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META-MODEL ASSISTED MULTI-OBJECTIVE OPTIMIZATION
FOR NON-STEADY 3D METAL FORMING PROCESSES

M.Ejday*, L.Fourment,

Mines Paris Tech, CEMEF-Centre for Material Forming, CNRS UMR 7635, BP 207, 1 rue
Claude Daunesse, 06904 Sophia Antipolis Cedex, France

ABSTRACT: This paper studies efficient techniques to find the optimal set of solutions (Pareto front) for multi-
objective optimization problems in the context of time expensive evaluation of functions. These techniques make use of
a meta-model based on the Meshless Finite Difference Method (MFDM) coupled with evolutionary Multi-Objective
algorithm (here: NSGA-II) in order to minimize the time consuming evaluations and to achieve a faster convergence to
the Pareto front. The different studied methods differ in the choice of master points, the evolution of the meta-model,
and the updating of elitism. They are studied and compared on several analytical functions, with only 100 exact
evaluations of the objective function. The obtained results show the efficiency of these techniques.
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1 INTRODUCTION

Multi-objective Evolutionary Algorithms (MOEA) are
the best techniques for determining the Pareto front of
Multi-Objective Optimisation Problems (MOOP). They
are aiming at detecting a good diversity of points on the
Pareto set for difficult problems. However they require a
large number of function evaluations, which sometimes
makes these strategies impracticable for problems with
time consuming evaluations. The number of expensive
function evaluations can be significantly reduced by
partly replacing precise evaluations by fast approximate
models of the objective functions. This is done in the
proposed Meta-model assisted MOEA (M-MOEA) by
introducing three different manners to update the meta-
model inside the MOEA, before applying it to analytical
functions for evaluating their efficiency.

2 MULTI-OBJECTIVE OPTIMISATION
PROBLEM (MOOP)

A Multi-Objective Optimization Problem (1) implies a
number of M objective functions ¢ (X ) which are to be

either minimized or maximized with respect to X, a

where 7 is the number of parameters. The MOOP usually
has a number of constraints which any feasible solution

must satisfy, so constituting the decision space S .

Minimize/Maximize @ (X) ; m=1..,M (1)

m

The presence of multiple conflicting objectives gives a
set of trade-off optimal solutions that can found by the

concept of domination [1-4]: a solution X’ is said to
dominate another solution X°, if the following two
conditions are true:

1. solution X’ is not worse than X for all M objectives.

2. solution X" is strictly better than X° for at least one
objective.

The set of non-dominated solutions in § is known as
Pareto set and its graphic representation as the Pareto
optimal front. Two goals are to be achieved in MOOP:
1) finding a set of solutions close to the Pareto front, 2)
selecting a set that is diverse enough to represent the
spread of the front.

3 ELITIST NON-DOMINATED
SORTING GENETIC ALGORITHM
(NSGA-II)

NSGA-II is an elitist Non-dominated Sorting Genetic
Algorithm developed by Deb [1,2], which is more
precisely described in [3,4], and which is one of the most
efficient algorithm for finding Pareto optimal sets with
good diversity of solutions. It has the following three
characteristics:

1. ituses an elitist principle,

2. it emphasizes non dominated solutions,

3. ituses an explicit diversity of solutions.
The NSGA-II starts with a randomly generated initial
parent population P, of N individuals. At the generation
t, the population Q, of the N children is first created from
the P, parent population using the usual genetic operators
(selection, crossover, mutation). Thereafter, the two
populations are combined together to form the R, set of
size¢ 2N. A non dominated sorting is carried out to
classify its individuals by several fronts of various ranks.
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These sets are obtained iteratively. For any unclassified
individual, a pair comparison is made with all previously
classified ones through the concept of domination. The
individuals that are not dominated by any other one
compose the first rank of the Pareto front. By
temporarily discarding these individuals, the algorithm
can be repeated again to find the next non dominated
front. Then, the new population P,.; is constituted by
individuals of the different non dominated fronts of
increasing order. The affectation starts with the best non
dominated front (front of rank one), followed by the
second rank, and so on. As the total size of the new
parent population P,; is N., not all fronts can be
included in it, but only the ones having the smaller ranks.
In the last possible front, there are usually more solutions
than the remaining places in the new population.
Therefore, the individuals of this last front are sorted in
descending order of the crowding distance [1], and those
with larger distances are accepted. With this method, the
selected solutions are well scattered in the last allowed
front.

