Introduction

Model development

Results

Discussion and conclusions

ParisTech's Chair Modeling for sustainable development

TIMES model for the Reunion Island: Addressing reliability of electricity supply

 ${\sf Mathilde\ Drouineau}^1 \quad {\sf Nadia\ Ma\"izi}^1 \quad {\sf Edi\ Assoumou}^1 \quad {\sf Vincent\ Mazauric}^{1,2}$

¹Mines Paristech, Center for Applied Mathematics (France)

²Schneider Electric, Corporate Research Division (France)

International Energy Workshop (Stockholm, June 21st to 23rd 2010)

Power sectors: a period of changes

O Numerous challenges:

- Constraints on carbon emission
- Depletion of fossil fuels
- Population densification
- Forecast huge investments in power sectors
- Liberalization of electricity markets
- ② The need to improve energy efficiency:
 - Electricity efficiency is severly disadvantaged by the efficiency of the Carnot cycles
- Solution Fossil fuels = 66% of the world net electricity production

In this context, renewable and distributed energy sources are attractive alternatives for power generation.

Spread of renewable and distributed energy sources

Benefits

The overall efficiency improves:

- Renewable energy sources decrease electrical losses at production level
- Distributed generation decrease electrical losses at transmission and distribution levels

2 High shares of renewable and distributed energy sources are expected:

- In centralized scheme, e.g. Desertec concept
- In distributed architecture with smartgrids concept

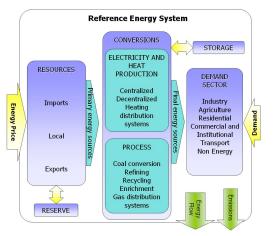
Spread of renewable and distributed energy sources

Challenges

Design of energy policies

- To promote renewable and distributed sources
- Incentives' system

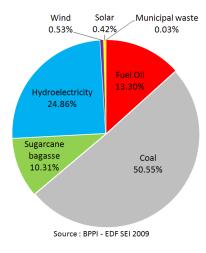
Ø Major technological issues


- Intermittency
- **Reliability of electricity supply**: the capability of the power system to withstand sudden disturbances

Why focusing on the Reunion Island ?

- Blessed with high renewable energy potentials
- Small, weakly-meshed and isolated power system
- Binding target in 2030: 100% renewable sources in power generation

Long-term planning tools: the MARKAL/TIMES models

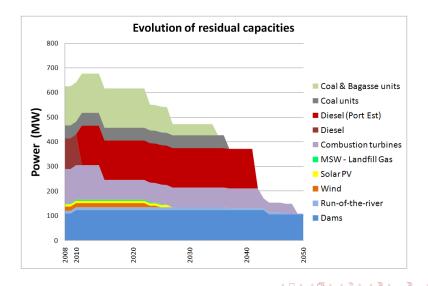

Inputs:

- Exogeneous demand
- Available technologies
- Domestic resources
- Energy prices

Outputs:

- Optimal technologies
- Optimal timing of investments
- Global cost
- Emissions
- Technological models driven by energy demand
- Minimization of the global discounted cost of the energy system

The electricity sector in 2008


Electricity production: 2 546 GWh

Installed capacities Thermal units (76%): 476 MW Fuels: coal, fuel oil, sugarcane bagasse • Hydroelectricity (20%): Dams: 109,4 MW Run-of-the-river: 11,6 MW • Others (4%): Wind: 16.8 MW Solar PV: 10 MW

Municipal Waste: 2 MW

7 / 21

Existing power plants

General hypotheses

	Unit	2000	2008	2015	2020	2025	2030
Energy Prices ¹ :							
Steam Coal	\$2008/t	41.22	120.59	91.05	104.16	107.12	109.4
Crude Oil	\$2008/bbl	34.3	97.19	86.67	100.00	107.50	115.00
Heavy fuel oil	€2008/t	-	196	174	201	216	231
Distillate fuel oil	€2008/hl	-	47	42	48	51	55
Electricity:							
Growth rate	%		3.4	2.6	2.4	1.5	1.5
Consumption	GWh		2 546	3 110	3 500	3 805	4100
Power	MW		408	520	595	670	720

Sources : International Energy Agency, Electricité de France

Drouineau et al. (Mines Paristech)	TIMES model for the Reunion Island	 _	▶ ∢ ≣ ▶ Stockholr		
¹ 2008 real term prices	1	=		-	

E> E

10 / 21

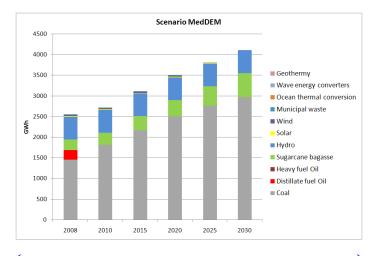
Renewable energy potentials

Energy sources	Current levels	Potentials			
Biomass	260 GWh	400 GWh			
Hydropower	121 MW	177 MW until 2012			
riyuropower	(553 GWh)	268 MW afterwards			
Wind	16,8 MW	50 MW			
Solar PV	10 MW	160 MW			
Ocean Thermal		10 MW in 2020			
Energy Conversion	_	100 MW in 2030			
Wave Energy	_	30 MW (by 2014)			
Geothermy	_	30 MW			
Storege Consoltion		1 MW in 2009			
Storage Capacities	_	10 MW			

