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Abstract

Short-term forecasting of wind energy produc-
tion up to 2-3 days ahead is recognized as a
major contribution for reliable large-scale wind
power integration. Increasing the value of wind
generation through the improvement of predic-
tion systems performance is recognised as one
of the priorities in wind energy research needs
for the coming years. This paper aims to evalu-
ate Data Mining type of models for wind power
forecasting. Models that are examined include
neural networks, support vector machines, the
recently proposed regression trees approach, and
others. Evaluation results are presented for sev-
eral real wind farms.

1 Introduction

Wind power has been undergoing a rapid devel-
opment in recent years. Several countries have
reached already a high level of installed wind
power capacity, such as Germany, Spain and,
Denmark, while others follow with fast rates
of development. Such large-scale integration of
wind power is challenging in terms of power sys-
tem management. Indeed, wind is a variable re-
source that is difficult to predict. As an example,
traditionally, additional reserves are allocated to
manage this uncertainty.

This increases the overall cost of the produced
energy and limits the benefits of using such a
renewable energy resource. A way of reducing
the uncertainty associated to wind power pro-
duction is to use forecasting tools. Development
of such tools has been ongoing for more than
15 years [1]. These tools are multi-step ahead
forecasting models that provide information for
several horizons ahead. In the same way, the
continuous improvement of computers and the
constant increase in databases capacity permit-
ted the development of a new scientific investi-
gation field called Data Mining. Data Mining
has been defined as ”the nontrivial extraction

of implicit, previously unknown, and potentially
useful information from data (Fayyad, 1996)”.
Several algorithmic techniques issued from Data
Mining have already been adapted to the wind
power forecasting [2] to provide a single expected
value for each forecast horizon, called determin-
istic, spot or point forecast.

The paper initially introduces the different al-
gorithms used. Then the real-world data used
to evaluate the models are presented. They are
from French wind farms located in different ter-
rain complexity and climatic conditions. Finally
an evaluation and comparison of the models per-
formance for each wind farm follows. The paper
ends with some conclusions and remarks.

2 Data Mining Models Used

Data Mining encompasses different algorithms
from many scientific fields (statistics, artifi-
cial intelligence...) for building models (super-
vised methods) : Y = ¢(X) + ¢ where YV is
the variable to predict or explain and X =
(X1,Xs, ..., X,,) represents the vector of the n-
explanatory variables.e is the error of the model.
The aim is to approximate the function ¢ and
minimize the error. For that purpose, we used
both a linear and a non-linear approach.

2.1 Linear Models

Two versions of linear regression models have
been considered: one base version, which is used
as a simple reference model and a second one
that includes interactions. Interactions basically
consist in combining the input variables to cre-
ate extra variables used in the same linear set-
tings. This has the advantage of considering
non-linearities while keeping a simple linear set-
ting. However, this can enlarge considerably the
dimension of the problem.

The linear model without interaction can be
presented by the following formula:
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Y=X03+¢ (1)

where 8 = (81, B2, ..., Bn) represents the vec-
tor of linear regression coefficients to estimate.

If we take account of different hypothesis on e
(such as i.i.d.), we approximate the (-vector by
least square minimization on the learning set:
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For the linear regression with interaction,
cross products between variables are added to
the input variables. Then, the same method is
applied on this augmented input set.

2.2 Non-Linear Models

In this part, several non-linear models for wind
power forecasting are considered. Such mod-
els are better suited to account for the non-
linearity of the wind to power conversion. First,
neural networks are considered. Then, we con-
sider models based on classification and regres-
sion trees with a simple bagging version and a
more advanced version called random forest. Fi-
nally, we present a last approach based on sup-
port vector machines.

2.2.1 Neural Networks

A neural network is an ensemble of neurons (or
nodes) connected along several levels called layer
inspired by the structure of the human brain. It
is generally composed of three layers of neurons,
namely an input layer corresponding to explana-
tory variables, an output layer that provides a
response and one or several hidden layers. Neu-
rons of a same layer are never connected between
themselves.

