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Inversion in indirect optimal control: constrained and unconstrained

cases

F. Chaplais and N. Petit

Abstract— This paper focuses on using non linear inversion

in optimal control problems. This technique allows us to

rewrite the stationarity conditions derived from the calculus of

variations under a higher order form with a reduced number

of variables. After a brief tutorial overview of the multi-

input multi-output cases for which the cost functions have a

positive definite Hessian with respect to control variables, we

address the case of linear systems with a control affine cost

to be minimized under input constraints. This is the main

contribution of this paper. We study the switching function

between singular and regular arcs and explain how higher order

stationarity conditions can be obtained. An example from the

literature (energy optimal trajectory for a car) is addressed.

I. INTRODUCTION

Lately, inversion has been used in direct methods of
numerical optimal control (i.e. collocation). In such meth-
ods, coefficients are used to approximate both states and
inputs [12] with basis functions. The numerical impact
of the relative degree (as defined in [13]) of the output
chosen to cast the optimal control problem into a nonlinear
programming problem was emphasized in [18], [14]. Choos-
ing outputs with maximum relative degrees is the key to
efficient variable elimination that lowers the number of re-
quired coefficients (see for example [17], [7]). In differential
equations, in constraints, and in cost functions, unnecessary
variables are substituted with successive derivatives of the
chosen outputs. When combined to a NLP solver (such as
NPSOL [10] for instance), this can induce drastic speed-ups
in numerical solving [5], [15], [19], [16], [1].

In [9], we focused on indirect methods (i.e. methods using
adjoint variables) for numerically solving optimal control
problems. In this framework, we explained how to use the
geometric structure of the dynamics. In the single-input
single-output (SISO) case (with an n-dimensional state),
assuming the cost is quadratic in the control variables, we
emphasized that r, the relative degree of the primal system,
plays a role in the adjoint (dual) dynamics. The two-point
boundary value problem (TPBVP) obtained from the calculus
of variations can be rewritten by eliminating many variables.
In fact, only n − r variables are required. In the case of
full feedback linearizability, the primal and adjoint dynamics
take the form of a 2n-degree differential equation in a single
variable: the linearizing output. More generally, we addressed
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the general case of multi-inputs multi-outputs (MIMO) sys-
tems. Noting m the number of inputs, and r the total relative
degree, we obtained a similar reduction of variables results.
Numerous adjoint variables could be easily recovered once
the optimal solution was known, providing direct insight into
neighboring extremals and post-optimal analysis. Further, a
strong positive impact (in terms of accuracy and CPU usage)
of dealing with the obtained higher order representation of
the TPBVP was underlined.

The results presented in [9] are quite general. Yet, several
important questions remain to be explored. In particular,
it often desired to deal with constrained inputs and non
quadratic-like cost functionals. In such cases, calculus of
variations may fail to give directly useable indications on
the form of the optimal trajectories. In this paper, we aim at
showing some first results that, despite the above mentioned
restrictions, suggest that a similar approach can still be used.

The article is organized as follows. In Section II, we
present in a tutorial manner the main result of [9]: while the
system we wish to solve an optimal control problem for may
only be partly feedback linearizable (i.e. may have a zero
dynamics), it is possible to derive a 2n dimensional necessary
state space form equation for the primal and adjoint dynamics
using a reduced number of variables (m+2(n−r)). Adjoint
states corresponding to the linearizable part of the dynamics
are explicitly computed and eliminated from stationarity
conditions. This is summarized in Theorem 2. In this case,
the main hypothesis are that the system has a control affine
dynamics and that the cost functional has a positive definite
Hessian with respect to the control variables. Further, in
Section III, we consider the case of linear systems with a
cost functional that is affine in the control variable. The
elimination technique is rather different. In this study, we
limit ourselves to single-input single-output (SISO) systems.
A key element in the derivation of a higher order form of the
stationarity conditions is the switching functions that define
singular and regular arcs. We prove a general result (The-
orem 3) which stresses that, along singular arcs, the order
of differentiation that appears is lower than in the regular
case. This is the main contribution of the paper. Exploiting
this observed structure surely requires dedicated numerical
tools. These are out of the scope of this paper. Rather, in
Section IV, we study an example from the literature and show
an interesting property. The example under consideration is
a trajectory optimisation problem for an energy-efficient car
(see [11] for a complete exposition of the problem statement
and solutions). Following our method, we deduce in a very
straightforward manner that, along singular arcs, the velocity
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of the car is constant.

