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ABSTRACT: Severe thin strip cold rolling conditions usually induce heterogeneity of in-bite plastic deformation always

translated to irregular stress field. This stress field may dwell sufficiently compressive in several out-of-bite areas to cause

buckling (flatness defects) which generates stress reorganisation in rolled strip and probably affects the bite zone. Hence,

out-of-bite buckling, in-bite elastic-(visco)plastic deformation and thermo-mechanical roll-stack/strip interaction may be
strongly coupled. However, a completely coupled model providing realistic rolled strip shape specially when flatness

defects occur is not easy to establish. This call for two ways of flatness defect modelling in thin strip rolling: with a

completely coupled approach but using a simple buckling criterion, or using an uncoupled approach by chaining strip

rolling model calculation with shell element models presenting good buckling computing capabilities. Our objective is the

improvement of the flat product rolling – specialized FEM software Lam3/Tec3 [1] using Counhaye simple buckling

criterion [3] and Asymptotic Numerical Method (ANM) for shell element model [9,10] respectively with coupled and

uncouple approaches detailed in the present paper. These two approaches bring computed stress profiles to very good

agreement with experiments and the most important result at this stage is the weak influence of buckling on in-bite stress

and strain fields providing a more rigorous justification of the traditional decoupled methods [2,5-8].
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1 INTRODUCTION

Due to severe loading in cold rolling, roll stack deformation

(flattening, elastic deflection, thermal crown) induces

heterogeneous elongation across strip at bite outgoing. This

heterogeneity generates residual stress and buckling, named

flatness defect in this context. The latter is a major

industrial  concern  in  rolling  as  it  is  one  main  factor  for
quality product.

In addition, buckling implies stress reorganization, because

stresses always saturate in buckled areas. This complete

rearrangement of the stress field in the post-bite strip can be

considered  as  a  change  in  the  boundary  conditions  of  the

plastic deformation in the bite. Hence, in-the-bite and out-

of-bite stress fields may be strongly coupled.

Thus, mechanical problem includes coupling combining

elastic roll stack deformation, strip elastic-(visco) plastic

deformation and out of bite buckling. However, most

authors [2,5-8] neglect bite/post-bite coupling excepting

[3].

2 THIN COLD ROLLED STRIP

BUCKLING PREDICTION

2.1 COUPLED APPROACH

In a previous presentation [4], we introduced in Lam3/Tec3

[1], 3D finite element model adapted for rolling simulation,

the Euler-type simple coupled buckling model criterion [3].

Since compressive stress generally saturates around a

threshold value when buckling occurs in structure, it

consists of an out of bite stress-relaxation algorithm. In

fact, it is supposed that buckling will shorten a material
element by λ wherever compressive stress exceeds σc. This

decreases the strain sent back after each Newton-Raphson

iteration to the constitutive model solver, and therefore the

compressive stresses (and as a consequence, the stresses in

the tensile area, to maintain mechanical equilibrium). This

tends to force iteratively the stress field to respect the

buckling criterion (1).
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E is Young's modulus, k is a parameter representing the

ratio between the material “buckling stiffness” and the

Young modulus, h the strip thickness, and δ the wavelength

(assumed similar to the compressive stress area
dimensions). そI and そII are the そ components in the strip

plane deduced respectively from σI and σII .  These latter

correspond to principal stresses expressed along the first

and the second principal direction I and II which  are

defined by α angle in the laboratory reference frame.

Note that, due to the steady state nature of the model,

opposed to the non-steady state character of the waves,

only the occurrence of waves can be predicted with a

certain degree of certainty, not their severity. Furthermore,

although buckling does not occur at element scale, here it is

treated locally on each element reaching the critical stress

estimated in (1).
However, despite the simplicity and questionable

assumptions of this model, figures 1 and 2 show, for

particular rolling conditions (Table 1 : named “case 1”),

that :

1. in this case (manifested flatness defect), neglecting

the occurrence and effects of buckling results in a

completely wrong stress profile;

2. the impact of buckling on the final stress state is to

bring it much closer to experiments (measured

with tensiometer roll).

3. Furthermore, we note an insignificant dependence
of results on the more or less arbitrarily chosen σc

value. This supports the criterion (1) in spite of its

approximations.

4. we noted that taking account or not of buckling

and its stress relaxation effect doesn’t affect in-

bite zone.

5. manifested flatness defects are identified as shown

in  figure  3,  the  wavy  edge  is  visible, そI >  0  and

angle α ≈ 0° near the edge (I = x); the significant

そII  value at the corner of the bite exit might denote

a tendency to have a superimposed oblique wave

(α ≈ 30°). However, this simple model is unable to
predict neither buckling mode nor post-buckling

strip state.

