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Abstract—Short-term wind power forecasting tools
providing “single-valued” (spot) predictions are
nowadays widely used. However, end-users may re-
quire to have additional information on the uncer-
tainty associated to the future wind power produc-
tion for performing more efficiently functions such
as reserves estimation, unit commitment, trading in
electricity markets, a.o. Several models for on-line
uncertainty estimation have been proposed in the
literature and new products from numerical weather
prediction systems (ensemble predictions) have re-
cently become available, which has increased the
modelling possibilities. In order to provide efficient
on-line uncertainty estimation, choices have to be
made on which model and modelling architecture
should be preferred. Towards this goal we proposes to
classify different approaches and modelling architec-
tures for probabilistic wind power forecasting. Then,
a comparison is carried out on representatives models
using real data from several wind farms.

I. INTRODUCTION

W IND power has been undergoing a rapid

development in recent years. Several coun-

tries have already reached a high level of installed

wind power capacity, such as Germany, Spain, and

Denmark, while others follow with high rates of

development. Such large-scale integration of wind

power is challenging in terms of power system

management because wind is a variable resource.

Such variability may increase the overall costs of

the produced energy and thus limiting the benefits

of using such a renewable energy resource.

forecasting tools permit to reducing the uncer-

tainty associated to wind power production. Such

tools are nowadays somewhat mature as their devel-

opment has been ongoing for more than 15 years

[1]. These tools are multi-step ahead forecasting

models that provide information for several hori-

zons i.e. look-ahead times. The majority of existing

forecasting tools provide a single expected value for

each forecast horizon, called deterministic, spot or

point forecast. The main drawback of “spot” pre-

dictions is that no information is provided about the

possible departures from the predicted values. This

may limits the benefits of using such predictions
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in decision-making applications, especially those

based on stochastic optimization or risk assessment.

The need for uncertainty estimation in wind

power forecasts (WPFs) has motivated the devel-

opment of several approaches in the literature.

Moreover, new products from Numerical Weather

Prediction (NWP) systems have become available

i.e. ensemble predictions. Such inputs can be valu-

able for on-line uncertainty estimation but their

use increases the number of modelling possibilities.

The aim of this paper is to classify and compare

those different possibilities in order to derive best

practices for use of the available information to-

ward more efficient on-line uncertainty estimation.

This paper provides a first contribution toward this

goal. It focuses on on-line uncertainty estimation

expressed in the frame of probability theory i.e.

probabilistic forecasts.

In this paper, a classification of different mod-

elling approaches for probabilistic forecasting is

proposed. Then, based on such classification some

models are selected for comparison purposes. The

comparison is carried out in two stages. Firstly, a

comparison of models based on “classic” NWPs is

carried out. Such first comparison allows to select

the subset of models to be used in the second stage.

Secondly, ensemble weather predictions are used

as inputs. The models selected in the first stage are

integrated in the various modelling architectures se-

lected in this paper. Common evaluation criteria are

used for performing the various comparisons. The

performance of the models is assessed using real-

world data from French wind farms corresponding

to different terrain complexities and climatic con-

ditions.

II. ON-LINE UNCERTAINTY ESTIMATION

A. Uncertainty Estimation – An overview

In recent years, various studies have been carried

out on the estimation of WPFs uncertainty [2],

[3], [4], [5]. Such studies concentrate both on the

characterisation of the sources of uncertainty and

on the development of methods for on-line un-

certainty estimation. The various characterisations
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confirmed that the NWPs are the main sources of

forecast uncertainty. The second source identified

is the amplification and dampening effect of the

non-linear relation between wind speed and corre-

sponding wind power.

B. Models Inputs – Numerical Weather Predictions

As mentioned in the previous section, the main

input of on-line uncertainty estimation of wind

power production is the NWPs. The NWPs are

classically provided as a single value for each

forecast horizon. However, predictions incorporat-

ing uncertainty information become available i.e.

ensemble predictions.

An ensemble prediction is basically a collection

of “spot” predictions corresponding to various sce-

narios for a given future time [6] and each indi-

vidual scenario is called ensemble member. Such

scenarios is presented in Figure 1. The dispersion

of the ensemble members is expected to reflect the

uncertainty in the NWPs.