II. THE UNCONSTRAINED MIMO CASE

In this section, we present, in a (hopefully) tutorial manner,
the main result of [9] (which is rather technical). Whenever
necessary, the reader should directly refer to [9] for precise
justification of several statements. The presentation is rather
informal and is focused on the inversion procedure.

A. Problem statement and stationarity conditions

Consider a dynamical control system with multiple inputs
that is put, after a suitable change of coordinates, into the
following normal form consisting of m chains of integrators
of lenghts (mi)i=1,...,m and a zero dynamics [13] with
dimension q.

dx
1
i

dt
= x

2
i
, ...,

dx
ri
i

dt
= L

ri
f

hi +
m�

j=1

aijuj � vi (1)

dηj

dt
= α

j(X) +
m�

i=1

β
j

i
(X)vi = Bj(X, v) (2)

where α
j and β

j

i
are smooth Rn → R mappings, for all

j = 1, ..., q, and i = 1, ..., m. X is the vector of all state
variables and v is a state feedback (defined in (1)) of the
linearizing outputs (xi)i=1,...,m and their derivatives.

We wish to solve an unconstrained optimal control prob-
lem where it is desired to minimize the cost function

�
T

0
L(X(t), v(t))dt

where L is a smooth mapping. This minimization problem
can arise from a similar problem in original coordinates (be-
fore the normal form is used). In that case, transformations
on the state and the control impact on the definition of L.

An important feature of this setup is that, if the cost
function has a positive definite Hessian with respect to the
control variables (ui)i=1,...,m, then this is also true with
respect to the control variables (vi)i=1,...,m after the change
of coordinates and the state feedback. In the following, we
assume that this property holds.

Following the lines of Pontryagin minimum principle
(PMP) (see e.g. [6]), we obtain an Hamiltonian with the
following special structure

H = L(X, v) +
m�

i=1

ri−1�

j=1

λ
j

i
x

j+1
i

+
m�

i=1

λ
ri
i

vi +
q�

j=1

µjBj(X, v)

where λ � (λ1
1, ..., λ

r1
1 , ..., λ

1
m

, ..., λ
rm
m

)T represents the
adjoint states related to the chains of integrators (1) and
µ � (µ1, ..., µq)T corresponds to the zero dynamics (2).
Exploiting this structure, we can readily realize that the

stationarity conditions bearing on the adjoint variables write
under the particular cascaded form

dλ
1
i

dt
= − ∂L

∂x
1
i

−
q�

j=1

µj

∂Bj

∂x
1
i

, i = 1 . . . p

dλ
j

i

dt
= −λ

j−1
i

− ∂L
∂x

j

i

−
q�

k=1

µk

∂Bk

∂x
j

i

,

i = 1 . . . p , j = 2 . . . ri

dµj

dt
= − ∂L

∂ηj

−
q�

k=1

µk

∂Bk

∂ηj

, j = 1 . . . q (3)

Further, PMP states that, along normal optimal trajectories,
the Hamiltonian is minimum with respect to v. In the absence
of constraints on v, this translates as

∂H

∂vi

=
∂L
∂vi

+ λ
ri
i

+
q�

j=1

µjβ
j

i
(X) = 0 (4)

B. An implicit differential system

Two important facts are to be noted here:
• Since (4) is identically zero all along the optimal

trajectory, its derivatives with respect to time are also
zero.

• The cascade dynamics and its “mirror” on the adjoint
state dynamics makes the adjoint states progressively
disappear as we differentiate (4).

