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Bayesian inversion by parallel interating Markov hainsThomas Romary∗∗Centre de Géosienes, Equipe Géostatistique, Eole des Mines de Paris,35 rue Saint-Honoré ,77300, Fontainebleau, FraneApril 15, 2009
AbstratMarkov hains Monte-Carlo (MCMC) methods are known to produe samples of virtuallyany distribution. They have already been widely used in the resolution of non-linear inverseproblems where no analytial expression for the forward relation between data and model pa-rameters is available, and where linearization is unsuessful. However, in Bayesian inversion,the total number of simulations we an a�ord is highly related to the omputational ost of theforward model. Hene, the omplete browsing of the support of the posterior distribution ishardly performed at �nal time, espeially when the posterior is high dimensional and/or mul-timodal. In the latter ase, the hain may stay stuk in one of the modes. Reently, the ideaof making interat several Markov hains at di�erent temperatures has been explored. Thesemethods improve the mixing properties of lassial single MCMC. Furthermore, these meth-ods an make e�ient use of large CPU lusters, without inreasing the global omputationalost with respet to lassial MCMC.KeywordsInverse problem ; Bayesian inversion ; MCMC ; interating Markov hains ; tempering ;History mathing
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1 IntrodutionMonte-Carlo methods are beoming inreasingly important for the solution of nonlinear in-verse problems. Typially, the inverse problem is formulated as a searh for solutions �ttingthe data within a ertain tolerane, given by data unertainties. In a non-probabilisti set-ting this means that we searh for solutions with alulated data whose distane from theobserved is less than a �xed, positive number. In a Bayesian ontext, the tolerane is soft: alarge number of samples of statistially near-independent models from the a posterior proba-bility distribution are sought. Suh solutions are onsistent with data and prior information,as they �t the data within error bars, and adhere to soft prior onstraints given by a priorprobability distribution.Preisely, we onsider the study of a system X ∈ X , on whih we have an indiret measure-ment d, that is funtion of the state of X, modeled by F (X), and some a priori informationunder the form of the prior distribution P(X). We also onsider that the measurement d isa�eted by an error and that we know how to simulate F up to an approximation error, botherrors being aounted for by P(d|X). We also de�ne the joint distribution P(d,X). Then,assuming that all these distributions admit a density with respet to the Lebesgue measure,denoted f(·), the onditional density of X with respet to d takes the following form:
f(X|d) =

f(d|X)f(X)
∫

X f(d,X)dX
. (1)This is the Bayesian formulation of inverse problem and P(X|d), whose density f(X|d), isthe posterior distribution, see [1℄. The formula (1) shows that this problem an be viewedas a lassial statistial inferene problem, where we want to sample independent realizationsfrom the posterior distribution. Note that the normalization onstant in (1) is generally in-tratable in high-dimensional problems. Therefore, we onsider that the posterior is knownup to a onstant, being de�ned from the prior knowledge on the system studied and the datawith its assoiated measurement error.There exists several methods for solving (1) suh as the Kitanidis-Oliver algorithm (see[2℄ and [3℄), developed for petroleum engineering appliations and the neighbourhood algo-rithm ([4℄ and [5℄), developed for geophysial inverse problems. In spite of its universality thespeed of onvergene of the �rst one is ontroversial: it onsists in performing a large numberof optimizations with an observed datum perturbed aording to its measurement error. Itis partiularly di�ult to know how many optimizations should be performed. The seondone seems to be limited for low-dimensional problems: it an be seen as a geometri versionof an iterated importane sampling sheme (see e.g. [6℄, hapter 14). This artile fous onMonte-Carlo Markov hains (MCMC) methods for their universality and the relative ease oftheir implementation.MCMC methods suit indeed partiularly for this problem, as they are known to produesamples of virtually any posterior distribution. Two problems may arise then. On one hand,the dimension of the problem may be so large that the hain has to be run for an intratablenumber of iterations to onverge and to ahieve an e�ient sampling of the posterior, we saythat they have weak mixing properties. On the other hand, an evaluation of the forwardoperator F an be very omputer demanding so that the pratitioner wishes to minimizethe number of iterations. Moreover, when the posterior has several disonneted modes in ahigh-dimensional spae, whih is often the ase in nonlinear Bayesian inversion, the problemof exploring the whole support of the posterior is a di�ult one. It an be shown that evenfor very simple problems most lassial Markov hain algorithms an fail at identifying themain modes of the posterior, beause of their lak of mixing (see [7℄).2



We expose a method to improve the global e�ieny of the Markov hain by generating aolletion of hains in parallel at di�erent temperatures and allowing them to interat. Thismethod is not more omputer demanding than lassial MCMC sine it an be easily paral-lelized.This paper aims at providing researhers and engineers with some reipes to apply inter-ating MCMC methods. Thus, it begins in setion 2 with basis for MCMC methods, someexamples of lassial algorithm and earlier attempts to improve mixing properties like anneal-ing and tempering tehniques, whih rely on the same basi priniples as interating MCMCtehniques, exposed in setion 3. In setion 4, we will show an appliation to a reservoirengineering problem. The paper ends with some onlusions and perspetive of future work.2 Markov hains Monte-Carlo methodsMCMC, introdued by Metropolis et al. [8℄, is a popular method for generating samples fromvirtually any distribution π de�ned on (X ,B(X )), where B(X ) stands for the Borel sets of X .In partiular there is no need for the normalizing onstant of π to be known and the spae
X ⊆ R

d (for some integer d) on whih it is de�ned an be high dimensional. We reall heresome lassial results on MCMC methods. For a omprehensive review of MCMC, see [6℄,hapters 6 to 13. For a more detailed aount on Markov hains theory, see [9℄.2.1 PriniplesThe method onsists in simulating an ergodi Markov hain {Xn, n ≥ 0} on X with transitionprobability P suh that π is a stationary density for this hain, i.e. ∀A ∈ B(X ):
∫