Figure 1. Example of ensemble predictions of the zonal wind
speed component (U).

Such scenarios can be obtained by two main

approaches. Models that consist of different runs

of a NWP systems which differ in the initial

conditions and/or in the numerical representation

of the atmosphere (stochastic physics). Examples

of such ensembles are the EPS from the ECMWF,

PEARP from Mto France or NCEP ensembles. The

ensemble members are supposed to be statistically

indistinguishable and equiprobable. Poor mans en-

semble composed of output from different models

and/or initial times, rather than a single model

with perturbed initial conditions [7]. The ensemble

members have generally different statistical prop-

erties.

Ensemble predictions are still under investigation

and development. However, interesting results have

been reported. For example, the ensemble mem-

bers mean generally outperforms the corresponding

“spot” predictions. However, ensembles cannot be

used directly for probabilistic estimation since they

generally does not possess good probabilistic prop-

erties. A calibration step is generally necessary in

order to obtain such properties.

C. Models Outputs – Probabilistic forecasts

In this paper, on-line uncertainty estimation ex-

pressed as probabilistic forecasts is considered.

Probabilistic forecasting consists in estimating the

future uncertainty of a particular variable that can

be directly expressed as a probability measure. This

property permits a straightforward evaluation of

performances and an objective comparison between

different models. It can be easily integrated in var-

ious applications since it has a clear interpretation

and its form can be customized to the applications

requirements.

The main forms to express probabilistic forecasts

are:

• Discrete probabilities.

• Moments of distributions (mean, variance,

skewness, kurtosis,...)

• Quantiles and predictive intervals.

• Probability Density Functions (PDF) or Cu-

mulated Distribution Functions (CDF).

In this paper, both quantiles and PDFs forecasts

are provided by the models. PDFs is a generic form

since it can be reduced to all the other forms. An

example of such PDF forecast is shown in Figure 2.

Figure 2. Example of probability density function forecasts.

D. Examples of applications of probabilistic WPFs

Recently, various energy-related applications

have shown the benefits of using probabilistic

WPFs. Such forecasts may be used to estimate

the optimal level of reserves that need to be al-

located to compensate wind variability [8]. Such

predictions can also be used advantageously for

the combination of energy storage and wind power

generation [9]. Energy bidding in a day-ahead

electricity market is an emerging application. It has

been shown that, when trading future production on

an electricity market, the use of probabilistic WPFs

can lead to higher benefits than those obtained with

“spot” forecasts [5], [10].
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III. CLASSIFICATION OF PROBABILISTIC WPF

APPROACHES

A. Approaches based on spot NWPs

This section considers probabilistic WPFs ob-

tained from “spot” NWPs as shown in Figure 3.

Such forecasts can be obtained either by consider-

ing the errors of a “spot” wind power forecasting

model or by computing the forecasts directly from

the NWP inputs.

The first approach, i.e. considering the errors of

a “spot” wind power forecasting model, allows to

provide uncertainty estimation to existing “spot”

wind power forecasting systems. Early approaches

used global evaluation criteria (such as the standard

deviation of forecast errors computed over sev-

eral runs) as uncertainty estimates. However, this

provides constant values for a given time period.

Such approaches can be seen as measuring the

“climatological” uncertainty instead of the “meteo-

rological” uncertainty. A way to provide situation-

dependent uncertainty assessment is to separate

the errors into classes based on the explanatory

variables of the forecasting problem. The standard

deviation of prediction errors can be computed for

predefined classes of predicted wind power [11]

or depending on weather situations [2]. The main

drawback of these methods is that they introduce

discontinuities when changing from one class to the

other. Moreover, determining the number of classes

and their width can be difficult. A way to avoid dis-

continuities is to use smoothing techniques. In [5]

fuzzy set theory is used to overcome the problem

of class discontinuity. In such work, the error dis-

tributions are associated to different fuzzy sets. A

conceptually different method, quantile regression

based on cubic B-spline is described in [12], where

quantiles of the prediction error are computed using

various explanatory variables.