After some computations, these properties yield the follow-
ing lemma

Lemma 1: Let i ∈ {1 . . . m} such that ri ≥ 2. For j =
1 . . . ri− 1, there exists a function G

j

i
from R2n−r+mj to R

such that

d
j

dtj

∂H

∂vi

=
m�

k=1

∂
2L

∂vi∂vk

x
(rk+j)
k

+ (−1)j
λ

ri−j

i

+ G
j

i
(η, µ, . . . , xl . . . x

(rl+j−1)
l

, . . .) (5)

where l is a running index ranging from 1 to m.
The proof mainly uses standard differential calculus. More
precisely, it is organized around the following two points:

• The coefficients of the highest order derivatives of the
linearizing outputs can be successively and indepen-
dently derived (each of these coefficients is a component
of the Hessian of the cost with respect to the control
variables).

• The reverse cascade structure of the dynamics of the
adjoint states implies that, as we differentiate (5), we
decrease the indices of the adjoint states that appear
in the equation. Since the dynamics of λ

1
i

does not
involve any λ

j

i
, differentiating the last (5) (i.e. for

j = ri − 1) leads to a set of equations where the
adjoint states corresponding to the linearizing outputs
and their derivatives have disappeared. This is stated in
the following theorem.
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Theorem 1: For i = 1 . . . m, there exists a function Gi

from R2n−r+mri to R

Gi(η, µ, . . . , xl . . . x
(rl+ri−1)
l

, . . .)

where l is a running index ranging from 1 to m, such that

m�

k=1

∂
2L

∂vi∂vk

x
(rk+ri)
k

+ Gi(η, µ, . . . , xl . . . x
(rl+ri−1)
l

, . . .) = 0 (6)

Together with (2) and (3), these equations form a set of
differential equations on xi, i = 1, ...,m, η and µ from which
the λ

j

i
, i = 1, ..., m, j = 1, ..., rm, have been completely

eliminated.
Theorem 1 states that an implicit differential system that

must be satisfied by the linearizing outputs can be obtained.
Turning this system into an explicit form is not straightfor-
ward in the MIMO case (the SISO case is much simpler and
is addressed in [8]). Computing the Jacobian of the system
with respect to the highest derivatives of the linearizing
outputs, and assuming that we have reordered the linearizing
outputs in the decreasing length of their integration chains,
some sparsity appears. Zero terms appear everywhere except
on the first lines which corresponds to the variables with the
highest derivatives (and the longest chain length). In practice,
to turn the system into an explicit form, we have to perform
a recursive differential elimination of some derivatives.

C. An explicit differential system

The algorithm that we use to transform the implicit sys-
tem (6) into an explicit one is outlined below. To simplify
things, we assume that all the lengths of the integrators chain
are different. Again, the general case is addressed in [9].

We start with the last line of the differential system, i.e.

m�

k=1

∂
2L

∂vm∂vk

x
(rk+rm)
k

+ Gm(η, µ, . . . , xl . . . x
(rl+rm−1)
l

, . . .) = 0 (7)

where rm is the shortest length of integrator chains. Since
∂
2L

∂2vm
is invertible (it is on the diagonal of the Hessian of the

cost), we obtain that x
(2rm)
m is a function of xm . . . x

(2rm−1)
m ,

xm−1 . . . x
(rm−1+rm−1)
m−1 and various derivatives of the other

linearizing outputs and, of course, η and µ. Observe that
rm−1 + rm − 1 < 2rm−1. Then, repeated differentiations
of (7) give rise to equations of the form

m�

k=1

∂
2L

∂vm∂vk

x
(rk+rm+j)
k

+ G̃m(η, µ, . . . , xl . . . x
(rl+rm−1+j)
l

,

. . . , xm . . . x
(2rm−1)
m

) = 0

One can notice that the expression of the derivative of (7)
involves higher derivatives of the linearizing outputs except
for the derivatives of xm in G̃m whose orders are not
increased. Observe that, for j = rm−1 − rm, we have an

equation where the derivatives of xm−1 and xm (in the
summation at the left) are of order 2rm−1 and rm + rm−1,
and that G̃m does not involve derivatives of xm of an order
greater or equal to 2rm − 1.