X
P (x,A)π(x)dx = π(A). (2)Suh samples an be used e.g. to ompute integrals

π(h) =

∫

X
h(x)π(x)dx, (3)estimating this quantity by

Sn(h) =
1

n

n
∑

i=1

h(Xi), (4)for some h : X → R. A very useful onept in onstruting ergodi Markov hains is re-versibility. A Markov hain is reversible if it satis�es the detailed balane ondition:
P (x, dy)π(dx) = P (y, dx)π(dy). (5)This means that, if started in stationarity, the Markov hain has the same hane of startingat x and jumping to y as starting at y and jumping to x.We illustrate the priniples of MCMC with the Metropolis-Hastings (MH) update. Itrequires the hoie of a proposal distribution q. The role of q onsists in proposing potentialtransitions for the Markov hain. Given that the hain is urrently at x, a andidate y isaepted with probability α(x, y) de�ned as:

α(x, y) =

{

min
{

1, π(y)
π(x)

q(y,x)
q(x,y)

} if π(x)q(x, y) > 0,

1 otherwise. (6)3



Otherwise, it is rejeted and the Markov hain stays at its urrent loation x. The transitionkernel P of this Markov hain takes the form, for (x,A) ∈ X × B(X ):
P (x,A) =

∫

A
α(x, y)q(x, y)dy + 1A(x)

∫

X
(1 − α(x, y))q(x, y)dy. (7)The Markov hain de�ned by P is reversible with respet to π and therefore admits π asinvariant distribution. Conditions on the proposal distribution q that guarantee irreduibilityand positive reurrene are easy to meet and many satisfatory hoies are possible.2.2 Some examples of Metropolis-Hastings samplersThe arbitrariness of the hoie of q(x, ·) allows onsiderable freedom to design a multitudeof di�erent hains, eah with stationary distribution π, although in the Bayesian inversionframework, q should rely on the a priori distribution. Some examples inlude (see [6℄, hapter7, for more examples):1. the independent sampler (IMH): q(x, y) = q(y), where q is generally the prior in Bayesianinversion,2. the symmetri inrements random-walk sampler (SIMH): q(x, y) = q(|y − x|), where qan be a zero-mean version of the prior,3. the Langevin sampler (LMH): assuming that π is di�erentiable on X , it allows to takeadvantage of the gradient information to give the sampling diretion, q takes the form:

q(x, y) ∼ N
(

x +
h2

2
∇ log(π(x)), h2Id

)

, (8)where h is a parameter to hoose aording to e.g. [10℄ or [11℄. Note that a bad hoieof h an indue errati behaviour of the hain,4. The adaptive algorithm of [12℄ (ASIMH): In this algorithm, y is proposed aording to
qθn

(x, ·) = N (x,Γn), where θ = (µ,Γ). We also onsider a non-dereasing sequene ofpositive step sizes {γn}, suh that ∑∞
n=1 γn = ∞ and ∑∞

n=1 γ1+δ
n < ∞ for some δ > 0.In pratie, we generally use: γn = 1/n, as suggested in [12℄. The parameter estimationalgorithm takes the following form:

µn+1 = µn + γn+1 (Xn+1 − µn) , n ≥ 0,

Γn+1 = Γn + γn+1

(

(Xn+1 − µn) (Xn+1 − µn)tr − Γn

)

, (9)5. The Gibbs sampler: Here X = X1×. . .×Xd, and q = qi leaves all oordinates �xed exeptthe ith one, whih it proposes aording to the onditional distribution (xi|{xj}j 6=i). Thisimplies that α(x, y) = 1 for all x and y, so there are no rejetions. If the resulting ithomponent Gibbs sampler is alled Pi, then these omponents an be ombined to yieldthe random-san Gibbs sampler whih is the average PRS = 1
d(P1 + . . . + Pd), or thedeterministi-san Gibbs sampler whih is the produt PDU = P1 · · ·Pd.2.3 CommentsOne of the problems with Metropolis-Hastings algorithms is the abundane of hoie avail-able for hoosing the proposal distribution q(x, ·). For instane even if the type of algorithm4