Concerning the second approach, i.e. computing

the forecasts directly from the NWP inputs, several

methods have also been proposed. A method for

converting wind prediction errors into power output

uncertainty based on the derivative of the power

curve is proposed in [2]. Local quantile regression

is used in [13] to compute specific quantiles of the

power production. A comparison of three quantile

approaches, namely local quantile regression, lo-

cal Gaussian modelling and, the Nadaraya-Watson

estimator, is performed in [14]. A comparison of

GARCH modelling approaches is proposed in [15],

using both Gaussian and empirical distributions.

B. Approaches based on ensemble NWPs

1) The filtering approach: A schematic repre-

sentation of the filtering approach is depicted in

Figure 4. In a first step, wind ensemble NWPs are

converted into power ensembles by passing each

ensemble member through a “spot” forecasting

model. The two main options consist in either

considering a unique conversion model or using

different ones for each ensemble member. The

resulting power ensembles only account for input

uncertainty and not for model uncertainty. This

leads to underestimating the global uncertainty.

Moreover, the input power ensembles are generally

not calibrated. To overcome this problems vari-

ous post-processing methods are used to convert

the uncalibrated power ensembles into probabilistic

forecasts.

For the case of ensembles derived from per-

turbation of a single NWP model, a unique con-

version model is generally used because the en-

semble members can be generally considered as

indistinguishable. In [15] a unique power curve

model is used to filter the 50 ECMWF ensemble

members. Then, the wind power ensembles are

calibrated using kernel density estimators. In [16],

[17], [18], [19] a conditional parametric model is

used for the conversion. Then, the power ensembles

are converted into quantiles using a model based on

cubic splines and local regression.

For the case of multi-model ensembles a cus-

tomized model is generally fitted for each mem-

ber. This is due to the fact that the members

are issued from different models and therefore

possess different statistical properties. In [20] a

75-member multi-model ensemble is filtered using

a tailored power curve estimation method. The

resulting power ensembles are then reduced to

“spot” forecasts by computing a statistical “best

guess”. Various, approaches for combining “spot”

WPFs have also been considered and can be seen in

most cases as the generation of multi-model power

ensembles.

2) The dimension reduction approach: This ap-

proach, depicted in Figure 5, consists in first re-

ducing the input dimensionality and then feeding

these reduced inputs to a probabilistic prediction

model similar to approach 1. In [21] a principle

component algorithm is applied to ECMWF fore-

casts. Various studies have shown that there exist a

relation between ensemble spread and prediction

error e.g. [22]. This property can be used for

reducing the ensembles to two values: an infor-

mation of central tendency (e.g. the mean) and an

information of spread (e.g. the variance). Another
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Figure 3. The “spot-NWP” approach (1). Probabilistic wind power forecasts from “spot” NWPs. The two main approaches consist
in either considering the errors of a “spot” wind power forecasting model or computing the prediction directly from the NWP
inputs.

Figure 4. The “filtering” approach (2a). Wind ensemble NWPs are converted into power ensembles. The two main options consist
in either considering a unique conversion model or using different conversion models for the different ensemble members. The
resulting power ensembles are then converted into probabilistic wind power forecasts.

Figure 5. The “dimension reduction” approach (2b). Wind ensemble NWPs input are first reduced in dimensionality. For example,
the ensembles members can be reduced to a central tendency (e.g. mean) and a spread information (e.g. standard deviation). Then,
the reduced inputs feed a probabilistic prediction model similar to approach 1.

Figure 6. The “direct” approach (2c). Wind ensemble NWPs are directly input into a probabilistic model. The model should be
able to consider high dimension inputs.
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way to summarize the ensemble input information

is by using risk indices. It has been shown that the

probabilistic properties of ensemble forecasts are

improved by spatial or temporal aggregation. An

index called “meteo risk index” has been proposed

in [23]. Such index has been used as input to adapt

the size of prediction intervals [23] or as a direct

input to a probabilistic forecasting model [12].

3) The direct approach: The direct approach

consists in feeding wind ensemble NWPs directly

input into a probabilistic model as presented in

Figure 6. Most statistical models are sensitive to the

“curse of dimensionality” i.e. by augmenting the

number of input variables, the model complexity

(i.e. number of parameters) dramatically increases

without compensation through provision of more

samples. Various strategies have been proposed in

the literature to overcome this problem including

input selection or dimension reduction as men-

tioned in the previous section, regularisation tech-

niques [24], or random input selection [25].