Now, look at the penultimate line of equations in (6). This
equation has a very similar structure, except higher order
derivatives of xm appear. Yet, these derivatives can be rewrit-
ten as a function of xm . . . x

(2rm−1)
m and various derivatives

of the other linearizing outputs (various derivatives of η and
µ are rewritten using the zero dynamics and its related adjoint
state dynamics). Putting this reformulated equation together
with the adequately rewritten (rm−1 − rm)th derivative of
the last line gives rise to a linear system of two equations
in the unknowns x

(2rm−1)
m−1 and x

(2rm)
m . The corresponding

matrix is diagonally extracted from the Hessian matrix of the
cost function with respect to the controls. The right hand-
side involves derivatives of xm−1 (resp. xm) up to the order
2rm−1 − 1 (resp. 2rm − 1). Solving this system yields an
expression of x

(2rm−1)
m−1 and x

(2rm)
m . This expression can be

used to eliminate higher order derivatives of xm−1 and xm

throughout the remaining computations.
Following the same computational method, we can differ-

entiate the last two modified lines of the differential system
until, together with the line before the penultimate one, we
obtain a system of three equations with respect to three high
order derivatives of the last three linearizing outputs, and so
forth.

Details of this algorithm for two and three inputs, as well
as the general case, are presented in [9]. Induction of this
method up to the first line of the differential system leads to
the following theorem:

Theorem 2: For i = 1, . . . , m, there exist functions
Gi(η, µ, x1 . . . x

(2r1−1)
1 , . . . , xm . . . x

(2rm−1)
m ) such that

x
(2ri)
i

=

Gi(η, µ, x1 . . . x
(2r1−1)
1 , . . . , xm . . . x

(2rm−1)
m

) (8)
Now consider, (8) for i = 1, . . . ,m, along with the state
equations on η and µ (respectively, (2) and (3)). This set of
equations forms a higher order explicit differential system
which must be satisfied by the linearizing outputs (and
(η, µ)).

Eventually, a two-point boundary value problem can be
obtained as follows. The initial conditions on the state
provide initial conditions. Then, through (4) and (5), the
conditions on the final values of the adjoint sates provide
final conditions on the variables of (8). In summary, we
obtain a higher order two boundary value problem using
a limited number of variables. This number is m + 2(n −�

m

i=1 ri).
Once (8), (2) and (3) are solved, η and the derivatives

of the linearizing outputs provide the values of the state;
equations (4) and (5), together with the knowledge of µ, give
the value of the adjoint state; finally, solving equations (1)
with respect to the controls uj gives the value of the optimal
control.
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D. Impact on numerical resolution

Of course, the differential system (8) possesses an equiv-
alent first order state space form. A theoretical result by
Ascher-et-al [3], [4, pp. 220–222] shows that using a collo-
cation method on a higher-order equations is more accurate
than using it on its corresponding first-order form. More
precisely, while similar accuracy is obtained at the mesh
points, the higher order representation yields a superior
accuracy between the mesh points. Using the colnew collo-
cation software package by Ascher-et-al (available through
the open-source scientific environment Scilab), we have
experimentally compared the accuracy of collocation on a
first order state space model and collocation on the derived
higher order model. A benchmark problem was used for
which the optimal control is known analytically. This study
confirms the superiority of the higher order method in
between the mesh points (see [9]).

Another experiment (on a problem where no analytical
solution is known) compares the computational burden of
the colnew package for first order and higher order models.
Results are consistent with experiments conducted with the
direct method (i.e. not using adjoint variables) software pack-
age NTG [14]. For similar computed constraint violations,
the higher order methods are clearly more efficient in terms
of computational burden (see [9] for details).

