

ParisTech's Chair Modeling for sustainable development

Long-term planning tools and reliability needs: Focusing on the Reunion Island

Mathilde Drouineau¹ Nadia Maïzi¹ Edi Assoumou¹ Vincent Mazauric^{1,2}

¹Mines Paristech, Center for Applied Mathematics (France)

²Schneider Electric, Corporate Research Division (France)

33th IAEE International Conference (Rio de Janeiro, June 2010)

Power sectors: a period of changes

O Numerous challenges:

- Constraints on carbon emission
- Depletion of fossil fuels
- Population densification
- Forecast huge investments in power sectors
- Liberalization of electricity markets
- O The need to improve energy efficiency:
 - Electricity efficiency is severly disadvantaged by the efficiency of the Carnot cycles
- Solution Fossil fuels = 66% of the world net electricity production

In this context, renewable and distributed energy sources are attractive alternatives for power generation.

Spread of renewable and distributed energy sources

Benefits

The overall efficiency improves:

- Renewable energy sources decrease electrical losses at production level
- Distributed generation decrease electrical losses at transmission and distribution levels

2 High shares of renewable and distributed energy sources are expected:

- In centralized scheme, e.g. Desertec concept
- In distributed architecture with smartgrids concept

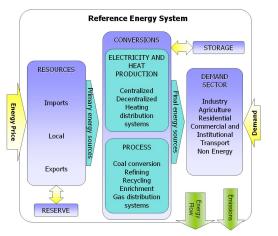
Spread of renewable and distributed energy sources

Challenges

Major technological issues

- Intermittency
- **Reliability of electricity supply**: the capability of the power system to withstand sudden disturbances

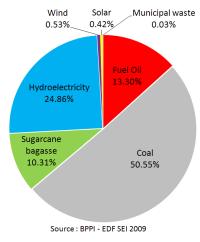
2 Design of energy policies


- To promote renewable and distributed sources
- Incentives' system

Why focusing on the Reunion Island ?

- Blessed with high renewable energy potentials
- Small, weakly-meshed and isolated power system
- Binding target in 2030: 100% renewable sources in power generation

Long-term planning tools: *the MARKAL/TIMES models*

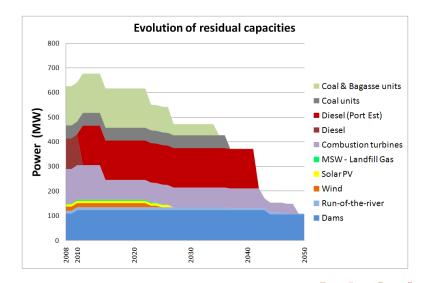

Inputs:

- Exogeneous demand
- Available technologies
- Domestic resources
- Energy prices

Outputs:

- Optimal technologies
- Optimal timing of investments
- Global cost
- Emissions
- Technological models driven by energy demand
- Minimization of the global discounted cost of the energy system

The electricity sector in 2008



Electricity production: 2 546 GWh

Installed capacities Thermal units (76%): 476 MW Fuels: coal, fuel oil, sugarcane bagasse • Hydroelectricity (20%): Dams: 109,4 MW Run-of-the-river: 11,6 MW • Others (4%): Wind: 16.8 MW Solar PV: 10 MW Municipal Waste: 2 MW

Image: A matrix

Existing power plants

General hypotheses

	Unit	2000	2008	2015	2020	2025	2030
Energy Prices ¹ :							
Steam Coal	\$2008/t	41.22	120.59	91.05	104.16	107.12	109.4
Crude Oil	\$2008/bbl	34.3	97.19	86.67	100.00	107.50	115.00
Heavy fuel oil	€2008/t	-	196	174	201	216	231
Distillate fuel oil	€2008/hl	-	47	42	48	51	55
Electricity:							
Growth rate	%		3.4	2.6	2.4	1.5	1.5
Consumption	GWh		2 546	3 110	3 500	3 805	4100
Power	MW		408	520	595	670	720

Sources : International Energy Agency, Electricité de France

Drouineau et al. (Mines Paristech)

