

BIOMASS FOR ENERGY USES: ASSESSMENT METHODOLOGY FOR FRANCE

<u>Gilles Guerassimoff</u> Edi Assoumou Nadia Maïzi Marc Bordier

Centre for Applied Mathematics

Mines ParisTech

In collaboration with IFP, FCBA, INRA in the Valerbio Project

1

- Context
- Objectives
- Tools and assumptions
 - Scenarios
 - Resources analysis
 - Technologies description
- First preliminary results
- Conclusion and perspectives

Context

- Fossil fuel scarcity and environmental concerns are good drivers for renewable alternatives studies
 - How to assume the continuity of liquid fuel ?
 - Are biofuels an acceptable and sustainable solution ?
 - Which biomass can be use ?
 - Which landfield is available without competition with food ?
 - Which rate of incorporation as a substitution ?
- To answer these questions prospective studies are helpful to policy makers

Objectives

- This study deals with the methodology elaborated to assess the potential of biomass for energy use in France:
 - Using a detailed representation of biomass sources (Agriculture and wood products)
 - Taking into account the spatiality of the resources (the country is separated in several regions)
 - Regarding their economical evolutions (costs of production and transport are forecasted on the time horizon)
 - Having a rich technological database for energy generation with biomass input (1st and 2nd generation)

- Context
- Objectives

Tools and assumptions

- Scenarios
- Resources analysis
- Technologies description
- First preliminary results
- Conclusion and perspectives

Modelling

- French MARKAL/TIMES Bottom up model is used
 - Time horizon is 2000-2050
 - Demand driven (fuels) and given energy prices
 - All sectors represented
- We only deals with available landfield for energy without food competition
 - Base on marginal and useless landfields
- Detailed technology database including the most promising 2nd generation biofuel production (including co products)

Reference Energy System

- Context
- Objectives
- Tools and assumptions
 - <u>Scenarios</u>
 - Resources analysis
 - Technologies description
- First preliminary results
- Conclusion and perspectives

Demand scenario

- 3 commodities
 - Fuels : direct use of biomass
 - Liquid fuels : direct use of biofuels
 - Electricity : Use of electricity produced with biomass
- 3 scenarios
 - S1 : BAU (Business As Usual)
 - S2 : All for energy (biomass mostly use for energy)
 - S3 : Dynamic wood (wood is mostly use for non energy applications)
- For each, 2 kinds of prices for biomass (high and low)

Demand for S2

- Context
- Objectives
- Tools and assumptions
 - Scenarios
 - Resources analysis
 - Technologies description
- First preliminary results
- Conclusion and perspectives

Studied resources

- Agriculture
 - Grains, whole plant, straw for :
 - Corn
 - Wheat
 - Rape
 - Triticale
 - Sugar beet
 - Sunflower
 - Miscanthus
 - Eucalyptus
 - Jatropha, Palm, Poplar...
 - Residu

- Wood
 - 3 Types
 - Big
 - Medium
 - Small
 - 4 Accessibilities
 - Easy (FA)
 - Moderately Difficult (MD)
 - Difficult (DI)
 - Very difficult (TD)

SRC : Short Rotation Coppice

Detailed spatiality for landfield

- Pertinent regions for agricultural and wood resources
- Each region has a detailed economic description (cost of production and transport by commodity)
- Realistic evolutions and bounds on region's potentials

Example for wood resources

- Actual resource (00)
- Reachable resource (01)
- Imply different costs depending on accessibility
- Will influence the final choice for the technologies

Wood potentials

Agriculture potentials

S2 : 40 Mtoe for end use services, With 10 Mtoe for Transportation

- Context
- Objectives
- Tools and assumptions
 - Scenarios
 - Resources analysis
 - Technologies description
- First preliminary results
- Conclusion and perspectives

Processes for biofuels production

- Economical values for all of the processes
- Valorization of the production of heat and power
- Valorization of the Coproducts

Process	Description
BTLFTDSL	FT (Fischer-Tropsch)-diesel wood
BTLFTDSLB	FT-diesel straw
ESTERFIP	Trans-esterification
ESTERFIPH	Advanced Trans-esterification
ETHAMIDO	Ethanol starch (Amidon)
ETHBOIG2	Ethanol wood
ETHBOIG2B	Ethanol straw
ETHSUCRI	Ethanol sugar

Commodities	Description
BIODST	FT synthetic diesel
BIOEMHV	Biodiesel
BIOETHA	Bioethanol

Biofuels production scheme

- Context
- Objectives
- Tools and assumptions
 - Scenarios
 - Resources analysis
 - Technologies description
- First preliminary results
- Conclusion and perspectives

Resources repartition

Wood resources

With 10 Mtoe for Transportation

Technology path

S2 : 40 Mtoe for end use services, With 10 Mtoe for Transportation S2 : 40 Mtoe for end use services, With 20 Mtoe for Transportation

Electricity production

S2 : 40 Mtoe for end use services, With 10 Mtoe for Transportation S2 : 40 Mtoe for end use services, With 20 Mtoe for Transportation

- Context
- Objectives
- Tools and assumptions
 - Scenarios
 - Resources analysis
 - Technologies description
- First preliminary results
- <u>Conclusion and perspectives</u>

Conclusions & perspectives

- Detailed potentials for biomass with their evolution for each region
 - Permit to assess the future implantation of conversion unit
- Validation of the Implementation of this cutting up in the French model
- A Tool to assess the limits of the French potential of biomass for biofuels is operational
- Preliminary results are promising and are to be discuss with agricultural and forestry experts
- Final results will be available at the end of the year
- Sensitivity analysis will be carried out
- Detailed scenarios can be presented to policy makers

Thank you for your attention