III. A CONSTRAINED SISO PROBLEM WITH LINEAR
DYNAMICS AND A COST WHICH IS AFFINE IN THE

CONTROL

A. Problem statement

We now focus on a class of optimal control problems
that give rise to singular arcs. The preceding elimination
procedure can not be used anymore because the Hessian
of the cost function with respect to control variables is not
definite positive. Yet, it inspires an interestingly formally
similar approach. We present here preliminary results that are
limited to SISO systems. For sake of simplicity of exposition,
the dynamics is assumed linear, but, as appears in Section IV,
this is not a real limitation. Future research will focus on
MIMO nonlinear cases.

1) Optimal control problem statement: We consider a
linear SISO system and an optimal control problem where
the integral cost is affine with respect to the control u. A
static input constraint u ∈ [umin, umax] is imposed. A linear
basis change in the state space allows us to assume that
the dynamics are under a controllable normal form, i.e. the

dynamics can be written as





dx1

dt
= x2

...
dxi

dt
= xi+1

...

dxn

dt
= u +

i=n�

i=1

cixi

(9)

Here, we do not perform any feedback transformation on the
last line of (9) because the constraints on the control would
then be transformed into state constraints. This would result
in possible discontinuities of the adjoint states at switching
times from regular to singular arcs (see below), which we
wish to avoid.

We assume that the integral cost
�

T

0 L(X,u, t)dt to be
minimized is of the form

�
T

0
L(X,u, t)dt =

�
T

0
(a(X)u + b(X)) dt. (10)

More generally, a terminal cost and final point constraints
may be considered without too much effort.

2) The Pontryagin minimum principle (PMP): Consider
the Hamiltonian H(λ,X, u) defined by

H(λ, x, u) =
i=n−1�

i=1

λixi+1 + λn

�
i=n�

i=1

cixi + u

�
+ a(X)u + b(X)

In this case, the PMP states that, if an optimal control exists,
then there exists an adjoint state λ(t) which satisfies the so-
called adjoint equations






dλ1

dt
= −λnc1 −

∂a

∂x1
uopt −

∂b

∂x1

...
dλi

dt
= −λi−1 − λnci −

∂a

∂xi

uopt −
∂b

∂xi

...
dλn

dt
= −λn−1 − λncn −

∂a

∂xn

uopt −
∂b

∂xn

(11)

where uopt is the optimal control. Additionally, the final
values of the adjoint states satisfy conditions determined
by the terminal cost and the final point state constraints.
Finally, the optimal control uopt minimizes the Hamiltonian
H(λ(t),X(t), u) over the possible values [umin, umax].

3) The switching function between singular and regular

arcs: One can easily see that minimizing the Hamiltonian is
equivalent to minimizing (λn(t) + a(X(t)))u. Then, ∂H

∂u
=

λn(t)+a(X(t)) is called the switching function. If it is non
zero, then either uopt = umin or uopt = umax depending
on the sign of the switching function. When the switching
function is non zero, the portions of the optimal trajectory

444666ttthhh      IIIEEEEEEEEE      CCCDDDCCC,,,      NNNeeewww      OOOrrrllleeeaaannnsss,,,      UUUSSSAAA,,,      DDDeeeccc...      !222-­-­-!444,,,      222000000777 WWWeeeBBB000333...222

666888666



where this condition is satisfied are called regular arcs.
By contrast, portions of the optimal trajectory where the
switching function is identically zero are called singular arcs.

We concentrate our attention on singular arcs which are
closed intervals with a non empty interior. On such interval,
the following simple equation holds

∂H

∂u
= λn(t) + a(X(t)) = 0 (12)

Notations: Considering the structure of (9), we denote by
x the first component x1 of the state X . We have, for i =
1 . . . n, xi = x

(i−1) and x
(n) = u +

�
i=n

i=1 cix
(i−1). In the

following, whenever it is possible, we shall write u instead
of uopt.

B. Derivatives of the switching function

We are going to differentiate equation (12) to derive a
higher order differential equation on x which determines the
primal and adjoint states, and the optimal control.