(perhaps the SIMH) has been hosen, it is neessary to sale the proposal variane to beappropriate for π(·). Suh a problem is known as a saling problem. To make this questionmore onrete, onsider the following problem. Suppose that q(x, ·) is distributed as the d-dimensional normal distribution N (x, σ2Id), for some σ2 > 0. We reall that the aeptaneprobabilities for this algorithm are given by (6). For very small values of σ2, small jumps areattempted by the algorithm, and beause of the form of (6), these moves are almost alwaysaepted. The Markov hain mixes very slowly beause its inrements are so small. On theother hand, if σ2 is hosen to be very large, long distane jumps are attempted by the algo-rithm, most of whih are rejeted. The algorithm therefore spends long periods of time in thesame state, and thus the algorithm still onverges slowly. For this problem, "very large" and"very small" have to be interpreted in a way related to the partiular form of π. It seemsreasonable that "moderate" values of σ2 should be preferred. However, it is di�ult to seehow to �gure out what values are "moderate", espeially if π is very ompliated. In Bayesianinversion ontext, the random walk type algorithms, like the SIMH or the LMH, generally failat identifying di�erent modes. In large dimensional spae, the saling fator generally has tobe "small" so as to get an aeptable aeptane rate (6). Therefore, these two algorithmsperform generally a loal exploration and are hardly able to jump from one mode to another.We will then refer to them as "loal" samplers. Note that they are also generally really slowto onverge towards the stationary regime in Bayesian inversion ontext.Conversely, the IMH does not need any tuning. It will explore largely the surfae of theposterior distribution and we will refer to it as a "global" sampler. Nevertheless, in pratialappliations, unless q is the posterior distribution, the transitions will obviously almost alwaysbe rejeted.Finally, we an notie here that the hain generated by the adaptive algorithm is no longerhomogeneous, but it an be proved (see [12℄, [13℄ and [14℄ in a more general framework) thatit has the orret ergodi properties. The idea of adaptive sampling is to improve the pro-posal e�ieny, making it as lose as possible to the posterior density. However, it should bestressed here that the algorithm presented above generally fails in multi-modal ontext for alow number of iterations (see e.g. [7℄). Regarding the Gibbs sampler, it does not seem to bewell adapted to the Bayesian inversion problem: the important number of alls of the forwardmodel limits its relevany.Due to the sequential nature of MCMC algorithm and to takle multi-modality problems,MCMC pratitioners generally use several hains that they run in parallel. By simulatingseveral hains, variability and dependene on the initial value are redued and it should beeasier to ontrol onvergene to the stationary distribution by omparing the estimation, us-ing di�erent hains, of quantities of interest. However, good performanes of these parallelmethods require a degree of a priori knowledge on the distribution of interest π, in orderto onstrut an initial distribution on X whih takes into aount the features of π (modes,shape of high density regions, et.). This is rarely the ase in Bayesian inversion. Moreover,in highly non-linear setups, like in Bayesian inversion, a slow mixing hain will presumablystay in the neighborhood of the starting point with a high probability (see [6℄ hapter 12 fora more thorough disussion).Due to the omplexity of the posterior distribution (e.g. multi-modality and/or disonnetedsupport) in Bayesian inversion problems and lassial limitations of MH algorithms, othermethods than lassial MH algorithm should be investigated. Simulated annealing and tem-pering, whih are presented in the next paragraph, onsists in studying modi�ed versions ofthe posterior.
5



2.4 Simulated annealing and temperingThe simulated annealing algorithm has been introdued by [8℄, then generalized by [15℄ foroptimization problems. It an be applied to both optimization and simulation problems (see[6℄ and referene therein). The simulated tempering has been introdued independently in[16℄ and [17℄.The fundamental idea of these algorithms is that a hange of sale, named temperature, allowslarger moves on the surfae of the distribution to explore, ompared with lassial MCMCmethods. Indeed, this hange of sale allows to avoid the hain to remain trapped in a loalmode.The name and inspiration of the �rst one ome from annealing in metallurgy, a tehniqueinvolving heating and ontrolled ooling of a material to inrease the size of its rystalsand redue their defets. The heat auses the atoms to beome unstuk from their initialpositions (a loal minimum of the internal energy) and wander randomly through states ofhigher energy; the slow ooling gives them more hanes of �nding on�gurations with lowerinternal energy than the initial one. Conversely the tempering is a brutal ooling followed by aa ontrolled reheating of the work piee to a temperature below its lower ritial temperature.Preipitation hardening alloys, like many grades of aluminum and super alloys, are temperedto preipitate intermetalli partiles whih strengthen the metal.These two methods aim partiularly at generating samples from Gibbs distribution.De�nition 2.1 A X -valued random �eld X, is a Gibbs �eld of energy E, if its probabilitydensity funtion (with respet to the Lebesgue measure) is:
f(x) =

1

Z e−E(x), Z =

∫

X
e−E(x)dx, (10)named Gibbs density.For pratial problems, the onstant Z is generally intratable due to the dimension of X .Note that in a wide variety of inverse problems, the posterior distribution (1) takes the form(10); for instane when both prior and measurement error are assumed Gaussian. Note alsothat simulated annealing and tempering are not on�ned to ope with Gibbs distributions.We present here both algorithms in this framework for sake of simpliity. For other kind oftarget distributions π, the pratitioner has to onsider �attened versions given by πT = π1/T .2.4.1 Simulated annealingGiven a positive temperature T , a Markov hain X is generated from the following Gibbsdensity:

πT (x) ∝ exp (−E(x)/T ). (11)The simulated annealing is performed by gradually lowering the temperature T from ahigh value to near-zero. Close to T = 0 the Gibbs distribution approximates a delta funtionat the global minimum for E(x) (if it is unique). For simulation purposes, the ooling an bestopped at the value T = 1.This algorithm an be viewed as a non-homogeneous version of the MH algorithm. In-deed, sine T dereases along the algorithm, the kernel of the hain varies with time. Classialtheoretial results on Markov hains does not apply for this algorithm. Heuristi rules are gen-erally applied to ensure the validity of simulated annealing: the starting temperature must behigh enough and its derease slow enough. A onvergene result exists, for optimization pur-pose, with the ondition that T dereases as 1/ log(n). In pratie, a geometrially dereasingsequene is generally used. 6



2.4.2 Simulated temperingThe priniple of simulated tempering is linked to the simulated annealing one in the sense thatwe will again onsider Gibbs distributions saled by a temperature parameter T . However,this algorithm aims at sampling from a Gibbs distribution π rather than minimizing theenergy of the system. We onsider here a �nite sequene of temperatures and the assoiatedGibbs distributions. In this algorithm, we authorize the hain to hange temperature levelaording to a given probability. This will allow the hain to go bak to higher temperatures,esaping eventual loal modes of the target distribution, that results in better mixing.We �rst de�ne an inreasing sequene of temperatures 1 = T0 < . . . < TK , with its assoiatedGibbs densities πi(x) ∝ e
−

E(x)
Ti , an auxiliary {0, . . . ,K}-valued variable M , and the jointdistribution:
µ(x,m) = ρmπ(x),