4) Hybrid approaches: In [26] an hybrid di-

mension reduction/direct approach is used. The

predicted distribution is modelled as a Gaussian

one. The mean of the distribution is computed in a

direct way simply by taking a linear combination

of the ensemble members. The variance is com-

puted using a dimension reduction approach, which

consists in simply taking a linear combination of

the ensemble spread. All the linear coefficient are

chosen in order to minimize the Continuous Ranked

Probability Score.

IV. COMPARISON METHODOLOGY

A. Overview

The comparison has been carried out in two

stages. In the first stage various probabilistic fore-

casting models taking “spot” NWPs are compared.

At a second stage, the different architectures pre-

sented in subsection III-B are applied on a selection

of model from stage one for comparison purposes.

The selected models has been chosen among

various non-parametric ones since this avoid too

large modelling error due to the choice of a par-

ticular family of distribution. Then, among the

non-parametric models, various types of methods

are considered including, quantile regression, local

regression and classification trees. A simple linear

quantile regression is used as reference probabilis-

tic model.

The compared probabilistic models are (stage 1):

• Linear Quantile Regression (ref)

• Spline Quantile Regression (SQR)

• Quantile Regression Forest (QRF)

• Kernel Density Estimation (KDE)

The selected approaches are both dimension

reduction (2b) and direct approaches (2c). The

filtering approach (2a) is not considered here and

will be addressed in further communications. For

reduction dimension, the mean and variance, or

median and Median Absolute Deviation (MAD)

of the ensemble members is fed into the selected

probabilistic forecasting models. For the direct

approach, two solutions to avoid the “curse of

dimensionality” has been considered here. First,

the fact that the input ensembles members are

indistinguishable permits to constraint the model to

having the same parameter values for all ensemble

members. This has the advantage of levelling the

number of parameters with the “spot” case. A spe-

cific implementation of Kernel Density Estimation

(presented in [27]) has been developed to include

this property. Second, Quantile Regression Forest

(presented in [28]) include a random input selection

phase and is specially designed to manage large

input dimensionality.

The compared architectures are (stage 2):

• Mean/Variance approach (2b)

• Median/MAD approach (2b)

• Direct approach (2c)

B. Probabilistic forecasts considered

The probabilistic forecasts considered in this pa-

per are predictive intervals with nominal coverage

rates ranging from 10 % to 90 % with 10 %

increments. They are computed from the quantiles

or predictive densities generated by the different

model. The choice of the 10 % increment is made

to render the evaluation of such intervals consistent

with the results reported in the relevant literature.

C. Selected models overview

1) Simple Reference Models: For the “spot”

forecasts the “persistence” reference model has

been used. For the probabilistic forecasts a linear

quantile regression model has been used as refer-

ence.

2) B-Spline Quantile Regression: The B-Spline

Quantile Regression is used here as a third bench-

mark model following the formulation recently

proposed in the wind power forecasting literature

[12]. In [12], an additive model is used instead

of a simple linear combination. This approach

models the relationship between the quantile and

the explanatory variables as a linear combination

of known basis functions (e.g. B-spline basis).

3) Quantile regression forests approach: This

model has been proposed by ARMINES/Ecole des

Mines de Paris [28] for probabilistic WPF. Quantile

regression forests used in this paper is an extension
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of Random Forests, which rely on classification and

regression trees (CARTs) [29]. Random forest has

been design to overcome the instability problem

of CARTs by using bagging and random input

selection. When used for regression, random for-

est compute a weighted mean over the response

variable of the various classification trees. Quantile

regression forests utilise the fact that the weighted

observations also deliver an approximation to the

full conditional distribution [30].

4) Kernel density estimation approach: This

model has also been proposed by ARMINES/Ecole

des Mines de Paris [28], [27] for probabilistic

WPF. The principle is to directly estimates the

future conditional probability density functions of

the variable to be predicted based on a kernel den-

sity estimator. Such estimator computes a smooth

density estimation from data samples by placing

on a each sample point a function representing

its contribution to the density. The distribution is

obtained by summing all these contributions. The

model is presented in detail in [28].

V. EVALUATION FRAMEWORK

The evaluation of the performance of the proba-

bilistic approaches is carried out in two steps.