Each neuron is affected a weight and passes
signals based on a specific transfer function. The
most used transfer function is the sigmoid, which
receives as input a weighted linear combination
of the output of the neurons of the previous
layer:

1

O = T ee)

The learning step of the neural network is
based on a back-propagation algorithm. The
principle is to adjust the different neuron weights
progressively by back-propagating the error

3)

from the output layer to the input layer. The
main advantage of the neural network is its ca-
pacity to model complex structures and account
for non-linear relations between the explanatory
variables and the output. Although, one of the
main drawbacks, is that the final performance of
a neural network is very sensitive to the design
of the network. The choice of the number of hid-
den layers and neurons contained in each layer
is very important. For instance integrating a
high number of neurons in the network permits
to model more complex relations but can also
lead to overfitting of the data and to poor out
of sample performances. In this paper, in order
to overcome this problem, a neural network ar-
chitecture optimisation algorithm based on the
parameter decay principle has been used (regu-
larisation of the problem). A second drawback is
that it is difficult to get insight on the learnt rela-
tion simply by looking at the information stored
in the network. In this way, neural networks are
generally considered as “black box” algorithms.

2.2.2 Random Forests

Bagging for Bootstrap Aggregating, is a method
for generating an ensemble of models con-
structed from samples bootstrap replicates [3].
These replicates are obtained by sampling uni-
formly with replacement from the original sam-
ples. The predictors are then combined by vot-
ing for classification or averaging for regression
[3]. The main advantage of averages of predic-
tions from several models (like bootstrap sam-
pling) is that it reduces the variance and predic-
tion error.

The base method used in the models hereafter
named “Bagging” and “Random Forest” is clas-
sification and regression trees (CARTSs) [4]. The
goal of CART's is to divide a sample of data using
binary rules making the child nodes less hetero-
geneous than the parent nodes. Once a tree is
grown it is possible to extract information from
the tree structure, which makes it also a tool for
data analysis. The main advantages of CART's
is that it permits to perform a regression or a
classification with high dimensional inputs and
the major disadvantage of the later is that it
is unstable i.e. a small change in the training
sample can generate large changes in the learned
predictor (classification or regression) [3]. The
Bagging algorithm has been used in the specific
case of binary tree and Random Forest is a ver-
sion more sophisticated of Bagging because it
adds a random input selection which consists in
selecting at random, at each node, a small group
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Case-studies
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Figure 1: Map representing the location of the three considered wind farms WF1, WF2 and WF3.

of input variables to split on. That way, the trees
built are more independent.

In the Random Forest approach, the condi-
tional mean E[Y|X = z] is approximated by the
averaged prediction of K single trees, each con-
structed with an i.i.d. vector 0y, k=1..K, which
represents the tree parameters defining how the
tree is grown (e.g. split points).

The main drawbacks of these two algorithms
are the important computing time of the learn-
ing step and trees storage but the advantages
are that an insensibility to overfitting thanks to
out-of-bag error and few parameters to adjust.
Moreover, Random Forest provides information
about the frequency of variables appearance in
trees, which can be used to determine the im-
portance of each input variable.

2.2.3 Support Vector Machines (SVM)

Support vector machines (SVM) are a recent
supervised learning methods used, initially for
classification, and generalized later for regres-
sion. They are based on Vapnik’s research about
learning theory. Support vector machines for
classification are based on two ideas. First, a
principle of maximum margin, which is the dis-
tance maximizing the separation frontier and
nearest elements called support vector. The
learning step is the optimization of this frontier

and can be presented like a quadratic optimiza-
tion problem. Secondly, the input dimension
space is transformed into a higher dimensional
space, thanks to a kernel function, where a max-
imal separating hyperplane is constructed. The
goal is to transform a complex (non-linear) low
dimension problem into a simple (linear) high
dimensional problem.

The SVM can be also used to predict a quan-
titative variable: “the Support Vector method
can also be applied to the case of regression,
maintaining all the main features that charac-
terise the maximal margin algorithm: a non-
linear function is learned by a linear learning
machine in a kernel-induced feature space while
the capacity of the system is controlled by a pa-
rameter that does not depend on the dimension-
ality of the space” Cristianini and Shawe-Taylor
(2000).

The main advantage of SVM is that the regu-
larisation technique makes the model very resis-
tant to overfitting. The main drawback of SVM
is that the computing time required might be
very high when compared to other non-linear
learning approaches.
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3 Case study description

Three wind farms in France, denoted as WF1,
WEF2, and, WF3, are considered. They are rep-
resentative of various terrain and climate con-
ditions. WF1 is situated on a complex terrain
and WF2, WF3 on a flat terrain. Hourly power
production time series are considered spanning
a period of 18 months from July 2004 to De-
cember 2005. For the same period, numerical
weather predictions (NWPs) by the ARPEGE
model of Meteo France are used. The forecasts
are provided once a day for horizons 0 to 60
hours ahead, with a 3-hour resolution, i.e. 20
values for each meteorological variable are pro-
vided per run.

