behavior is of primary im-
portance for the sheet metal forming. Conditions and pa-
rameters of process depend on the direction of anisotropy.
Modelling the anisotropic behavior of the titanium alloys
is very important to make reliable simulations. The first
yield criterion has been investigated by Hill [1]. This cri-
terion is the simpliest one and it is implemented in most
of the commercial softwares. Recently, new developments
have been done and new non quadratic criteria have been
developed [2]. Cazacu et al. [3] have extended these cri-
teria to investigate the plastic behavior of closed packed
materials. The aim of this paper is to develop an anisotro-
pic elastoplastic model for titanium alloys.
To describe an evolving anisotropy, the rotation of the ani-
sotropy axes must be updated at each increment. Working
in an objective environment is crucial to simulate large de-
formations processes. Duchêne and al. [4] compared dif-
ferent axes rotations used in simulations. Based on their
conclusions, a kinematic approach will be used in this pa-
per. A physical approach at microlevel and based on the
Mandel spin is in good agreement with experimental mea-
surements. But the model presented in this paper describes
plastic behavior at macroscopic level.
The implementation of a constitutive behavior in a FEM
(Finite Element Method) software requires in our case the
definition of an evolving anisotropic model coupled with
different hardening laws. The stress tensor is updated at
each integration point and a consistent tangent modulus is
computed.

2 EVOLVING ANISOTROPY

Evolving anisotropy is a major issue to model properly
the mechanical behavior of many materials. The following
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assumptions are made :
– the initial anisotropy is orthotropic, due to the rolling

process. The initial orientation of the rolling direction
is defined byγ.

– sheet metal processes only are considered in this study.
– the displacement during one increment is small and

strains are considered as linear.
– all the behavior laws are expressed in the material basis,

denoted by{ai}, i=1..3.
In this work, matrices are denoted by [.] and vectors by
{.}. The inverse and the transpose of a tensor are respec-
tively given by [.]−1 and [.]T , the diadic product by⊗.
The implementation algorithm uses the Voigt notation to
express a tensor with a vector.
Anisotropy axes have to be updated during the deforma-
tion. This is obtained, using either the deformation gra-
dient [F] or the rigid rotation matrix [R], derived from the
polar decomposition [F]=[R][U]. The comparaison bet-
ween [F] and [R] on the analytical evolution of axes du-
ring a simple shear test (fig.1) shows that the most accu-
rate value is reached with the deformation gradient.

FIG. 1: Evolution of axis during simple shear test.

Anisotropy axes are updated during the deformation
(fig.2) by the following relations :

{ain+1} = ‖[F ]n{ain}‖ i = 1, 2 (1)

{a3n+1} = ‖{a1n+1} ∧ {a2n+1}‖ (2)

Where [F ]n is the deformation gradient for the nth in-



crement. The in plane anisotropy axes ({a1},{a2}) follow
the sheet deformation and the third is normal to the metal
sheet.

FIG. 2: Evolution of anisotropy axes during simulation.

3 KINEMATIC CONSIDERATIONS

The equilibrium equation is solved using finite elements
in a reference basis (0,ei, i=x, y, z). To preserve objecti-
vity, the stress increment∆σ must be computed into the
material basis (0,ai, i=1..3). The transport between the
material basis and the reference basis must be explicited
to obtain the convergency. First, the bases and tensors are
defined.

We first introduces a stationary cartesian coordinate sys-
tem with an orthonormal basis{ei} for an Euclidean vec-
tor space, to define the stress and strain tensors in the body.
Another vector basis{ai}, as shown in fig. 3, describing
the evolution of the anisotropy axes can be choose. The
vector basis{ai} can be neither orthogonal nor normal
and can be considered as a covariant basis for the Eucli-
dean vector space. The stress tensor [σ] is a contravariant
tensor and the strain tensor [ǫ] is a covariant tensor.

In this work, we chose to express the stress tensor in local
basis regarding recent work in composite structure [5] and
older ones in thin sheet forming [6]. The tensor variance
requires attention. To transport a tensor in an other basis,
two operations are available, the push forward (from refe-
rence to current) and the pull back (from current to refe-
rence). Depending on the variance of the tensors, relations
are not the same [7].

A transition matrix ([T].[M]) is computed to switch bet-
ween the reference{ei} and the material bases{ai}. Two
changes of base are computed (fig.3), the first [M] bet-
ween the global ({ei}) and one orthogonal basis (0,~a1(int)

,~a3), and the second [T] to transport the tensors in the ma-
terial basis (0,~ai). The first change of base transforms the
axes{ez} into {a3}. A first rotation ofϕ around{ex} and
a second ofψ around{ey} are done. The first transition
matrix [M] is :

[M ](ex,ey,ez)→(a1int,a3) =





cosψ sinϕ sinψ cosϕ sinψ
0 cosϕ −sinϕ

−sinψ cosψ sinϕ cosϕ cosψ





(3)
A First order development simplifies this matrix [M],
which can be easily solved with the condition :
[M ]{a3}

n = {a3}
n+1. The second transition matrix [T]

is expressed with the angleα andθ (fig.3), which are com-

puted using vectorial and scalar product :

[T ](a1int,a3)→(a1,a1,a3) =





cosα cos(α+ θ) 0
sinα sin(α+ θ) 0

0 0 1





(4)

FIG. 3: Transport of tensor between the reference ({ei},
i=x, y, z) and the material basis ({ai}, i=1..3).