Firstly, it is assessed that the probabilistic models

perform similarly to equivalent “spot” prediction

models when reduced to “spot” predictions. The

criteria used to evaluate the “spot” prediction fol-

lows the protocol described in [31]. Here, only

results on the Normalized Mean Absolute Error

criteria are presented.

Secondly, the probabilistic predictions are di-

rectly evaluated. The probabilistic evaluation is

decomposed into two main properties: reliability

and sharpness.

The reliability represents the ability of the prob-

abilistic forecasting model to match the observation

frequencies. For example, an 85 % predictive inter-

val should contain 85 % of the observed values in

the long run [32]. In this paper, the reliability of the

predictive intervals is measured by estimating the

proportion of observation actually falling in each

interval.

The sharpness represents the capacity of the

forecasting model to forecast extreme probabili-

ties (0 or 1 probabilities versus 0.5). This crite-

rion evaluates the predictions independently of the

observations. It gives an indication of the level

of usefulness of the predictions. For example, a

system that only provides uniformly distributed

predictions is useless for decision making under

uncertainty. Conversely, predictions having perfect

sharpness are discrete predictions with probability

one (deterministic predictions). In this paper the

sharpness of the predictive intervals is measured

by the average interval size.

Other probabilistic evaluation criteria have also

been computed, such as, resolution or skill scores

(Interval Score, CRPS,...). However, results are not

presented here for reasons of simplicity.

VI. CASE-STUDIES

Three French wind farms are considered for the

comparison. They are representative of various ter-

rain and climate conditions. However, for simplicity

purposes only results of the wind farm located

on the more complex terrain is presented here.

Hourly average power production time-series are

considered spanning a period of 18 months from

July 2004 to December 2005.

For the same period, NWPs by the

ARPEGE/PEARP model of Meteo France

and ECMWF/EPS of ECMWF are used. ARPEGE

is a spot NWP system and PEARP is a 10-member

ensemble prediction system. The Meteo France

forecasts are provided once a day for horizons

0 to 60 hours ahead, with a 3-hour resolution.

ECMWF/EPS is also a spot/ensemble NWP

system. EPS is a 50 members ensemble prediction

system. The ECMWF forecasts are provided twice

a day for horizon ranging from 0 to 240 hours

ahead, with a 6-hour resolution.

The meteorological variables considered in this

study are the ones selected using a mutual informa-

tion criteria. Namely 50 meter above ground level

wind speed and direction are used.

The horizons of power predictions are the same

as that of the NWPs. The available dataset is

divided into a learning-set and a testing-set com-

prising 8 months (July to February) and 4 months

(September to December) respectively.

VII. RESULTS (STAGE 1)

A. Evaluation of the deterministic sub-product

The aim of this section is to evaluate the “spot”

performance of the proposed models. The proba-

bility density function forecasts (or quantiles) are

converted into “spot” forecasts by taking the mean

of the distributions. This correspond to the min-

imum functionality that should be expected by a

probabilistic model. Forecasts based on the mean of

a probabilistic model should be expected to perform

at least as well as state-of-the-art deterministic

models. A comparison of the results is shown in

Figure 7.

All the models represent significant improve-

ments over the persistence. As expected, the sim-

ple probabilistic reference model, linear quantile

regression, performs worse than the more advanced
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Figure 7. Comparison of the “spot” performance of various
probabilistic models.

probabilistic models. This result remains consistent

when considering other criteria such as Root Mean

Square Error or Bias.

B. Evaluation of the probabilistic predictions

The reliability of the different methods is pre-

sented in Figure 8.

Figure 8. Intervals reliability comparison for various proba-
bilistic models based on “spot” NWP inputs.

All the models have a deviation in reliability

bellow 5 %, which is equivalent to the state of the

art. The methods QRF and KDE present the same

behaviour. The intervals provided by these two

methods are slightly underconfident which is pref-

ered to overconfidence in most applications since

this implies that, for instance, at least 80 % of the

observations falls into an 80 % predictive interval.

The spline quantile regression model shown good

reliability performance for intervals with nominal

coverage greater than 50 % and is slightly over-

confident below that value. Finally, it is important

to highlight that the simple probabilistic reference

model presented the best overall reliability which

Figure 9. Intervals sharpness comparison for various proba-
bilistic models based on “spot” NWP inputs.

is often the case for reference probabilistic models

(like climatological distribution in meteorology).