K
∑

i=0

ρm = 1. (12)We also de�ne the probabilities pU and pD of moving "up", from m to m + 1, and "down",from m to m − 1, with only T hanging, the hain being at temperature Tm, and the proba-bility of hoosing a �xed level move (1 − pU − pD).The priniple is to simulate a X × {0, . . . ,K}-valued hain (Xn,Mn). Denoting respetively
qi→i+1(Xn+1|Xn = xn) and qi+1→i(Xn+1|Xn = xn) the probabilities of transition proposi-tion towards the superior and the inferior temperature level, the aeptane probability of atransition from Ti to Ti+1 is proportional to:

ρi→i+1(xn, xn+1) =
pD

pU

πi+1

πi

qi→i+1(Xn+1 = xn+1|Xn = xn)

qi+1→i(Xn+1 = xn+1|Xn = xn)
. (13)To maintain the detailed balane ondition, it is then neessary that ρi+1→i(xn+1, xn) =

1/ρi→i+1(xn, xn+1) and to hoose the proposition distributions qi→i+1(Xn+1|Xn = xn) and
qi+1→i(Xn+1|Xn = xn) aordingly. Still, it is important to notie that (13) depends on thenormalization onstants of πi+1 and πi. We an bypass this di�ulty by designing an equalnumber of moves from m to m+1 and from m+1 to m and by aepting the entire sequeneas a single proposal, thus aneling the normalizing onstants in the aeptane probability,as desribed e.g. in [18℄.2.4.3 CommentsAttempts to improve mixing properties of the hain by simulated annealing fail generallybeause of the monotonous derease in temperature; if the hain gets in a loal mode, it maybe impossible to esape it if the temperature is already too low.Conerning the simulated tempering, the potential gain in a better exploration of thesupport of the target distribution, so as to say, a better mixing, does not seem to ompensatefor the inreased amount of forward operator evaluations for inverse problems (2K bigger, forthe sheme presented above). However, the presentation of this method is a good introdutionto the interating Markov hains algorithms exposed in the next setion.3 Parallel interating Markov hainsThe priniple of making interat Markov Chains �rst appears in [19℄ under the name paralleltempering (PT). It has been mostly applied in physio-hemial simulations, see [20℄ andreferenes therein. It is known in the literature under di�erent names suh as: exhange7



Monte-Carlo, Metropolis oupled-hain, see [21℄ for a review. The priniple of PT is tosimulate a number (K + 1) of replia of the system of interest by MCMC, eah at a di�erenttemperature, in the sense of the simulated annealing, and to allow the hains to exhangeinformation, swapping their urrent state. The high temperature systems are generally ableto sample large volumes of state spae, whereas low temperature systems, whilst havingpreise sampling in a loal region of state spae, may beome trapped in loal energy minimaduring the timesale of a typial omputer simulation. Parallel tempering ahieves goodsampling by allowing the systems at di�erent temperatures to exhange their state. Thus,the inlusion of higher temperature systems ensures that the lower temperature systems anaess a representative set of low-temperature regions of state spae.Simulation of (K + 1) replias, rather than one, requires on the order of (K + 1) timesmore omputational e�ort. This extra expense of PT is one of the reasons for the initially slowadoption of the method. Eventually, it beame lear that a PT simulation is more than (K +
1) times more e�ient than a standard, single-temperature Monte- Carlo simulation. Thisinreased e�ieny derives from allowing the lower temperature systems to sample regions ofstate spae that they would not have been able to aess, even if regular sampling had beenonduted for a single-temperature simulation that was (K +1) times as long. It is also worthnotiing that PT an make e�ient use of large CPU lusters, where di�erent replias an berun in parallel, unlike lassial MCMC sampling that are sequential methods. An additionalbene�t of the PT method is the generation of results for a range of temperatures, whih mayalso be of interest to the investigator. It is now widely appreiated that PT is a useful andpowerful omputational method.More reently, some researhers in the statistial ommunity took attention on PT andmore generally on interating Markov Chains. They propose a general theoretial frameworkand new algorithms in order to improve the exhange information step addressed above.Two main algorithms drawn our attention: the equi-energy sampler (EES) of [22℄ and thepopulation importane-resampling MCMC sampler (PIR) of [23℄, whih allows to go bak inthe history of the hain. More preisely, these two last algorithms are based on self interatingapproximations of non-linear Markov kernels, de�ned by Andrieu et al. [23℄. We now desribethese methods in the Bayesian inversion ontext.3.1 Desription of the algorithmsWe �rst reall that our aim is to simulate realizations from the posterior distribution (1). Weassume that the posterior distribution π(X) = f(X|d) takes the form of a Gibbs distribution,that is:

π(X) = exp(−E(X)), (14)where E(X) is the energy of the system at the state X. We �rst de�ne the family {π(l), l =
0 . . . K} of distributions we want to simulate from, suh that:

π(l)(x) ∝ e−El(x), (15)where El(x) = E(x)
Tl

, where Tl is the temperature at whih the system under study is onsid-ered. The Tl satisfy: T0 = 1 < T1 < . . . < TK < +∞, so that π(0) = π. These distributionsare thus a family of tempered versions of P(X|d). To go bak to the analogy with the met-allurgy, these distributions represent the states of the metal at eah onsidered temperature.At high temperatures, the system an aess to high energy states, whereas at low ones, itwill attain lower energy, i.e. more stable states. We will also talk of tempered energies to
8



denote the El. The parallel algorithms aim to simulate from:
Π(x) =

K
∏

l=0

π(l)(x), (16)whilst allowing exhanges between states at di�erent temperatures. Flattened versions of π(0):
π(1), . . . , π(K) are easier to simulate. Thus they an provide information on π(0). Partiularly,the system at T0 an exhibit a wide range of disonneted meta-stable states (i.e. the di�erentmodes of the posterior) and typially, a single Markov hain is not able to visit all of themin the time of the simulation. So, exhanging with states generated at higher temperatureallows to explore better the support of the posterior.Di�erent strategies an be adopted to exhange information between hains at adjaenttemperatures. For l = 0, . . . ,K − 1, we de�ne the importane funtion:

r(l)(x) = e−(El(x)−El+1(x)), (17)whih is the un-normalized ratio of the distributions π(l) and π(l+1) at a given state x.From now on, we denote by x = (x(0), . . . , x(K)) ∈ XK+1 the urrent state of the Markov hainthat aims at simulating from Π, de�ned in (16). The method an be formalized by de�ningthe following kernel Pn at time n, given all the previous states x0:n−1 = (x0, . . . , xn−1) andfor A0 × . . . × AK ∈ B(XK+1):
Pn(x0:n−1;A0 × . . . × AK) = P (K)(x(K), AK)

