

MODELING BIOMASS FOR ENERGY USES: RESULTS FOR FRANCE

<u>Gilles Guerassimoff</u> Edi Assoumou Nadia Maïzi

IAEE's Rio 2010 International Conference 6-9/06/2010 Rio de Janeiro– BRAZIL Centre for Applied Mathematics - Mines ParisTech

with IFP, FCBA, INRA in the Valerbio Project Funded by TUCK Foundation

2

Overview of the presentation

Context

Objectives

Model and assumptions

Scenarios

Resources analysis

Technologies description

Results

Conclusion and perspective

Context

31		33 th IAEE's Rio 2010 International	Conference- 6-9/06/2010 Rio - BRAZI	L Centre for Applied M	athematics — Mines ParisTech
	Context	Objectives	Model and assumptions	Results	Conclusions and perspective

- Fossil fuel scarcity and environmental concerns are good drivers for renewable alternatives studies
 - How to assume the continuity of liquid fuel?
 - Are biofuels an acceptable and sustainable solution?
 - Which biomass can be use?
 - Which landfield is available without competition with food?
 - Which rate of incorporation as a substitution?
- To answer these questions prospective studies are helpful to policy makers

Objectives

4/31	3:	3 th IAEE's Rio 2010 Internation	nal Conference- 6-9/06/2010 Rio - BRAZIL	Centre for Applied M	athematics — Mines ParisTech
	Context	Objectives	Model and assumptions	Results	Conclusions and perspective

- The VALERBIO project dealt with assessing the potential of biomass for energy use in France
 - Detailed representation of biomass sources (agriculture and wood products)
 - Regional representation of the biomass sources
 - Economical evolutions of biomass sources
 - Rich technological database (1st and 2nd generation)

Objectives

6 Model and assumptions

Model description Resources analysis Scenarios

Model description

7/31		33 th IAEE's Rio 2010 International	Conference- 6-9/06/2010 Rio - BRAZ	IL Centre for Applied M	athematics — Mines ParisTech	
	Context	Objectives	Model and assumptions	Results	Conclusions and perspective	

- French MARKAL/TIMES Bottom up model is used
 - Time horizon is 2005-2050
 - Demand driven (fuels) and given energy prices
 - All sectors included in the demand forecast
- We only deals with available landfield for energy without food competition
 - Base on marginal and useless landfields
- Detailed technology database including the most promising 2nd generation biofuel production (including co products)

Reference Energy System

Detailed spatiality for landfield

9/31 33th IAEE's Rio 2010 International Conference- 6-9/06/2010 Rio - BRAZIL --- Centre for Applied Mathematics - Mines ParisTech
Context Objectives Model and assumptions Results Conclusions and perspective
Pertinent regions for agricultural and wood resources
Each region has a

- Each region has a detailed economic description (cost of production and transport by resource)
- Realistic evolutions and bounds on region's potentials

Studied resources

10/31	33 th IAEE's	Rio 2010 Internatio	nal Conference– 6-9	/06/2010 Rio – BR	AZIL C	entre for App	olied Mathematic	cs — Mines ParisTech
Co	ntext (Objectives	Model ar	nd assumptions		Results	Ç	Conclusions and perspective
	Starch crops						Sugar crops	
	Maize grain	Maize straw	Wheat grain	Wheat straw	Trit gı	icale rain	Triticale straw	e Sugar beet
Generation] st	2 nd] st	2 nd		1 st	2 nd	1 st
Bio-diesel								
Bio-ethanol	Х		Х			Х		Х
FT-diesel		Х		Х			Х	
Bio-HVO								
		Oil crops		Woody cre	ops	Grassy	y crops	Forestry products

				moody clops	Oldssy clops	rolesily products
	Rapeseed	Sunflower	Soya bean			
Generation	1 st , 2 nd	1 st , 2 nd	1 st , 2 nd	2 nd	2 nd	2 nd
Bio-diesel	Х	Х	Х			
Bio-ethanol				Х	Х	Х
FT-diesel				Х	Х	Х
Bio-HVO	Х	Х	Х			