The sharpness of the different methods is pre-

sented in Figure 9.

The sharpness is equivalent for the four models

taken into account when considering intervals with

small nominal coverage rate (10 % to 50 %). In

contrast, for coverage rates above 50 %, some

difference between the models is observed. In that

range, the reference model tends to produce large

intervals (bad sharpness). Such reference model is

not designed to “take risks”. Hence, by discrimi-

nating a limited quantity of situations, it tends to

produce large intervals with high reliability. The

underconfidence of QRF and KDE naturally leads

to produce slightly larger intervals. Spline quantile

regression reaches a good overall performance for

intervals of high coverage rate.

C. Conclusions of stage one

An overall evaluation of the probabilistic per-

formances of the models has been carried out. A

deeper analysis of reliability and sharpness as well

as other criteria (e.g. resolution) for various hori-

zons showed that the three models QRF, KDE and

SQR have similar performances and improve over

the simple reference models. Hence, for the second

stage, i.e. forecasting from ensemble NWPs, two

models are selected to be coupled with the various

architectures. The selected models are based on

Quantile Regression Forests and Kernel Density

Estimation.

VIII. RESULTS (STAGE 2)

A. Evaluation of the “spot” sub-products

The comparison of the results from various archi-

tectures when the obtained predictions are reduced

to “spot” forecasts is presented in Figure 10.
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Figure 10. Comparison of the “spot” performances of various
probabilistic models.

Concerning the QRF model, the use of ensem-

ble NWPs leads to a slight overall improvement.

Using the couple mean/variance performs slightly

better than the median/MAD. However, using all

ensemble members in a direct way leads to more in-

stability, for example a peak is observed at horizon

+6 h. This can be explained by the fact that QRF

tries to discriminate ensemble members, which are,

by nature undistinguishable. Consequently, even

if QRF is globally “resistant” to dimensionality

increases, as shown by its overall performances,

the performances are reduced because of not taking

into account this information. Concerning KDE, the

discrimination among the different approaches is

difficult to assess because the performances of the

different architectures are very similar.

As a conclusion, the spot performances of the

various architectures are globally similar. Regard-

ing spot performance, incorporating the mean of

the ensemble leads to a small improvement.

B. Evaluation of the probabilistic predictions

The results for interval reliability and sharpness

are shown in Figure 11 and Figure 12 respectively.

In order to get a better insight of the results, the

reliability and sharpness have been computed for

horizons +6 h, +24 h and +48 h.

When considering horizon +6 h, the KDE model

presented a better reliability than QRF. This is

due to structural differences between those two

models. QRF has been optimised for the overall

reliability and sharpness as evaluated in subsec-

tion VII-B, whereas KDE has been optimised for

each horizon. It is interesting to notice that this

influence is limited to the first horizons for which

the statistical properties are different due to the

persistence phenomenon. The selection of what

criteria should be optimised constitutes another ex-

ample of the importance of the modelling choices.

Except for this difference, the reliability remains

constant throughout the horizons. However, the

prediction intervals gets wider (worst sharpness) as

the horizon increases. For example, the mean size

of the 90 % interval is 50 % of nominal power at

+6 h and close to 60 % at +48 h. This is simply

due to the natural increase in uncertainty as we try

to predict further.

Considering reliability, the approaches based

on ensembles seem to provide better results ob-

tained with the predictions used in stage 1. The

mean/variance and median/MAD approaches seems

to provide a better overall reliability. However,

when considering sharpness, the conclusion is not

evident and the differences observed depending on

the horizon. The results of the different approaches

are similar, though.

IX. CONCLUSIONS

Recently, several probabilistic approaches for

wind power forecasting appeared due to their in-

terest for optimal decision making when it comes

to large-scale wind power integration. In the mean-

time, new types of inputs called weather ensem-

bles become available from weather services. The

aim of this paper was to classify and compare

the different modelling options available today for

probabilistic forecasting.

The proposed classification considered both ap-

proaches based on standard NWPs (spot) and en-

sembles input. The comparison is based on repre-

sentative models drawn from that classification.

