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INTRODUCTION

Due to severe loading in cold rolling, roll stack deformation (flattening, elastic deflection, thermal crown) induces heterogeneous elongation across strip at bite outgoing. This heterogeneity generates residual stress and buckling, named flatness defect in this context. The latter is a major industrial concern in rolling as it is one main factor for quality product. In addition, buckling implies stress reorganization, because stresses always saturate in buckled areas. This complete rearrangement of the stress field in the post-bite strip can be considered as a change in the boundary conditions of the plastic deformation in the bite. Hence, in-the-bite and outof-bite stress fields may be strongly coupled. Thus, mechanical problem includes coupling combining elastic roll stack deformation, strip elastic-(visco) plastic deformation and out of bite buckling. However, most authors [START_REF] Marchand | Modélisation de la planéité en sortie de laminage des produits plats[END_REF][START_REF] Tosawa | Analysis of three dimensional deformation in strip rolling taken deformation of rolls into consideration[END_REF][START_REF] Bush | Stress levels for elastic buckling of rolled strip and plate[END_REF][START_REF] Rammerstorfer | Buckling of free infinite strips under residual stress and global tension[END_REF][START_REF] Fisher | Buckling phenomena related to rolling and levelling of sheet metal[END_REF] neglect bite/post-bite coupling excepting [START_REF] Counhaye | Modélisation et contrôle industriel de la géométrie des aciers laminés à froid (modelling and industrial control of the geometry of cold rolled steels[END_REF].

THIN COLD ROLLED STRIP BUCKLING PREDICTION 2.1 COUPLED APPROACH

In a previous presentation [START_REF] Abdelkhalek | Manifested flatness predictions in thin strip cold rolling[END_REF], we introduced in Lam3/Tec3 [START_REF] Hacquin | A steady state thermo-elastoviscoplastic finite element model of rolling whith coupled thermo-elastic roll deformation[END_REF], 3D finite element model adapted for rolling simulation, the Euler-type simple coupled buckling model criterion [START_REF] Counhaye | Modélisation et contrôle industriel de la géométrie des aciers laminés à froid (modelling and industrial control of the geometry of cold rolled steels[END_REF]. Since compressive stress generally saturates around a threshold value when buckling occurs in structure, it consists of an out of bite stress-relaxation algorithm. In fact, it is supposed that buckling will shorten a material element by λ wherever compressive stress exceeds σ c . This decreases the strain sent back after each Newton-Raphson iteration to the constitutive model solver, and therefore the compressive stresses (and as a consequence, the stresses in the tensile area, to maintain mechanical equilibrium). This tends to force iteratively the stress field to respect the buckling criterion [START_REF] Hacquin | A steady state thermo-elastoviscoplastic finite element model of rolling whith coupled thermo-elastic roll deformation[END_REF].
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E is Young's modulus, k is a parameter representing the ratio between the material "buckling stiffness" and the Young modulus, h the strip thickness, and δ the wavelength (assumed similar to the compressive stress area dimensions). I and II are the components in the strip plane deduced respectively from σ I and σ II . These latter correspond to principal stresses expressed along the first and the second principal direction I and II w h i c h a r e defined by α angle in the laboratory reference frame. Note that, due to the steady state nature of the model, opposed to the non-steady state character of the waves, only the occurrence of waves can be predicted with a certain degree of certainty, not their severity. Furthermore, although buckling does not occur at element scale, here it is treated locally on each element reaching the critical stress estimated in [START_REF] Hacquin | A steady state thermo-elastoviscoplastic finite element model of rolling whith coupled thermo-elastic roll deformation[END_REF]. However, despite the simplicity and questionable assumptions of this model, figures 1 and 2 show, for particular rolling conditions (Table 1 : named "case 1"), that :

1. in this case (manifested flatness defect), neglecting the occurrence and effects of buckling results in a completely wrong stress profile; 2. the impact of buckling on the final stress state is to bring it much closer to experiments (measured with tensiometer roll). 3. Furthermore, we note an insignificant dependence of results on the more or less arbitrarily chosen σ c value. This supports the criterion (1) in spite of its approximations. 4. we noted that taking account or not of buckling and its stress relaxation effect doesn't affect inbite zone. 5. manifested flatness defects are identified as shown in figure 3, the wavy edge is visible, I > 0 and angle α ≈ 0° near the edge (I = x); the significant II value at the corner of the bite exit might denote a tendency to have a superimposed oblique wave (α ≈ 30°). However, this simple model is unable to predict neither buckling mode nor post-buckling strip state.

