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Energy supply Chain (from IEA 2007)gy pp y ( )
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A tight equation toward sustainabilityg q y

●Demography:
● Rise of energy systems in emerging countries
● Refurbishment of existing capabilities in developed countries
● Urban population, from 50% today to 80% in 2100, claims for high density power networks

●Earth: An isolated chemical system
● Fossil (and fissil) fuels depletion:

●Peak oil around 2020
●Peak gas around 2030
●Around two centuries for coal or Uranium

● Climate change:
●Whole electrical generation provides 45% of CO emissions●Whole electrical generation provides 45% of CO2 emissions
●Global efficiency of the whole electrical system is just 27% (37% for all fuels)
●Despite a thermodynamic trend toward reversibility

E th A f ll t●Earth: A fully open energy system
●Domestic energy is 10.000 times smaller than natural energy flows:

Solar direct, wind, geothermy, waves and swell
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● But very diluted and intermittent



Thermodynamic frameworky

Schneider Electric 4- Strategy & Technology – V. Mazauric – June 9th, 2010 



Electromagnetic descriptiong p
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●Couplings:
● magnetic free currents I
● heat tank Joule losses "RI2"

● The utility acts on:
● the mechanical power Pm

● the excitation of the rotor I● heat tank Joule losses RI ● the excitation of the rotor Iexc

Energy conservation (1st principle):
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State functions:
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An evolution toward reversibility y
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● Faraday's law is restored by assuming a reversible evolution:
All the energy losses (conversion distribution usage) are attainableAll the energy losses (conversion, distribution, usage) are attainable
Multi-scale framework with successful issues (material law, CAD tools)
Focus on the higher aggregated scale to inspect reliability conditions 

d di d i i
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dedicated to power transmission



Centralized power gridp g

● The supply side controls the power 
system and fixes its physical behavior 
(voltage and frequency)( g q y)
●Stability under load fluctuation
● Elastic generation
● Huge investment in generation● Huge investment in generation
● Transmission and distribution losses
●Reliability losses

C b t l t dV,f ● Convergence between regulator and 
supplier

● The physical correlation between 
actors at the demand side is

V,f

actors at the demand side is 
insignificant

Schneider Electric 7- Strategy & Technology – V. Mazauric – June 9th, 2010 



www.desertec.orgg

Schneider Electric 8- Strategy & Technology – V. Mazauric – June 9th, 2010 



Decentralized power gridp g

● The demand side controls the power 
grid and fixes its topology at the 
distribution level through “player” g p y
games
● Splitting between regulator and 

suppliers/players
● Sequential generation with 

intermittency
● Huge investment in control
● distribution losses only
●Weak stability under load fluctuation
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A possible evolution of the power network
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Transmission conditions…
f l t i l tfor any electrical systems
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Aggregated one-loop gridgg g p g
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Magnetic linkage under load fluctuationg g
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Max conventional
Elasticity iron mass
Max Renewables
AC/DC, no mass

Elasticity, iron, mass
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Summaryy
centralized decentralized

Relaxation time

under spinning reserve few mn lower

load or generation kinetic reserve few s lower

fluctuation magnetic linkage (transmission) 10 ms lower

elasticity of generation few mn no (AC/DC static converters)

LLosses

self-consumption

auto-control monitoring and data processing

T&D losses

reliability losses ???

Investment

sizing of capacity global peak  (local deficits)

back p/storage discard peak balance intermittencbackup/storage discard peak balance intermittency

demand response discard peak minimize local deficit

generation & transmission 10.000 BillionUS$ (WEO, IEA 2003) ???

Systemic risk weak but global important but isolated

Emissions/Depletion

hydro large

renewables farms
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fossils back-up
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