K−1
∏

l=0

P
(l)

x
(l+1)
0:n−1

(x(l), Al), (18)where we simulate from π(K), the hain at the highest temperature TK , using the lassial MHkernel P (K)(·, ·), whereas at the other temperatures, for x
(l+1)
0:n−1 ∈ X n, x(l) ∈ X and A ∈ B(X ),we will use the heterogeneous Markov kernel:

P
(l)

x
(l+1)
0:n−1

(x(l);A) = θP (l)(x(l), A) + (1 − θ)

∫

X
ν

(l)

x
(l+1)
0:n−1

(x(l), dy)T (l)(y, x(l);A), (19)where,
ν

(l)

x
(l+1)
0:n−1

(x(l), dy) =

∑n−1
i=0 ω

(l)
n,i(x

(l), x
(l+1)
i )δ

x
(l+1)
i

(dy)

∑n−1
i=0 ω

(l)
n,i(x

(l), x
(l+1)
i )

(20)and in the three algorithms onsidered here T (l) will take the following form:
T (l)(y, x(l);A) = min

{

1,
r(l)(y)

r(l)(x(l))

}

1A(y) +

(

1 − min

{

1,
r(l)(y)

r(l)(x(l))

})

1A(x(l)). (21)In other words, equation (19) states that at time step n, temperature Tl, with probability θ,a lassial MHmove will be performed aording to the Markov kernel P (l)(x(l), A). Otherwise,with probability (1-θ), an exhange move will be proposed. It onsists in hoosing a state yamong x
(l+1)
0:n−1, the past states of the hain at temperature Tl+1, from the empirial distribution

ν
(l)

x
(l+1)
0:n−1

(20). This move is then aepted or rejeted aording to T (l) (21). Preisely, goingbak to (17), it is aepted with probability:
min

{

1,
r(l)(y)

r(l)(x(l))

}

= min

{

1, exp

((

1

Tl
− 1

Tl+1

)

(

E(x(l)) − E(y)
)

)}

,9



that is, if the energy of the proposed state y is lower than that of x(l), the exhange will besystematially aepted.The empirial distribution ν
(l)

x
(l+1)
0:n−1

an be viewed as an importane sampling estimate of
π(l) with the instrumental law π(l+1) onstruted from the past states x

(l+1)
0:n−1 of the hain attemperature Tl+1. Then, an exhange amounts to simulate diretly from an approximate formof π(l). Note that this will regenerate the hain and hene redue the autoorrelation alongtime.The three algorithms (PT, EES, PIR), onsidered in this artile an be written in thisframework, and di�er only in the formulation of the weights ω

(l)
n,i. For some (y, z) ∈ X 2, wehave:1. for the PT algorithm:

ω
(l)
n,i(y, z) = 1i=n−1,it is only possible to go to the urrent state of the hain at the adjaent higher temper-ature,2. for the EES algorithm, given a sequene of energy levels E0 < E1 < . . . < EK < EK+1 =

∞ de�ning a partition: X =
⋃K

l=0 Xl of energy rings: Xl = {x ∈ X : El < E(x) < El+1}and the funtion I(x) = l if x ∈ Xl, then the ωn,i take the form:
ω

(l)
n,i(y, z) = 1XI(y)

(z),that is, the new state of the hain at temperature Tl will be taken uniformly among thestates x
(l+1)
0:n−1 of the hain at temperature Tl+1 that are in the same energy ring as theurrent state,3. for the PIR algorithm, the weights ωn,i take the following form:

ω
(l)
n,i(y, z) = r(l)(z),i.e. we obtain the new state by resampling from x

(l+1)
0:n−1 with the weights ω.The main idea behind the last two algorithms is that the kernel de�ned in (19) will onvergetowards the following limiting kernel:

P
(l)

x
(l+1)
0:n−1

(x(l);A) = θP (l)(x(l), A) + (1 − θ)R(l)(x(l), A), (22)where R(l) is a MH kernel, whose proposal distribution is given by:
• Q

(l)
EES(x, dy) ∝ π(l+1)(y)1XI(x)

(y)λ(dy) for the EES,
• Q

(l)
PIR(x, dy) = π(l)(dy) for the PIR algorithm.Obviously the onvergene towards R(l) will not be ahieved in the time of the simulation,but its approximation at time n will help to sample from the posterior, partiularly to spana larger part of the state spae.Finally, it is worth noting that for all three algorithms, we an use the entire samplegenerated, reweighting the states aording to the temperature by the following importaneweights:

η(l)(x) = e−(E0(x)−El(x)), (23)10



in order to ompute estimates of Ih = Eπ0 [h(X)], for some h. Hene, the estimate Îh, after
N iteration of the algorithm will take the form:

Îh =
K
∑

l=0

∑N
i=0 η(l)(x

(l)
i )h(x

(l)
i )

∑N
i=0 η(l)(x

(l)
i )