In the case studies considered the use of ensem-

ble NWPs has provided a relatively small improve-

ment when compared to spot NWPs. The same im-

provement seemed to be attainable by simply using

the ensemble mean instead of using all the members

as input. The results of the different approaches

were similar despite the different approaches used.

However, when passing to the next step which is

that of evaluating probabilistic forecasts, it becomes

a more cumbersome task. The results obtained

through the different approaches revealed that a

trade-off has to be accepted between reliability and

sharpness. More precisely, improving the reliability

will generally degrade the sharpness and vice-versa.

This implies that choosing among various models

for probabilistic forecasting, or even the optimi-

sation criteria of the models, is a multi-criteria

decision problem.

This paper constitutes a first step towards a

complete evaluation of the proposed classification.

This comparison will be extended by using ad-

ditional probabilistic forecasting approaches and

cases studies in future work.
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Figure 11. Comparison of intervals reliability for various probabilistic models based on ensemble NWP inputs for horizons +6
h, +24 h and +48 h.

Figure 12. Comparison of intervals sharpness for various probabilistic models based on ensemble NWP inputs for horizons +6
h, +24 h and +48 h.
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2006.

[6] J. K. Sivillo, J. E. Ahlquist, and Z. Toth, “An ensemble
forecasting primer,” Weather and Forecasting, vol. 12,
no. 4, pp. 809–818, Dec. 1997.

[7] E. E. Ebert, “Ability of a poor man’s ensemble to predict
the probability and distribution of precipitation,” Monthly

Weather Review, vol. 129, no. 10, pp. 2461–2480, Oct.
2001.

[8] R. Doherty and M. O’Malley, “A new approach to quantify
reserve demand in systems with significant installed wind
capacity,” IEEE Transactions on Power Systems, vol. 20,
no. 2, pp. 587–595, 2005.

[9] L. M. Costa, F. Bourry, and G. Kariniotakis, “Stochastic
optimization techniques for the optimal combination of
wind power generation and energy storage in a market
environment,” in proceedings of the european wind energy

conference, Brussels, Belgium, 31 march - 3 april 2008.

[10] F. Bourry, J. Juban, L. M. Costa, and G. Kariniotakis,
“Advanced strategies for wind power trading in short-term
electricity markets,” in proceedings of the european wind

energy conference, Brussels, Belgium, 31 march - 3 april
2008.

[11] A. Luig, S. Bofinger, and H. G. Beyer, “Analysis of
confidence intervals for the prediction of the regional
wind power output,” in Proceedings of the European Wind

Energy Conference, Copenhagen, 2001.

[12] H. A. Nielsen, H. Madsen, and T. S. Nielsen, “Using
quantile regression to extend an existing wind power fore-
casting system with probabilistic forecasts,” Wind Energy,
vol. 9, no. 1-2, pp. 95–108, 2006.

[13] J. B. Bremnes, “Probabilistic wind power forecasts using
local quantile regression,” Wind Energy, vol. 7, no. 1, pp.
47–54, 2004.

[14] ——, “A comparison of a few statistical models for mak-
ing quantile wind power forecasts,” Wind Energy, vol. 9,
no. 1-2, pp. 3–11, 2006.

[15] J. Taylor, P. McSharry, and R. Buizza, “Wind power
density forecasting using wind ensemble predictions and
time series models,” 2006, forthcoming.

[16] G. Giebel, L. Landberg, J. Badger, K. Sattler, H. Fed-
dersen, T. Nielsen, H. Nielsen, and H. Madsen, “Using
ensemble forecasting for wind power,” in Proceedings

of the European wind energy conference and exhibition,
Madrid, Spain, 16-19 Jun 2003.

[17] G. Giebel, J. Badger, L. Landberg, H. A. Nielsen, H. Mad-
sen, K. Sattler, and H. Feddersen, “Wind power forecasting
using ensembles,” in Proceedings of the 2004 Global

Windpower Conference and Exhibition, Chicago, Illinois,
USA, 2004.

[18] H. A. Nielsen, H. Madsen, T. S. Nielsen, J. Badger,
G. Giebel, L. Landberg, K. Sattler, and H. Feddersen,
“Wind power ensemble forecasting,” in Proceedings of

the 2004 Global Windpower Conference and Exhibition,
Chicago, Illinois, USA, 2004.