The meteorological variables considered in
this study are 50 meter above ground level wind
speed and gust wind direction. These meteo-
rological variables were found to be the most
informative for these case study [5].

The variable to be predicted Y; is the hourly
average power production of each wind farm.
The explanatory variable vector (X;) contains
the predicted wind speed and wind direction by
the NWP model, the last measured wind power
and the forecast horizon. These two last vari-
ables permit to improve forecasts for the first
forecast horizons. The horizons of power pre-
dictions are the same as that of NWPs, which
range from 0 to 60 hours ahead, with a 3-
hour resolution. The available dataset is divided
into a learning-set and a test-set comprising 1
year and 6 months of data respectively. The
1 year learning-set permits to integrate all sea-
sonal variations.

4 Results

The chosen evaluation criteria are the Normal-
ized Mean Absolute Error:

Sty 20/

and the Normalized Root Mean Square Error:

NMAE(k) =

(t + klt))?
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NRMSE(k) = \/ Tim (€

where ¢ is the normalized prediction error, k
is the horizon and N is the number of samples in
the testing set. These forecasts are compared to
persistence, which is used as base line reference
model, and simply consists in using the latest
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Figure 2: Comparison of NMAE results in the
case of the wind farm WF1 situated on a com-
plex terrain

NMAE comparison of data mining methods for WF2
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Figure 3: Comparison of NMAE results in the

case of the wind farm WF2 situated on a flat
terrain

NMAE comparison of data mining methods for WF3
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Figure 4: Comparison of NMAE results in the
case of the wind farm WEF3 situated on a flat
terrain



European Wind Energy Conference - Brussels, Belgium, April 2008

NRMSE comparison of data mining methods for WF1
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Figure 5: Comparison of NRMSE results in the
case of the wind farm WF1 situated on a com-
plex terrain

NRMSE comparison of data mining methods for WF2
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Figure 6: Comparison of NRMSE results in the
case of the wind farm WF2 situated on a flat
terrain

NRMSE comparison of data mining methods for WF3
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Figure 7: Comparison of NRMSE results in the
case of the wind farm WF3 situated on a flat
terrain

observation as forecast for all horizons. Persis-
tence is commonly used as a benchmark model
in wind power forecasting.

The first common conclusion is that all models
outperform persistence (excepted for 0-horizon
which is a particular case corresponding to now-
casting) and the level of accuracy depends of
the terrain. Thus, we can observe a higher error
level for WF1, which is situated on a complex
terrain, compared to WF2 and WF3, which are
on flat terrains. Then, for the three wind farms,
we observe a global superiority of the non-linear
models over the linear ones. This could be easily
explained by the non-linear relationship between
wind and power.

Even if the non-linear models presented here
permit to improve the global performance when
compared to linear ones, it should be noticed
that the performances of the simple linear ap-
proach is still reasonably good when compared
to the persistence reference model. It should
also be noticed that the results presented here
are comparable to results found in the literature
for wind farms located in similar terrains.

5 Conclusions

This paper presents a comparison of the perfor-
mance of various data mining algorithms applied
to short-term wind power forecasting. The inter-
est of non-linear methods is illustrated for which
the performance is equivalent to that found in
the literature for wind farms located in simi-
lar terrains. The comparison has revealed that
Random Forest outperforms the rest of the mod-
els. This model, originally applied here for wind
power forecasting, is interesting since it does not
require a long architecture optimisation step,
only the number of trees in the forest has to
be optimised.

Moreover, a generalization of Random
Forests, Quantile Regression Forests give a
non-parametric way of estimating conditional
quantiles for high-dimensional predictor vari-
ables [6l B]. Thus provides an additional
information on the uncertainty of the predic-
tions for performing efficiently functions such as
reserves estimation, unit commitment, trading
in electricity markets, a.o. Such prediction (de-
terministic with prediction intervals) is named
probabilistic forecasting and are, nowadays, an
important research field.
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