1) First derivative: Since (12) holds along the singular
arc, its derivative with respect to time is also zero. Straight-
forward computations along with the use of (11) and (12)
lead to

Lemma 2: The first derivative of the switching function
satisfies

d

dt

�
∂H

∂u

�
= −λn−1 + a(X)cn −

∂b

∂x(n−1)
(X)

+
i=n−2�

i=0

∂a

∂x(i)
x

(i+1) +
∂a

∂x(n−1)

i=n�

i=1

cix
(i−1) = 0 (13)

with X = (x, . . . , x
(n−1)).

Proof: From (11), we get

dλn

dt
= −λn−1 − λncn −

∂a

∂x(n−1)
u− ∂b

∂x(n−1)
(14)

On the other hand,

d

dt
(a(X)) =

i=n−2�

i=0

∂a

∂x(i)
x

(i+1)

+
∂a

∂x(n−1)

�
u +

i=n�

i=1

cix
(i−1)

�
(15)

Summing up (14) and (15) make u disappear. Substituting
λn = −a(X) (equation (12)) in this sum, we obtain (13).
Remark: Equations (12) and (13) are involving variables
which are continuous at the boundary of the singular arc.
Hence, both must hold at the corresponding boundary of the
neighboring regular arc.

2) Further derivatives:

Lemma 3: Let d(X) be defined by

d(X) =
∂a

∂x(n−2)
+ 2

∂a

∂x(n−1)
cn −

∂
2
b

�
∂x(n−1)

�2

+
i=n−2�

i=0

∂
2
a

∂x(i)∂x(n−1)
x

(i+1) +
∂a

∂xn−2

+
∂

2
a

�
∂x(n−1)

�2

i=n�

i=1

cix
(i−1) (16)

We assume that d(X) does not vanish along the singular
arc under study. Then, for i = 2, . . . , n − 1, there exists
ei(x, . . . , x

(n+i−3)) such that, along this singular arc,

d
i

dti

�
∂H

∂u

�
= (−1)i

λn−i + d(X)x(n+i−2)

+ ei(x, . . . , x
(n+i−3)) = 0 (17)

Proof: We start with i = 2 and differentiate (13).
Observing that λn = −a(X), we have

d(−λn−1)
dt

=

λn−2 − a(X)cn−1 +
∂a

∂x(n−2)
u +

∂b

∂x(n−2)

Substituting u = x
(n) −

�
i=n

i=1 cix
(i−1), we see that there

exists α1(X) such that

d(−λn−1)
dt

= λn−2 +
∂a

∂x(n−2)
x

(n) + α1(X) (18)

One can easily observe that there exists α2(X) such that
d

dt
(a(X)cn) =

∂a

∂x(n−1)
x

(n)
cn + α2(X) (19)

The derivative of the next term in (13) is such that there
exists α3(X) with

d

dt

�
− ∂b

∂x(n−1)
(X)

�
= − ∂

2
b

�
∂x(n−1)

�2 x
(n) + α3(X) (20)

There also exists α4(X) such that the derivative of the next
term in (13) satisfies

d

dt

�
i=n−2�

i=0

∂a

∂x(i)
x

(i+1)

�
=

�
i=n−2�

i=0

∂
2
a

∂x(i)∂x(n−1)
x

(i+1)

�
x

(n)

+
∂a

∂x(n−2)
x

(n) + α4(X) (21)

Finally, there exists α5(X) such that

d

dt

�
∂a

∂x(n−1)

i=n�

i=1

cix
(i−1)

�
=

�
∂

2
a

∂
�
x(n−1)

�2

i=n�

i=1

cix
(i−1)

�
x

(n)

+
∂a

∂x(n−1)
cnx

(n) + α5(X) (22)
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Summing (18), (19), (20), (21) and (22), eventually
gives (17) for i = 2 with d(X) defined by (16).