2.2 UNCOUPLED APPROACH

Lam3/Tec3 coupled with a complete shell element buckling

model seems certainly more relevant. However, it is very

difficult to implement, and the absence of bite/buckling

interaction (cf. [4]) justifies uncoupled ("chained")
technique described as follows :

§ At first, rolling calculation is made using Lam3/Tec3

without buckling (using a horizontal symmetry plane)

providing stress distributions as well as out-of-bite stress

field.

§ This stress field is used as residual stress by a code

based on asymptotic numerical method (ANM) [9,10] and

shell element formulation for buckling plates caused by

residual stresses to supply critical load, buckling mode and

post-buckling state together with the new (and real) stresses

distribution in strip.

Table 1: Simulated rolling operation description (case1).

Friction law Coulomb : 0.033=た
Width 851 mm

Entry thickness 0.355 mm

Looked thickness for 0.225 mm

Upstream imposed

tension

170 MPa

Incoming strip crown 2.54 %

Grinding crown 0,01614 %

Downstream imposed

tension

100 MPa

Rolling velocity 22 m.s-1

Work roll diameter 555 mm

Behaviour law

Young’s modulus E = 210
GPa

Poisson ‘s ratio 0.3u=
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Figure 1: Comparison of stress profiles computed with and
without accounting buckling, and measured in experiments
(far away enough from the bite).
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Figure 2: Work roll/Strip contact pressure profile is not
influenced by buckling: on edges.



2.2.1 Asymptotic numerical method formulation

Considering Hu-Washizu functional, the stationary

condition can be written in the following form
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where D is the elastic stiffness tensor, S is the second Piola

Kirchhoff stress tensor, γu is the compatible Green

Lagrange strain obtained from the displacement field and

which can be decomposed into a linear and a quadratic part

γu = γl (u)  + γnl (u,u). γ% is  the  enhanced part  of  the  strain

independent of the displacement and assumed to be

orthogonal to the stress field. Pe(δu) is the virtual work of

external load and g is a scalar load parameter. The latter

gets critical value gc at bifurcation point when buckling

happens.
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Figure 3: Flatness defect prediction. a : first principal
buckling strain λI, b: second principal buckling strain λII, c :
angle α defining the eigendirections of the buckling strain λ .

The  basic  idea  of  the  ANM  consists  in  searching  the

solution  path  of  the  non-linear  problem  (2)  under  an

asymptotic expansion form with respect to a control

parameter ‘a’. This expansion is developed in the

neighbourhood of a known regular solution (U0, そ0) as

following:
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%  and n is the truncation order of series.

Equation (2) can be written in the following simple form:

( , ) ( ) ( , ) 0R U L U Q U U gFl = + - = (4)

where L(.) is a linear operator, Q(. , .) a quadratic one, F the

external load vector and R the  residual  vector.  If  we

substitute (3) in (4) and equating coefficients of the same

power of a, the non-linear problem (4) will be transformed
into a sequence of linear problems as follows:
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( )0
.

t
L  is the tangent operator which depends only on the

initial solution.

2.2.2 Applications and results
Several buckling academic applications and strip rolling

cases had been analysed using ANM shell element model.

Therefore, critical load (gc) analytical evolutions with

length/width ratio for free and simply supported edge cases

where pure compression is considered (cf. [11]) are

reproduced (cf. figure 4). Besides, for “case 1” (presented

on table 1) out of bite stress fields become closer to

experiments after buckling as mentioned in figure 5.

Furthermore, figure 6 illustrates the rolled strip post-

buckling state presenting wavy edges and longitudinal

stationary waves near the bite exit. Moreover, we deduce
correlation between the presented approaches in spite of

their large differences.

(a)

(b)

(c)
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Figure 4: Critical load (gc) evolution with length/width ratio
for pure longitudinal compressive stress (-1 MPa) where
simply supported and free edges are considered.
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computed with Lam3/Tec3 standard version and the
uncoupled approach (Lam3/Tec3-MAN), and measured in
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Figure 6: Flatness defect of rolled strip for case presented
on table 1: wavy edges and longitudinal stationary waves
near to the bite exit.

3 CONCLUSIONS

The flat product rolling – specialized FEM software
Lam3/Tec3 has been complemented with a simple buckling

model inspired by [3]. The computed stress profiles are

therefore in very good agreement with experiments and the

most important result at this stage is the weak influence of

buckling  on  in-bite  stress  and  strain  fields.  This  was  not

expected, as out-of-bite relaxed stresses may be viewed as

boundary conditions for the bite; but it provides a more

rigorous justification of the traditional decoupled methods

of the literature using shell elements looked more adapted

models for buckling. Here, decoupled method is adopted

using Asymptotic Numerical Method (ANM) for shell

element model which gives excellent buckling computing

capability with more realistic results. Thus it looks much

more precise and predictive buckling model, in particular

allowing modelling of post-buckling.
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