. (24)It has been shown numerially in [22℄ that using the reweighted entire sample will providebetter estimates than using only x
(0)
0:N . Ergodi properties of the whole hain X ∈ XK+1 andasymptoti results (law of large number, entral limit theorem) regarding (24) follow diretlyfrom the properties of eah hain used (see [22℄ and [23℄).Conerning the hoie of the parameters, some heuristi rules exist and are disussed ine.g. [21℄ for the PT algorithm and in [22℄ for the EES. Unfortunately, this kind of informationdoes not exist yet in the literature for the PIR. The hoie depends mainly on the problemaddressed. We give below a few reipes to tune the parameters.3.2 Tuning the parametersAs the algorithms proposed here are fairly new, we think that some omments from ourexperiene an be useful for future pratitioners. These guidelines are purely empirial, basedon numerial experiments and our own re�etion. We will fous on four di�erent points forthe EES and the PIR algorithms:1. the kernel to hoose, as a funtion of the temperature,2. the sequene of temperature to hoose,3. the number of hains,4. the probability of proposing exhange between hains.As already laimed, the idea of applying these methods is to improve the mixing of the hain.Then we have to hoose kernels that will make e�etive this assumption. At the highesttemperature, large moves tend to be aepted, even though the energy level reahed is notas low as the one �nally aimed. Thus, it is of great interest to use a fast mixing kernelthat annot be used at lower energy levels beause its transition would be rejeted. Wethen reommend to use a "global" sampler like the independent sampler presented in setion2.2. However, the highest temperature has to be hosen so that the transition aeptanerate is high enough (see below). Conversely, at low temperatures, it is of interest to have akernel with good loal properties, like the Langevin sampler or a random walk with smallsteps, that will explore the posterior around the urrently identi�ed mode. The point is thento design the kernels between the highest and the lowest temperature levels. The di�ultyis to hoose kernels that progressively worsen their global properties, while inreasing loalproperties, when desending the temperature ladder. We mean progressively in the sense thatthe exhange proposal aeptation rate has to stay at a satisfatory level between eah hain.In this regard, the kernels proposed in [24℄ should be useful. In high-dimensional problems, thenumber of omponents a�eted at eah transition should vary aording to the temperature,modifying more omponents at high levels than at lower ones, see the appliation in setion4. The sequene of temperatures has to be hosen so as to obtain a satisfatory exhangeaeptation rate. In the literature about PT (e.g [20℄, [21℄), most authors propose to distributethe temperature geometrially. In our appliations, we followed this advie and it appeared to11



work well. The problem is then to hoose the highest temperature TK and the number K, thelowest temperature being always 1. TK has to be hosen aording to the problem onsidered.Pratially, a preliminary study of the energy has to be onduted. This study onsists inthe omputation the energies for an i.i.d. sample (x1, . . . , xn) generated from the prior andalulating its mean 1
n

∑n
i=1 E(xi). More preisely, assuming that the prior distribution on

X is given by g(X) and that the measurement error is Gaussian with identity ovariane, Fdenoting the forward model, the posterior will take the following form:
π(X) ∝ exp(−E(x)) = exp

(

−1

2
‖d − F (X)‖2 + log(g(X))

)

. (25)Considering that the realizations X from the posterior show no error, that is F (X) = d, the�rst term in the expression above vanishes and the energy of the system onditioned by dshould be around E[− log(g(X))], where E stands for the mathematial expetation, if theprior has been hosen orretly. The idea is then to hoose the highest temperature TK soas to have 1
nTK

∑n
i=1 E(xi) ≈ E[− log(g(X))]. Note that this rule works also when the mea-surement error is not Gaussian; it needs however to be entered. This hoie will ensure asatisfatory transition aeptane rate when using the independent sampler a�eting all theomponents at the highest level.These onsiderations about kernels and temperatures are losely related to the number

K of hains you use. Partiularly, it is important not to employ a too big number. Indeed,using more hains will slow the input of information from the highest temperature level to thelowest, the one of interest. Conversely, the number of hains has to be large enough to allowthem to exhange information at a good rate. The temperature ladder is then onstruteddistributing the temperatures geometrially between TK and T0 = 1. If the number of hainsis su�ient, it allows generally a good overlapping of the histograms of the tempered energies,induing the ourrene of exhanges. The number of temperatures to use should then be theminimum number that ensures a good overlapping of the histograms of the tempered energies.Regarding the proposal rate of information exhange, there is again a balane to do be-tween high and low rates. A high rate will enourage information exhange, but will slowloal exploration. Conversely, a low rate will hamper the proess of exhanging information.This depends highly on the dimension of the problem: loal exploration is obviously slowerin high dimensional spaes. It should generally be between 0.05 and 0.3.As a onlusion, we an say that on eah four points addressed here, there is a balaneto make. The idea is to tune the di�erent parameters in order to allow e�ient informationexhange, while allowing good loal exploration at low temperatures and fast mixing at highones. It may depend strongly on the problem to solve. However, as explained above, a pre-liminary study of the energies of an i.i.d. sample generated from the posterior should allow totune satisfatorily the parameters. Like MCMC methods, every applied use of these methodsrequires instint and understanding both about the underlying model and about the Markovhains being used.3.3 PT, EES or PIR ?Among the three algorithms proposed here, we laim that the PIR outperforms the two othersfor Bayesian inversion problems. It is lear that the PT has weaker properties than the twoothers beause it does not aount for the history of the hains. Comparing the EES andthe PIR, we think the latter is the most suited for our problem. Indeed, onsidering that thelower is the temperature, the slower the hain will enter the stationary regime, we an remarkthat the PIR does not need the hains to be in stationary regime before to allow exhanges,12