To show the induction of (17) from i to i + 1, we need
further differentiations. First, we observe that x

(n+i−2) is
differentiable because d(X) is non zero. The other variables
in (17) are differentiable since they are either an adjoint state
or a lower order derivative of x. The induction is then proved
by differentiating (17) with respect to time. We use the ad-
joint equations (11), the equality u = x

(n)−
�

i=n

i=1 cix
(i−1),

and the expression of λn which is given by (12). Finally, the
differentiation of d(X)x(n+i−2) + ei(x, . . . , x

(n+i−3)) gives
terms of the form d(X)x(n+i−2+1) + ei+1(x, . . . , x

(n+i−2))
because n + i− 2 ≥ n.
Remark: On a singular arc, X is bounded because it is
continuous on a closed interval; u is bounded by definition
of the constraint; hence x

(n) is bounded on the arc. Since (17)
holds for i = 2, we see that d(X) is zero if and only
if λn−2 + e(X) is zero. This may happen in particular
cases: for instance, if the integral cost is linear time invariant
with respect to (X,u), then a is a constant and the second
derivatives of b with respect to x are zero; therefore d(X)
is identically zero in this case. This case is detailed in
the appendix. In what follows, we shall assume that d(X)
does not vanish on the singular arc. As we shall see in the
following, this will allows to derive a higher order differential
equation satisfied by x.

C. A higher order differential equation in x along singular

arcs

Theorem 3: We assume n ≥ 3. If d(X) does not van-
ish along the singular arc, then there exists a function
en(x, . . . , x

(2n−3)) such that

d
n

dtn

�
∂H

∂u

�
=

d(X)x(2n−2) + en(x, . . . , x
(2n−3)) = 0 (23)

Proof: Essentially, to derive this result, we differentiate
(17) with respect to time for i = n−1. The main point is that
the expression dλ1

dt
does not involve any adjoint state other

than λn. Indeed, if we consider the first line of (11), since
λn = −a(X) and u = x

(n) −
�

i=n

i=1 cix
(i−1), we see that

dλ1
dt

is a function of (x, . . . , x
(n)) and, more generally, since

n ≥ 3, it is also a function of (x, . . . , x
(2n−3)). Following

the lines of the induction in the proof of lemma 3, we see
that the derivative of d(X)x(2n−3) + en−1(x, . . . , x

(2n−4))
is of the form d(X)e(2n−2) + ẽn(x, . . . , x

(2n−3)). Summing
the two expressions proves (23).
Boundary values: For i = 1, . . . , n − 1, x

(i) is continuous
(and differentiable) on [0,T] because it is part of the state.
By induction, assuming that (x, . . . x

(n+i−3)) is continu-
ous and differentiable on the closed singular arc, equation
(17) proves, since d(X) does not vanish and since λn−i

is continuous on [0, T ], that x
(n+i−2) is continuous and

differentiable on the closed singular arc. Moreover, we show
by the same induction that x

(n+i−2) is a continuous function
of the state X and of the adjoint states (λn−2, . . . , λn−i).
The induction is easily written up to i = n − 1. This

proves that (x, . . . , x
(2n−3)) is a set of continuous and

differentiable functions on the closed singular arc. Moreover,
the derivatives (x(n)

, . . . , x
(2n−3)) are continuous functions

of the state X and the adjoint states λi. If the values of this
primal and adjoint states are known at the boundary of the
singular arc, then they are known at the neighboring regular
arcs. These provide boundary conditions for equation (23).

Remark: Once x is computed by solving (23) with
suitable boundary conditions, x and its derivatives yield the
values of the state, and the values of the adjoint state through
(12), (13) and (17). Eventually, the optimal control can be
found from u = x

(n)−
�

i=n

i=1 cix
(i−1). While the use of the

derivatives of (12) to compute the optimal control in linear
problems is not new (see [2]), it has not been brought to the
point where the control and trajectories can be effectively
obtained by solving an explicitly computed equation.