Image: A matrix

Renewable energy potentials

Energy sources	Current levels	Potentials	
Biomass	260 GWh	400 GWh	
Hydropower	121 MW	177 MW until 2012	
riyuropower	(553 GWh)	268 MW afterwards	
Wind	16,8 MW	50 MW	
Solar PV	10 MW	160 MW	
Ocean Thermal		10 MW in 2020	
Energy Conversion	_	100 MW in 2030	
Wave Energy	_	30 MW (by 2014)	
Geothermy	_	30 MW	
Starage Canadition		1 MW in 2009	
Storage Capacities	_	10 MW	

Drouineau et al. (Mines Paristech)

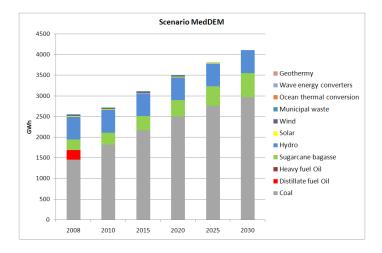
∃ >

A B > A
 B > A
 B
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
C

æ

Scenarios specification

- Potentials for renewable energy sources are set at their maximum values.
- Scenarios are built around 3 assumptions

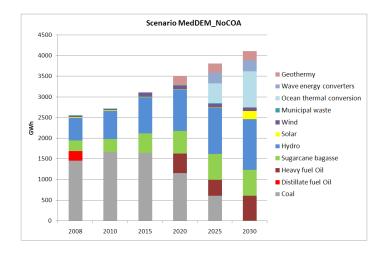

Fossil fuel imports{No limit
Limit on coal
Limit on all fossil fuelsDemand{Standard
LowSugarcane bagasse
potential{Standard
High

Results: calibration for the year of reference (2008)

Energy sources	Model (%)	EDF (%)
Coal	56.90	50.55
Fuel Oils (Distillate and Heavy)	9.06	13.30
Sugarcane bagasse	10.21	10.31
Hydroelectricity	21.71	24.86
Wind energy	1.19	0.53
Solar energy	0.41	0.42
Municipal waste	0.52	0.03
-		
Production	2 547 GWh	2 546 GWh

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Business as Usual


{ Imports: No limit / <u>Demand:</u> Standard / <u>Bagasse:</u> Standard }

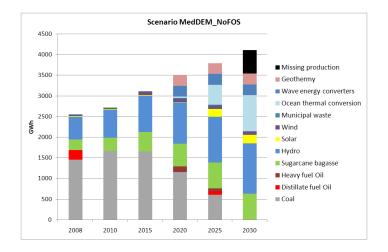
э

13 / 18

< ロ > < 同 > < 回 > < 回 >

Limits on coal imports

{Imports: Limit on coal / <u>Demand:</u> Standard / <u>Bagasse:</u> Standard }

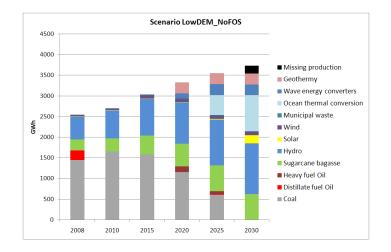

Drouineau et al. (Mines Paristech)

Rio de Janeiro 2010

< ロ > < 同 > < 回 > < 回 >

Conclusion

Limits on fossil fuel imports

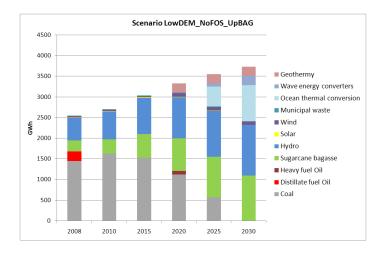

{Imports: Limit on fossil fuels / <u>Demand:</u> Standard / Bagasse: Standard }

Drouineau et al. (Mines Paristech)

Rio de Janeiro 2010

Image: Image:

Lower demand


Imports: Limit on fossil fuels / <u>Demand:</u> Low / Bagasse: Standard

Drouineau et al. (Mines Paristech)

Rio de Janeiro 2010

< ロ > < 同 > < 回 > < 回 >

Higher sugarcane bagasse potential

Imports: Limit on fossil fuels / <u>Demand:</u> Low / Bagasse: High

Drouineau et al. (Mines Paristech)

Rio de Janeiro 2010

∃ ► < ∃ ►</p>

Conclusion

- Renewable energy sources may cover power generation in 2030
- The model can be further developed: loadcurve, bagasse industry, scenario prices, carbon constraints
- Good case study to model technological and economical issues in TIMES models:
 - Reliability of electricity supply
 - Incentives' system