ontrarily to the EES algorithm. Indeed, in the EES, the exhange proposal is made in thesame energy ring as the urrent state. Then, if the hain of interest (i.e. at T0) has not reahedthe stationary regime and is still at high energy levels, the exhange proposal will be in thesame energy ring as the urrent state. Therefore, it will not help to attain stationary regime.Conversely, the PIR proposes exhange proposals aording to an importane sampling step,onstruted on the states generated at the higher adjaent temperature. The proposals arethen more likely at low energy levels and helps the hain to enter faster the stationary regime.4 Appliation to reservoir engineering4.1 IntrodutionIn oil industry and subsurfae hydrology, geostatistial models ([25℄) are often used to repre-sent the spatial distribution of di�erent lithofaies in the reservoir. Two main model familiesexist: multiple point ([26℄) and trunated Gaussian models ([27℄). We fous here on the latter.Conditioning the spatial distribution of di�erent lithofaies in the reservoir to produtiondata, suh as umulative oil prodution, water ut, is a highly hallenging task in reservoirmodeling. It onsists in solving an ill-posed inverse problem: given a prior knowledge on therandom �eld governing the lithofaies spatial distribution in the reservoir, typially a geo-statistial model, we aim at �nding multiple realizations of this model that will exhibit thesame dynamial behaviour of the true reservoir. In other words, we want to sample fromthe posterior distribution de�ned in the Bayesian inversion framework. This will improve ourknowledge on the reservoir and indiate us what should be the best exploitation strategy,where to dig new wells, in funtion of all the information gathered. The dynamial behaviourof a given realization is omputed by a �uid-�ow simulator F .4.2 The aseWe onsider a ase where the prior on the lithofaies distribution is a 2-dimensional thresh-olded Gaussian model (see e.g. [25℄), with the following harateristis:- its size is 2500 × 2500m2,- it is disretized on a regular grid of N = 50 × 50 bloks,- it is 10 m thik,- the underlying Gaussian random �eld X has an isotropi spherial ovariane struturewith a range equal to 600 m (a quarter the �eld edge size),- it is omposed of two lithofaies: A (50% with permeability 500md) and B (50% withpermeability 10md),- we put two wells in this �eld: an injetor at grid node (3, 3) and a produer at (48, 48),- the porosity is assumed onstant at 0.25.Pratially, X is a Gaussian random �eld with mean zero and spherial ovariane:
Γ(u, v) = 1 − 3

‖u − v‖
2a

− ‖u − v‖3

2a3
1‖u−v‖<a,
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Figure 2: Water ut urvesof an i.i.d. sample and refer-ene.whose range a is a quarter the edge of the �eld (see [25℄). The lithofaies �eld is onstrutedthresholding X:
T (X) = 1X<0.When T (X) = 1, the orresponding ells will be faies A, otherwise B, with its assoiatedpermeability value.The �eld is assumed to be saturated in oil at time zero. The �uid �ow is simulated with3DSL © [28℄, a streamline �uid �ow simulator, during 5000 days with an injetion rate at

5000 m3/day and a pressure of 200 bars at the produer.Given a referene realization of the �eld X∗ and water ut D∗ omputed on 2000 days, weattempt to ondition the geostatistial model X to D∗ (the water ut being the proportion ofwater in the oil produed at eah time step). Aording to the methodology introdued in [29℄,[7℄, and [30℄, we hoose to use a trunated Karhunen-Loève ([31℄) expansion with M = 100omponents to represent the �eld. Hene, this approximation redues the dimension of theinferene problem from 2500 to 100, whereas the �uid �ow results remain slightly unhanged.The posterior distribution takes the following form:
P (X(M)|D∗) ∝ e

 

− 1
2
‖D∗−F (X(M))‖2− 1

2
‖X(M)−µ‖2

Γ−1
(M)

!

, (26)where Γ(M) = Φ(M)ΛΦtr
(M),

Φ(M) is a L × M matrix whose olumn vetors are the φi(x),

Λ is a diagonal M × M matrix whose diagonal omponents are the λi,where φi(x) and λi are respetively the eigenfuntions and eigenvalues of Γ(M). Here, D∗and F (X(M)) are both funtions of time. The ovariane of the measurement error on thewater ut is assumed to be the identity matrix. We represent the referene realization of the�eld onsidered here in �gure 1. We also represent in �gure 2 the referene water ut urvetogether with a sample of urves omputed for a sample of 200 independent realizations ofthe prior. This sample is used to tune the parameters of the algorithm as explained in setion3.2.4.3 Choie of the parameters of the PIR algorithmWe an see in �gure 1 that there is an important portion of highly permeable (500 md) faies(in white) in the diagonal axis linking the two wells. Figure 2 shows its partiular water ut14



pro�le: after the early water breakthrough (time when the water ut beomes stritly positive),the water ut inreases very fast, then slows down. This pro�le is very di�erent from that ofthe urves of 200 independent realizations of X. Indeed, the minimum energy alulated forthis sample is about 3000, with an average around 20000, whereas we expet the energies tobe around 50 for the mathed sample (see setion 3.2). That proves how hallenging is ourproblem. In order to solve it, that is to sample from (26), we implement the PIR algorithmand a lassial omponent-wise independent MH algorithm, that we will all single hain(SC) algorithm. The hoie of the di�erent parameters, set after some experiments, of thePIR algorithm is inspired by pratial onsiderations given in setion 3.2.We use 5 di�erent temperatures, distributed geometrially between T0 = 1 and T4 = 400.A geometri distribution of the temperatures is then hosen between the two extremal ones.Namely, we take Tl = T0

(

T4
T0

)l/4 for l = 1, 2, 3. Hene, we use the the following temperatureladder:
T0 = 1.000 < T1 = 4.729 < T2 = 22.361 < T3 = 105.737 < T4 = 400.000.Thus, we simulate the 5 Markov hains (X(l)) at the temperature T l. At T0, T1, T2, we sim-ulate from a symmetri inrements random walk MH algorithm with a step variane 0.15