The main disadvantage of Evolutionary Algorithms are
their computational cost in terms of number of function
evaluations, which is generally in the magnitude of
several thousands. To overcome this shortcoming, in the
frame of applications to metal forming problems
requiring several hours of computational time on a
parallel machine for a single function evaluation, a meta-
model is developed.

4 META-MODEL

The selected meta-model is based on the Meshless Finite
Difference Method (MFDM) [5,6]. The approximated
value (Npl- of ¢(X i) is calculated for any point I located
at X; in the design space, from the n,, j values,
9; :<p(X j), that are known at the so-called master
points j, by writing the first order Taylor series
expansions at i for any ;j point (Npi and its gradient D(Z;
being unknown (see equation (2)). The solution
((pl, D(pl) minimizes the cumulated error E(@,D Eg) (see

equation (3)) for all the n,, considered master points,

which results into the resolution of a linear system (4).

0 =Ly, Q=@+ D?H(Xj-Xi)“O[HXj'XiHZJ @

z(u+ D@X -X; (pj)z

J; -l

3

Jj=Ln,,

A(D%j -o{).-,,, | @)

The interpolation error ALNpl of i at point i can be
estimated by:

5g = |2 z% E"Ni:DN(Q) (5)

j~Xi

j_lynm

S META-MODEL ASSISTED NSGA-II

In this section, we present three successive approaches to
introduce the MFDM meta-model into the NSGA-II.

5.1 CONSTANT M-MOEA: M-NSGA-II

In the My-NSGA-II, the NSGA-II first generates the
initial population Py of size N(=100). All these
individuals, that are randomly and hopefully uniformly
distributed in the designed space, are regarded as the
A master points ()\ :100) of the M, constant meta-
model. The P, population is then exactly evaluated, but
in the next generations, the offspring population Q, is

only approximately evaluated by using the meta-model
M, (equations (2-4) with n, =1 ).

5.2 UPDATED M-MOEA: M,-NSGA-II

In the M;-NSGA-II approach, the initial meta-model M,
is constructed by using only the A<A,,, =100 first
individuals of the population F,. Then, M, is used to
approximate the objective function values for the
remaining individuals of Fy. At each new generation ¢,
the M, meta-model is iteratively enriched into M, by
adding 0 new master points, which are selected as the
0 first individuals of the Q, offspring population. 0 is

calculated by equation (6), as a function of the
prescribed number of generations, N, .

8: max ( 6)
The new meta-model M,,, is used to estimate the
objective functions of the O, population as well as to

update the estimations of the P, parent population, which
was carried out with the M, meta-model.

5.3 IMPROVED M-MOEA: M -NSGA-II

The improved M-MOEA, M.-NSGA-II, only differs
from M;-NSGA-II by the way of selecting the 0 new
master points of Q,. The values of the objective

functions of any @, individual are first approximated by

(N(p—AFp), which represents the best expected value of

any individual taking into account the approximation
error, using the M, meta-model. Then, the ¢

individuals are classified according to their rank and



crowding distance. The O first are selected to enhance
M, into M,,,.

6 ANALYTICAL PROBLEMS

In this section, the results obtained by M-NSGA-II and
M;-NSGA-II for a wide range of analytical problems are
presented and compared to those provided by the NSGA-
II, where all functions are computed exactly. The
algorithm uses a population of N=100, and a number of
generation N, equals to 50.