4 MECHANICAL CONSIDERATIONS

An elastoplastic model can be defined by different laws
which are :
– an isotropic elastic law [C] :{ǫ} = [C]{σ}.
– a kinematic hardening law to define the kinematic ten-

sor [X]. An Amstrong and Friedrick kinematics law is
chosen [8] :{Ẋi} = Di{ǫ̇

p}−ξi{Xi} | ˙̄ǫ
p|, where{ǫ̇p}

is the plastic strain rate tensor and˙̄ǫp the equivalent
plastic strain rate. This law associates a linear kinematic
hardening term, characterized byDi, and a recall term
controlled byξi to model the dynamic recovery. Com-
bining linear and non linear hardening allows a good
modelling for small and large strains.

– a convex yield criterion to define the initial yield sur-
face :f(σ −X).

– a differentiable isotropic hardening law to define the
flow stressσ0.

The mechanical behavior is defined by the yield criterion
Fp :

Fp = f(σ −X) − σ0, Fp ≤ 0 (5)

According to the value ofFp, the behavior could be elastic
(Fp < 0) or elastoplastic (Fp = 0). This paper will focus
on the plastic behavior, especially on the yield criterion
shape. Two different criteria are implemented : the Hill
1948 one [1] and the Cazacu 2006 one [3].

4.1 HILL 1948 CRITERION

Hill developed a criterion, that can be expressed by the
following relation with the stress deviator [S] :

f({S} − {X}) = [{S −X}T [H]{S −X}]1/2 (6)

[H] =















G+H −H −G 0 0 0
−H F +H −F 0 0 0
−G −F F +G 0 0 0
0 0 0 2N 0 0
0 0 0 0 2M 0
0 0 0 0 0 2L















(7)

Where F, G, H, L, M, N are coefficients, identified by
means of 6 experimental tests (tensile and shear tests).



4.2 CAZACU CRITERION

Cazacu et al. [3] developed a criterion for the hexagonal
closed packed metals. The plastic behavior is no more
symmetric in tension and compression. This criterion is
expressed as :

f(S̃) =
1

Q

(

3
∑

i=1

(|S̃i| − kS̃i)
a

)1/a

(8)

whereS̃i are the principal values of the tensorS̃, which
may not be deviatoric. The parametera is a positive inte-
ger andk a material constant. The yield function is convex
for a ≥ 1 and -1≤ k ≤ 1. These both parameters ex-
press the ratio of tensile versus compressive uniaxial yield
stress.The tensor̃S is obtained by :
















S̃11

S̃22

S̃33

S̃12

S̃23

S̃13

















=

















L11 L12 L13

L12 L22 L23

L13 L23 L33

L44

L55

L66

































S11 −X11

S22 −X22

S33 −X33

S12 −X12

S23 −X23

S13 −X13

















(9)
WhereSij are the stress deviator components andLij are
9 material parameters. A constant parameter Q must be
defined to normalize the yield criterion regarding the rol-
ling direction :

Qa =
3
∑

i=1

(|Wi| − kWi)
a, Wi =

2

3
Li1 −

1

3
Li2 −

1

3
Li3

(10)
Using this criterion implies the identification of 10 pa-
rameters, ifa is set to 2. Numerous experimental tests
have to be realized : 2 compressive tests, 2 tensile tests, 1
equibiaxial tension, 1 equibiaxial compression and 3 pure
shear tests. Cazacu et al. have identified parameters for a
titanium alloy (4A1 − 1/4O2 1%) [3]. The initial yield
surface for this criterion (fig.4) shows the convexity of the
anisotropic criterion. These values for the Cazacu 2006
criterion are used in the following part for the simulation.

FIG. 4: Yield surface for the 4A1 − 1/4O2 (1%) titanium
alloy plotted in the stress principal values basis.

5 ANISOTROPIC ELASTOPLASTIC BE-
HAVIOR IMPLEMENTATION

This constitutive elastoplastic law is implemented into the
FEM software Forger. The stress tensor and the tangent

modulus are computed in the reference basis. In this part,
all the values are expressed in the material basis. The tran-
sition matrices calculated in section 3 are used to switch
between the global and the material bases. The subscripts
’n’ and ’n+1’ indicate the beginning and the end of one
increment, and the subscript ’mat’ means value in the ma-
terial basis.