IV. AN EXAMPLE

For sake of illustration, we propose to address an exam-
ple from the literature. A complete exposition of this car
trajectory optimization problem can be found in [11]. The
dynamics under consideration is

dx

dt
= v

dv

dt
= c1u− c2v

2 − c3 − c3γ(x) (24)

where u is the control which is constrained by u ∈ [0, umax],
x is the car position, v its velocity, and γ(x) is a known
function related to the altitude profile of the specific track
the vehicle shall be driven on. To minimize fuel consumption,
the cost to be optimized is defined as

J(u) =
�

tb

0
uvdt (25)

where tb is a fixed strictly positive parameter. While the
dynamics is slightly more complicated than (9), the cost
(25) is much simpler than (10). The computational procedure
presented in Section III can be used to compute the control
and the trajectory along the singular arcs.

The Hamiltonian is

H = λ1v + λ2(c1u− c2v
2 − c3 − c3γ(x)) + uv

The adjoint states (λ1, λ2) satisfy the following differential
equations

dλ1

dt
= λ2c3

dγ

dx
(26)

dλ2

dt
= −λ1 + 2λ2c2v − u

Here, the switching function is ∂H

∂u
= λ2c1 + v. It is

identically zero along the singular arcs.
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The control u does not appear in its first time derivative

d

dt

�
∂H

∂u

�
= c1(−λ1 + 2λ2c2v − u)

+ c1u− c2v
2 − c3 − c3γ(x)

= −c1λ1 + [2c1c2λ2v − c2v
2]

− c3 − c3γ(x)
= −c1λ1 − 3c2v

2 − c3 − c3γ(x) = 0 (27)

since λ2c1 + v = 0 along the singular arcs. Computing the
second derivative of the switching function gives

d
2

dt2

�
∂H

∂u

�
= −c1(λ2c3

dγ

dx
) + 6c2v

dv

dt

− c3
dγ

dx
v

= 6c2v
dv

dt
= 0

since λ2c1 = −v. Hence, we have proven that the velocity
is constant along singular arcs. Setting (24) to zero gives
the optimal control as a feedback along the singular arcs.
Then, λ1 can be computed from (27); λ2 is given by ∂H

∂u
=

λ2c1 + v = 0. Recalling v = ẋ, we finally notice that the
states, the adjoint variables, and the control write in terms
of x and its derivatives along singular arcs.

V. CONCLUSION

The main contribution of this article is to show that the
inversion-inspired elimination procedure used to derive a
higher-order form of the stationary conditions of regular
optimal control problems can be fruitfully transposed to
singular cases of input-constrained optimal control problems.
In the example we considered, we were able to derive
an interesting property without solving the actual optimal
control problem. Had it been desired to compute the optimal
trajectories, we would have had to look for the unknown
trajectories under the form of a succession of singular and
regular arcs. Along these, a limited number of variables (in
the presented example, only 1), can be used to represent
the numerous unknowns (states, adjoint states and control).
Switching times would have been free parameters. Deriving a
well suited numerical method is a subject for future research.
Addressing MIMO cases is another one.
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APPENDIX

We consider a particular case of the setup presented in
Section III. Additionally, we assume that a is a constant,
and that b is a linear time invariant function of X: b(X) =�

i=n

i=1 bixi. One easily sees that the adjoint dynamics (11) is
affine with respect to λ and is time invariant. The switching
function is λn + a. If there is a singular arc, then all the
derivatives of λn are zero along the singular arc. Computing
these derivatives, we see that the adjoint state is at equilib-
rium along the singular arc. This also implies λn + a = 0 =
λnc1+b1 and, hence, ac1 = b1. Therefore, if ac1 �= b1, there
cannot be any singular arc. In this case, since H is constant
along the optimal trajectory, (λn + a)u is differentiable and,
hence, λn + a must vanish at the discontinuities of u. By
contrast, if ac1 = b1, two (exclusive) cases are possible:

• if the adjoint state is at equilibrium at one point, then
it stays there and the optimal control does not appear
in any of the derivatives of the switching function

• the adjoint state is never at the equilibrium, and there
is no singular arc; as in the case ac1 �= b1, λn +a must
vanish at the jumps of u.
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