Studied resources

/21		Contro for Analised Mathematics	line Demister
/31	Context Objectives Model and assumptions	Results Conc	lusions and perspective
	Forestry products are separated into:		
	Three types	X	
	Big wood (stem)	. L.WEIN	
	Medium wood (top stem & large branches)		
	Small wood (crown & small branches)	NYY	
	Four accessibility classes		Top and small branches
	Easy		Branches Top stem
	Moderately difficult		Stem
	Difficult	· .	
	Very difficult		
		ECB	

Scenarios

12/31	33 th IAEE's Rio 2010 International Conference— 6-9/06/2010 Rio — BRAZIL Centre for Applied Mathematics — Mines ParisTech							
	Context	Objectives	Model and assumptions	Results	Conclusions and perspective			

- 3 levels to describe about 50 scenarios
 - Resources: combination of agricultural products, wood and Short Rotation Coppice (SRC).
 - Demands: several level of bio-energy demands
 - Technologies: development's limitations for specific technologies (processes for ethanol production, BtL)

Commodities

- **Fuels:** direct use of biomass (heat, cogeneration)
- Liquid fuels: direct use of biofuel
- Electricity: use of electricity produced with biomass (by cogeneration or co-product)

Potential scenarios

13/31	3	3 th IAEE's Rio 2010 Internation	al Conference– 6-9/06/2010 Rio – BRAZ	IL Centre for Applied N	Nathematics — Mines ParisTech
	Context	Objectives	Model and assumptions	Results	Conclusions and perspective
	3 leve	el scenarios			

- P1: BAU (Business As Usual)
- P2: Dynamic wood (wood is mostly use for non energy applications)
- P3: All for energy (biomass mostly use for energy)

□ For each, 2 kinds of prices for biomass (high and low)

Agricultural products potential	Wood potential	SRC potential	Global potential	
S1A -PB (PB for Moderate price)	S1-F		BAU	P1
S1A – PH (PH for High price)	S1-F		BAU	P1b
S2A –PH	S2-F	S2-SRC	Dynamic wood	P2
S1A –PB	S2-F	S2-SRC	Dynamic wood b	P2b
S2A -PH	S3-F	S1-SRC	All for energy	P3b
S2A -PH	S3-F	S2-SRC	All for energy	Р3

Demand scenarios

products: prepared in accordance with Public Policies

D3: 40 Mteo + biojet development

Processes for biofuels production

15/31	33 th IAEE's Rio 2010 International Conference— 6-9/06/2010 Rio — BRAZIL Centre for Applied Mathematics — Mines ParisTech					
	Context	Objectives	Model and assumptions	Results	Conclusions and perspective	

- Economical values for all of the processes
- Valorization of the production of heat and power
- Valorization of the Coproducts

	-
Process	Description
BTL wood	FT (Fischer-Tropsch) with wood
BTL straw	FT- with straw
G2 Ethanol straw	2 nd generation Ethanol – wood
G2 Ethanol wood	2 nd generation Ethanol – straw
Sugar beet Ethanol	1 st generation Ethanol- sugar
Cereal Ethanol	1 st generation Ethanol – cereal
Import Ethanol	Ethanol from importation

16 Results

Mix of technologies

Biomass uses

Agricultural products

Forestry products

Technologies mix

Technologies mix

Technologies mix

Wood resources

Wood resources

Wood resources

Straw valorization

Straw valorization

Straw valorization

Agricultural resources

Agricultural resources

Agricultural resources

29 Conclusion & perspective

Conclusions & perspectives

30/31		33 th IAEE's Rio 2010 Internation	al Conference- 6-9/06/2010 Rio - BRAZIL	Centre for Applied Ma	thematics — Mines ParisTech
	Context	Objectives	Model and assumptions	Results	Conclusions and perspective

- Possible paths for the mix of technologies for given scenarios
- □ First objective at 20 Mtoe can be reached
- □ The scenarios at 40 Mtoe are too ambitious with our hypotheses
 - Lack of Technologies availabilities
 - Lack of bio resources
- The model has shown the possibilities of arbitration for imports of wood and ethanol
- □ The strong role of BtL and straw have been revealed
- Detailed potentials for biomass with their evolution for each region
 - Permit to assess the future implantation of conversion unit

THANK YOU FOR YOUR ATTENTION

IAEE's Rio 2010 International Conference 6-9/06/2010 Rio de Janeiro– BRAZIL Centre for Applied Mathematics - Mines ParisTech In collaboration with IFP, FCBA, INRA in the Valerbio Project