6.1 TEST FUNCTION: Min-Ex

For the M-MOEA, we set A,,,,=100, A=40, N,=40, 6=2.
The Min-Ex function proposed by Deb [1] is given by:

Minimize

Min — Ex : { Minimize
x (7)

subject to

M;-NSGA-II
Mo-NSGA-II
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Figure 1: Comparison of the Pareto front of Min-Ex
obtained by Mo-NSGA-II, M;-NSGA-II and NSGA-II

Figure 1 and 2 show that with only 100 function
evaluations, = My-NSGA-II  provides a  good
approximation of the Pareto front that is quite correctly
obtained by NSGA-II with 5,000 function evaluations.
However, there are some discrepancies in two zones,
which are due to the fact that the constant meta-model is
not accurate enough in the vicinity of the Pareto front.
This shortcoming is corrected by the M;-NSGA-II
approach that allows constantly improving the meta-
model. As the algorithm converges toward the Pareto
front, the newly added master points are also closer to
this front and the approximation is consequently
improved.

6.2 TEST FUNCTION: SCH2

SCH2 (see equation (8)) is a test problems proposed by
Schaffer that exhibit a discontinuous Pareto front. For
the M-MOEA, we set A,,,=100, /=10, N,=45, 8=2.

Minimize f; (%), f,(x)
-5<x<10
-X ifoI
_ x=2 if I<x<3 ) =( _5)2 (8)
Si(x) 4y if 3<x <4 Sr)=(x
x—4 if x>4
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Figure 2: Comparison of the Pareto fronts of SCH2
obtained by Mo-NSGA-II, M;-NSGA-II and NSGA-II

Figure 2 shows that both M-MOEA allow accurately
describing the discontinuous Pareto front with a limited
number of function evaluations, although M;-NSGA-II is
slightly more accurate than My-NSGA-II.

6.3 TEST FUNCTION: FON

The FON functions (see equations (9)) proposed by
Fonseca and Fleming provide a multi-dimensional
problem with » variables (here n=2). The NSGA-II
algorithm requires 250 generations to find an appropriate
Pareto front. For the M-MOEA, we set A,,,,=100, A=20,
Ng=20, 64 and keep the total number of function
evaluations to 100.
J
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Figure 3: Comparison of the Pareto fronts of FON
obtained by Mo-NSGA-II, M1-NSGA-II and NSGA-II

The obtained results (see Figure 3) are quite similar to
those of section 6.1, even though the FON functions are
more complex and the standard NSGA-II encounters
more difficulties to find the Pareto front.

7 METAL FORMING PROBLEM

This first metal forming application regards the shape
optimization of a cylindrical billet in order to forge a
connecting rod. The MOOP (see equation 10) consists in
minimizing the preform diameter, x, while maximizing
the filling of the dies at the end of forging (see Figure 4),
in order to obtain the proper component final shape.

Figure 4: Forging of a connecting rod with the Forge3®
software: isovalues of the distance between the
workpiece and the dies (blue =2 proper filling)

(10)

f(x) cminimize filling & minimize volume
0.8 <x<1.05

1,194 4
L meta-model
1,0752 ™ of volume /‘,,'
o 0,9564 1 d
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2
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( filling t20
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Figure 5: Meta-models of the “filling” and “volume”
functions versus the cylinder diameter x.

By using weights and combining the two objective
functions, the problem is first regarded like a single
objective optimization problem. A meta-model assisted
evolutionary algorithm makes it possible to obtain an
interesting solution (proper filling with reduced weight
of the initial billet) within only 20 actual forging
simulations. These results are regarded like master points
to build meta-models of the objective functions
(Figure 5).

In a second step, the meta-models of Figure 5 are used
within the Mp-NSGA-II algorithm to compute the Pareto
front of the MOOP (see Figure 6), which so provides a

wider range of possible solutions according to the
requirements on the filling accuracy.
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Figure 6: Pareto front of the metal forming problem.

8 CONCLUSION

This study shows that M-MOEA are able to properly
approximate Pareto fronts for a wide range of analytical
problems with convex (Min-Ex), concave (FON) and
discontinuous (SCH2) fronts within a limited number of
function evaluations (100). It shows that it is very
important to update the meta-model during the algorithm
iterations to properly approximate the objective
functions in the vicinity of the Pareto front.
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