5.1 STRESS INCREMENT COMPUTATION

At the beginning of the increment, the strain rate tensor
{ǫ̇}n+1 and the previous stress tensor{σ}n are known.
The anisotropy axes are updated with the deformation gra-
dient. In a first trial the strains are considered as elastic and
the stresses updated (elastic predictor) :

{σ̇n+1
elas} = [C]−1 {ǫ̇n+1} (11)

The yield criterionFp (equ.5) is updated. IfFp ≤ 0 , the
behavior is elastic and the updated stress rate is the elastic
one. Otherwise, an elastoplastic calculation must be done.
The elastoplastic behavior is computed by the following
relations :






{ǫ̇mat}
n+1 = [C]−1{σ̇mat}

n+1 + λ̇p ∂f

∂{σmat}n+1

Fp = f(σmat −Xmat) − σ0 = 0
(12)

λ̇p is the plastic multiplier. The stress increment evalua-
tion depends on the chosen plasticity model : Hill 1948 or
Cazacu 2006.

5.1.1 Stress increment for Hill criterion
Implementing the Hill criterion is direct. The increment
stress provides :

{σn+1
mat} =

(

[I] + ∆λ
[C][H]

σ0

)

−1

({σn
mat}+[C]{∆ǫmat})

(13)
where [I] is the unit matrix of size 6. The yield crite-
rion and the isotropic hardening can be easily re-written
to have only one unknown∆λ = λ̇p∆t. ∆t is the time
increment. The same formulation is used for strain incre-
ment{∆ǫmat}. A Newton-Raphson scheme is sufficient
to solve this equation.

5.1.2 Stress increment for Cazacu criterion
Solving the system (12) for the Cazacu 2006 criterion is
more complex than the Hill criterion. First order develop-
ment of equations of system (12) leads to correct the stress
increment∆σ and plastic multiplier∆λ.

d∆λ =
Fp +

∂f

∂σ
[P ]−1({∆ǫ} − [C]∆σ − ∆λ

∂f

∂σ
)

∂f

∂σ
[P ]−1

∂f

∂σ
+

∂σ0

∂∆λ

(14)

d∆σ = [P ]−1({∆ǫ} − [C]∆σ − (∆λ+ d∆λ)
∂f

∂σ
) (15)

[P ] = ([I] + ∆λ[C]
∂2f

∂σ2
)−1[C] (16)



First and second derivatives of the yield criterion must be
calculated at∆σn+1. Successive corrections on∆σ and
∆λ are computed until convergency. To improve the algo-
rithm, a line search procedure is adopted [9].

5.2 ELASTOPLASTIC TANGENT MODULUS

Forger is based on an implicit solver. The tangent modu-

lus
∂∆σ

∂∆ǫ
must be calculated. Differentiation of the yield

criterionFp (equ.5) leads to a differential equation. Sol-
ving it gives an expression of the plastic multiplier∆λ.
Finally combining this last equation and equation (1) of
system (12) provides the linear tangent operator [Bmat] :

[Bmat] = [P ] −
[P ]

∂f

∂σ
⊗
∂f

∂σ
[P ]

∂f

∂σ
[P ]

∂f

∂σ
− (

∂σ0

∂ǭ
+

1

∆t

∂σ0

∂ ˙̄ǫ
)

(17)

To obtain the convergency of the general Newton Raphson
scheme, the tangent modulus must be expressed in the glo-
bal basis. The Relations explicited in section 3 are used.

6 RESULTS

The elastoplastic model presented in this paper has been
validated with the elliptical bulging test [10]. Simulations
with the Hill yield criterion have been performed for dif-
ferent orientations of the rolling direction. The initial ani-
sotropic direction has a high importance in this test. Ac-
cording to this direction, the height of bulging and the
equivalent plastic strains are not the same, but equivalent
stresses are the same. Results for elliptical bulging test
have been compared for the Cazacu 2006 criterion and the
Hill 1948 criterion (fig.5). Use of a Cazacu 2006 criterion
leads to the equivalent plastic strain localisation at the top
of the ellipse.

7 CONCLUSIONS

A constitutive elastoplastic law has been implemented in
Forger. This model is based on an evolving anisotropy, a
kinematic hardening and an isotropic hardening. The ani-
sotropy axes follow the deformation gradient. To remain
objective, plastic strain tensor and stress tensor are com-
puted in a material basis. The Hill criterion is simple to
implement and the identification procedure for the ma-
terial parameters could be done easily. The Cazacu 2006
criterion is more accurate, but its implementation is more
difficult and 10 experimental tests are needed to identify
all parameters. In the near future, our goal is to evaluate
these two criteria on deep drawing simulations. Model-
ling the same material with these plasticity models would
be done to compare the accuracy of numerical results with
experiments.
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FIG. 5: Equivalent plastic strain for a bulging simulation :
a) Cazacu 2006 yield criterion (4A1 − 1/4O2 1%)
b) Hill 1948 yield criterion
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