[19] H. A. Nielsen, T. S. Nielsen, H. Madsen, G. Giebel, J. Bad-
ger, L. Landberg, K. Sattler, L. Voulund, and J. Tøfting,
“From wind ensembles to probabilistic information about
future wind power production – results from an actual
application,” in Prooceedings of the 9th International

Conference on Probabilistic Methods Applied to Power

Systems, 27 February - 2 March 2006, invited paper.
[20] S. Lang, C. Mhrlen, J. J. B. . Gallachir, and E. McKeogh,

“Application of a multi-scheme ensemble prediction sys-
tem for wind power forecasting in ireland and comparison
with validation results from denmark and germany,” in
Proceedings of the European Wind Energy Conference,
Athens, Greece, March 2006.

[21] L. von Bremen, R. Hagedorn, and T. Peroliagis, “Towards
probabilistic wind power forecasting based on ensemble
prediction techniques,” Presentation in the 7th European
Meteorological Society Annual Meeting, October 2007.

[22] L. von Bremen, “Combination of deterministic and proba-
bilistic meteorological models to enhance wind farm power
forecasts,” Journal of Physics: Conference Series, vol. 75,
p. 012050 (8pp), 2007.

[23] P. Pinson and G. Kariniotakis, “On-line assessment of
prediction risk for wind power production forecasts,” Wind

Energy, vol. 7, no. 2, pp. 119–132, 2004.
[24] V. N. Vapnik, The Nature of Statistical Learning Theory,

2nd ed., ser. Statistics for Engineering and Information
Science. New York: Springer, 2000.

[25] L. Breiman, “Random forests,” Machine Learning, vol. 45,
no. 1, pp. 5–32, Oct. 2001.

[26] T. Gneiting, A. E. Raftery, A. H. Westveld, and T. Gold-
man, “Calibrated probabilistic forecasting using ensemble
model output statistics and minimum crps estimation,”
Monthly Weather Review, vol. 133, no. 5, pp. 1098–1118,
2005.

[27] J. Juban, N. Siebert, and G. N. Kariniotakis, “Probabilistic
short-term wind power forecasting for the optimal man-
agement of wind generation,” in Proceedings of the IEEE

PowerTech Conference, Lausanne, Switzerland, 1-5 July
2007.

[28] J. Juban, L. Fugon, and G. Kariniotakis, “Probabilistic
short-term wind power forecasting based on kernel density
estimators,” in Proceedings of the European Wind Energy

Conference, Milan, Italy, 7-10 May 2007.
[29] L. Breiman, J. Friedman, C. J. Stone, and R. Olshen, Clas-

sification and Regression Trees. Chapman & Hall/CRC,
1984.

[30] N. Meinshausen, “Quantile regression forests,” Journal of

Machine Learning Research, vol. 7, pp. 983–999, June
2006.

[31] H. Madsen, P. Pinson, G. Kariniotakis, H. A. Nielsen, and
T. S. Nielsen, “Standardizing the performance evaluation
of shortterm wind power prediction models,” Wind Engi-

neering, vol. 29, pp. 475–489(15), 2005.
[32] I. T. Jolliffe and D. B. Stephenson, Forecast Verification: A

Practitioner’s Guide in Atmospheric Science. New York:
Wiley, 2003.

-10-


	Introduction
	On-line uncertainty estimation
	Uncertainty Estimation -- An overview
	Models Inputs -- Numerical Weather Predictions
	Models Outputs -- Probabilistic forecasts
	Examples of applications of probabilistic WPFs

	Classification of probabilistic WPF approaches
	Approaches based on spot NWPs
	Approaches based on ensemble NWPs
	The filtering approach
	The dimension reduction approach
	The direct approach
	Hybrid approaches


	Comparison Methodology
	Overview
	Probabilistic forecasts considered
	Selected models overview
	Simple Reference Models
	B-Spline Quantile Regression
	Quantile regression forests approach
	Kernel density estimation approach


	Evaluation framework
	Case-studies
	Results (stage 1)
	Evaluation of the deterministic sub-product
	Evaluation of the probabilistic predictions
	Conclusions of stage one

	Results (stage 2)
	Evaluation of the ``spot'' sub-products
	Evaluation of the probabilistic predictions

	Conclusions
	References