√
Tl,a�eting respetively 5, 20 and 50 omponents. At T3, we simulate from an independent sam-pler a�eting 80 omponents. At T4, we simulate from a global independent sampler. In otherwords, proportionally to the temperature, we propose larger moves, using global samplers atthe two highest temperatures. Modifying less omponents at low temperature results in betteraeptane rates in our high dimensional spae (M = 100) and allows loal exploration ofthe posterior. Moreover, the moves at the highest temperatures a�et more omponents, thusimprove the mixing of these hains and feed the hains (X(0)), (X(1)), (X(2)) with states,that they ould not have attained without the exhange steps. After a few experiments, weallowed the hains to exhange information aording to the PIR sheme just after the �rstiteration with a probability of 0.05, to ensure loal exploration between exhange steps.4.4 ResultsWe ran both algorithm for 10000 iterations. The PIR algorithm took 50 hours to run on adesktop omputer with a single proessor AMD Opteron 146 2.0GHz and the SC algorithmtook about 10 hours. Note that having implemented the PIR algorithm on a parallel omputerarhiteture, it would have taken the same time as the SC.In �gures 3a and 3b, we represent respetively the energy of the states of the 5 hains usedin the PIR algorithm, and the energy of the states generated by the single hain.Figure 3a shows the energy of the states of the 5 hains, as a funtion of the number ofiterations. For the lower urve, orresponding to T0, we observe a stabilization after about

200 iterations, around levels of energy orresponding to the expeted order of magnitude ofthe posterior mean energy. Indeed, allowing exhanges sine the beginning of the hain a-elerates its onvergene. As all the other hains show a stabilized pro�le of energy after thisnumber of iterations, we onsider it as the end of the burn-in period, namely eah hain isassumed in stationary regime beyond this number of iterations. Moreover, we an see thateah ouple of hains at adjaent temperatures show overlapping energy pro�les, allowing theexhanges between the two hains. Indeed, the empirial exhange aeptane rate has beenfound between 0.6 and 0.8 for eah ouple of adjaent hains.Figure 3b shows that the SC algorithm exhibits a rather fast onvergene towards the sta-tionary regime, attaining energy levels around 50 in about 250 iterations. This amazingly fastonvergene is probably due to the starting state generated. It has an energy below 1000,15
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95% percentile confidence intervalb.Figure 4: Median, 95% perentile on�dene interval and referene water ut (a. PIR algo-rithm, b. SC).In �gure 4a, we an see that for the mathed period (up to 2000 days), the median of thesample water ut perfetly mathes the referene. Moreover, the 95% on�dene interval isextremely thin around the referene water ut until 2000 days. Then it widens for the next3000 days. In addition, the referene water ut stays in the 95% on�dene interval and isquite lose to the median. This validates our sample for predition purposes.Conversely, in �gure 4b, although the referene water ut is also orretly mathed by thesample generated by the SC algorithm, its predition abilities are rather weak with respet tothe PIR algorithm: the on�dene interval generated is still thin beyond 2000 days and doesnot inlude the referene water ut. This is due to the only loal exploration performed bythis algorithm.Figure 5 shows 7 realizations by the PIR and one by SC. First, the aspet of the realizationsis far smoother than the referene. This is due to the approximation by a trunated Karhunen-Loève expansion with only M = 100 omponents. Seond, the realizations generated by PIR(a to g) are learly di�erent between eah other (we did not reprodue here the whole varietyof maps generated). This illustrates the good exploration of the posterior (26) arried outby the PIR, due to the improved mixing properties with respet to lassial single MCMC.Finally, all realizations generated by the SC are similar between eah other (�gure 5h). It16
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h.Figure 5: 7 realizations from the posterior generated by the PIR (a. to g.) and one generatedby the SC (h.).has only performed a loal exploration. Note that all the maps generated by both algorithmsreprodue a link of highly permeable faies between the two wells.Besides, it is worth noting that the PIR exhibits a global empirial aeptane rate ofabout 0.4, whereas the SC shows a empirial aeptane rate around 0.1. In other words,omparatively, we throw away twie more �uid-�ow simulations with the SC than with thePIR.To sum up the results on this syntheti test ase, the PIR has shown improved mixingproperties ompared with the SC. It has provided a sample with good preditive properties,representative of di�erent modes of the posterior.5 ConlusionIn this work, we have �rst desribed the main priniples of lassial MCMC methods andrelated tehniques simulated annealing and simulated tempering. We have then proposed aninnovative appliation of a reent stohasti simulation method, based on parallel interatingMarkov hains. We also provided some general guidelines for the tuning of the parameters ofthese algorithms. Finally, an appliation on a syntheti ase of reservoir haraterization hasbeen performed. The numerial results show learly that the PIR algorithm outperforms thesingle Markov hain for sampling the posterior. The sampling arried out by PIR exploresbetter the posterior, therefore the sample produed has a better apaity of predition. More-over, this method is well suited for parallel omputing, thus omparable with the lassialMCMC in terms of omputation osts.The parallel interating methods presented here, like other MCMC methods, aim at gener-ating samples approximately distributed from a given distribution, without diretly simulatingfrom it. Although presented in the Bayesian inversion ontext, these methods an be appliedin a wider range of appliation, for instane simulation problems in statistial mehanis (seethe literature about parallel tempering and referene therein, e.g. [20℄ and [21℄). Moreover,parallel interating Markov hains algorithms an be easily ombined with surrogate or ap-proximate models approah, where a faster version of the forward model is used (see e.g. [32℄,[33℄, [34℄).Further improvements an be made on the parameterization of the parallel algorithm. Itshould be of great interest to imagine an automati tuning of the kernels parameters, namely17
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