UNCOUPLED APPROACH

Lam3/Tec3 coupled with a complete shell element buckling model seems certainly more relevant. However, it is very difficult to implement, and the absence of bite/buckling interaction (cf. [START_REF] Abdelkhalek | Manifested flatness predictions in thin strip cold rolling[END_REF]) justifies uncoupled ("chained") technique described as follows :

§ At first, rolling calculation is made using Lam3/Tec3 without buckling (using a horizontal symmetry plane) providing stress distributions as well as out-of-bite stress field. § This stress field is used as residual stress by a code based on asymptotic numerical method (ANM) [START_REF] Zahrouni | Computing finite rotations of shells by an asymptoticnumerical method[END_REF][START_REF] Boutyour | Bifurcation Points and Bifurcated Branches by an Asymptotic Numerical Method and Padé Approximants[END_REF] and shell element formulation for buckling plates caused by residual stresses to supply critical load, buckling mode and post-buckling state together with the new (and real) stresses distribution in strip. 

Asymptotic numerical method formulation

Considering Hu-Washizu functional, the stationary condition can be written in the following form 
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where D is the elastic stiffness tensor, S is the second Piola Kirchhoff stress tensor, γ u is the compatible Green Lagrange strain obtained from the displacement field and which can be decomposed into a linear and a quadratic part γ u = γ l (u) + γ nl (u,u). γ % is the enhanced part of the strain independent of the displacement and assumed to be orthogonal to the stress field. P e (δu) is the virtual work of external load and g is a scalar load parameter. The latter gets critical value g c at bifurcation point when buckling happens. 
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asymptotic expansion form with respect to a control parameter 'a'. This expansion is developed in the neighbourhood of a known regular solution (U 0 , 0 ) as following:
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Where u U S g aeö ç÷ = ç÷ ç÷ èø % and n is the truncation order of series. Equation ( 2) can be written in the following simple form:
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where L(.) is a linear operator, Q(. , .) a quadratic one, F the external load vector and R t h e r e s i d u a l v e c t o r . I f w e substitute (3) in ( 4) and equating coefficients of the same power of a, the non-linear problem (4) will be transformed into a sequence of linear problems as follows: order 1:
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order p (1<p<n) :
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is the tangent operator which depends only on the initial solution.

Applications and results

Several buckling academic applications and strip rolling cases had been analysed using ANM shell element model. Therefore, critical load (g c ) analytical evolutions with length/width ratio for free and simply supported edge cases where pure compression is considered (cf. [START_REF] T I M O S H E N K O | T h e o r y o f e l a s t i c stability[END_REF]) are reproduced (cf. figure 4). Besides, for "case 1" (presented on table 1) out of bite stress fields become closer to experiments after buckling as mentioned in figure 5. Furthermore, figure 6 illustrates the rolled strip postbuckling state presenting wavy edges and longitudinal stationary waves near the bite exit. Moreover, we deduce correlation between the presented approaches in spite of their large differences. 

CONCLUSIONS

The flat product rolling -specialized FEM software Lam3/Tec3 has been complemented with a simple buckling model inspired by [START_REF] Counhaye | Modélisation et contrôle industriel de la géométrie des aciers laminés à froid (modelling and industrial control of the geometry of cold rolled steels[END_REF]. The computed stress profiles are therefore in very good agreement with experiments and the most important result at this stage is the weak influence of buckling on in-bite stress and strain fields. This was not expected, as out-of-bite relaxed stresses may be viewed as boundary conditions for the bite; but it provides a more rigorous justification of the traditional decoupled methods of the literature using shell elements looked more adapted models for buckling. Here, decoupled method is adopted using Asymptotic Numerical Method (ANM) for shell element model which gives excellent buckling computing capability with more realistic results. Thus it looks much more precise and predictive buckling model, in particular allowing modelling of post-buckling.
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 12 Figure 1: Comparison of stress profiles computed with and without accounting buckling, and measured in experiments (far away enough from the bite).
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 3 Flatness defect prediction. a : first principal buckling strain λI, b: second principal buckling strain λII, c : angle α defining the eigendirections of the buckling strain λ .
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 45 Figure 4: Critical load (gc) evolution with length/width ratio for pure longitudinal compressive stress (-1 MPa) where simply supported and free edges are considered.

Figure 6 :

 6 Figure 6: Flatness defect of rolled strip for case presented on table 1: wavy edges and longitudinal stationary waves near to the bite exit.

Table 1 :

 1 Simulated rolling operation description (case1).

	Friction law	Coulomb :	=	0.033
	Width	851 mm		
	Entry thickness	0.355 mm		
	Looked thickness for	0.225 mm		
	Upstream imposed	170 MPa		
	tension			
	Incoming strip crown 2.54 %		
	Grinding crown	0,01614 %		
	Downstream imposed	100 MPa		
	tension			
	Rolling velocity	22 m.s-1		
	Work roll diameter	555 mm		
		Young's modulus E = 210
		GPa		
	Behaviour law	Poisson 's ratio (	u = )	0.3
		(			)
		[ ]		
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