Introduction	Model development	Results	Discussion and conclusions
Scenarios s	pecification		

- Potentials for renewable energy sources are set at their maximum values.
- Scenarios are built around 3 assumptions

Fossil fuel imports Ko limit Limit on coal Limit on all fossil fuels Standard Demand

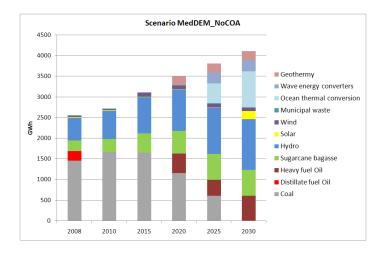

Sugarcane bagasse { Standard potential { High }

Results: calibration for the year of reference (2008)

Energy sources	Model (%)	EDF (%)	
Coal	56.90	50.55	
Fuel Oils (Distillate and Heavy)	9.06	13.30	
Sugarcane bagasse	10.21	10.31	
Hydroelectricity	21.71	24.86	
Wind energy	1.19	0.53	
Solar energy	0.41	0.42	
Municipal waste	0.52	0.03	
Production	2 547 GWh	2 546 GWh	

Discussion and conclusions

Business as Usual

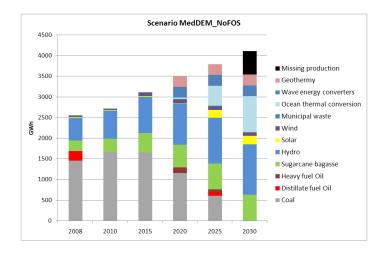


{ Imports: No limit / <u>Demand:</u> Standard / <u>Bagasse:</u> Standard }

イロト イポト イヨト イヨト

13 / 21

Limits on coal imports

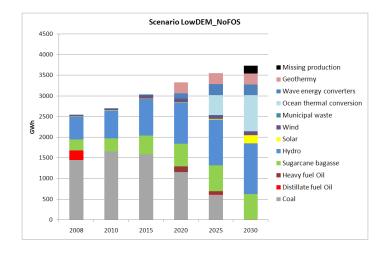

{Imports: Limit on coal / <u>Demand:</u> Standard / <u>Bagasse:</u> Standard }

IEW 2010, Stockholm

イロト イポト イヨト イヨト

ckholm 14 / 21

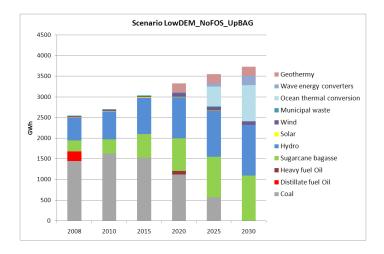
Limits on fossil fuel imports


Imports: Limit on fossil fuels / <u>Demand:</u> Standard / Bagasse: Standard

Drouineau et al. (Mines Paristech) TIMES model for the Reunion Island

IEW 2010, Stockholm

15 / 21


Lower demand

Imports: Limit on fossil fuels / <u>Demand:</u> Low / Bagasse: Standard

イロト イポト イヨト イヨト

Higher sugarcane bagasse potential

{Imports: Limit on fossil fuels / <u>Demand:</u> Low / Bagasse: High }

Remembering the issues

Challenges with renewable and distributed energy sources

Design of energy policies

- To promote renewable and distributed sources
- Incentives' system

Ø Major technological issues

- Intermittency
- **Reliability of electricity supply**: the capability of the power system to withstand sudden disturbances

Economical plausibility

Design of the incentives' system

Costs and levels of investments in the different scenarios:

	No limit	Х				
Limit on imports	On coal		X	X	Х	Х
	On fuel oils			Х	Х	Х
Demand	Standard	Х	Х	Х		
Demand	Low				X	X
Paraga	Standard	Х	Х	Х	Х	
Bagasse	High					Х
Relative total costs ¹		1	1.32	1.24	1.10	0.98
Relative investment costs ¹		1	5.95	8.19	6.30	5.24
Demand satisfied		yes	yes	no	no	yes

• What are the required level of subsidies to favour these investments?

¹Deducing the salvage costs Drouineau et al. (Mines Paristech) TIMES model for the Reunion Island

IEW 2010, Stockholm

19 / 21

Technological plausibility

Reliability of electricity supply

- It is the capability of a power system to handle load fluctuations
- It mainly relies on:
 - Voltage management, with the electromagnetic coupling energy
 - Frequency management, with the kinetic and spinning reserves
- With renewable and distributed energy sources:
 - Levels of reserves decrease
 - Production fluctuations are more frequent

• At which cost the proposed power systems can be operated reliably?

Conclusions

- Renewable energy sources may cover power generation in 2030
- The model can be further developed: loadcurve, bagasse industry, scenario prices, carbon constraints
- Good case study to address economical and technological issues in the TIMES models:
 - Incentives' system
 - Reliability of electricity supply