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Redundant Wavelet Processing on the Half-Axis
with Applications to Signal Denoising

with Small Delays: Theory and Experiments
François Chaplais, Panagiotis Tsiotras, Senior Member, IEEE, and Dongwon Jung

Abstract

A wavelet transform on the negative half real axis is developed using an average-interpolation scheme. This
transform is redundant and can be used to perform causal wavelet processing, such as on-line signal denoising,
without delay. Nonetheless, in practice some boundary effects occur and thus a small amount of delay is required
to reduce them. The effect of this delay is studied using a numerical example of a signal with large noise and
sharp transients. It is shown that the delay required to obtain acceptable denoising levels is decreased by using
the proposed redundant transform instead of a non-redundant one. We also present results from the experimental
implementation of the proposed algorithm for the denoising of a feedback signal during the control of a three-phase
permanent-magnet synchronous brushless DC motor.

I. INTRODUCTION
Wavelets have become very popular in signal processing during the last two decades. They allow compact

representation of a signal with a small number of wavelet coefficients. Given a sequence of data {a0[n]}n∈Z, the
discrete wavelet transform generates for each scale depth J ≥ 1 a sequence of scale coefficients aJ := {aJ [n]}n∈Z
which provide an approximation of the signal at the low resolution scale J , along with a family of detail coefficients
dj := {dj [n]}n∈Z, 1 ≤ j ≤ J , which contain the information lost when going from a finer resolution scale j − 1
to a coarser resolution scale j. As a result, the data aJ contain the “salient” (low-resolution) features of the signal
and dj (1 ≤ j ≤ J) contain the residual (high-resolution) features or “details” at this scale.
The simplest, and probably most common, method for signal denoising via wavelet decomposition is thresholding.

In thresholding one keeps only the coefficients dj which are larger than a prespecified tolerance. For instance, using
hard thresholding one redefines the detail coefficients as follows

d̂j [n] :=

{
dj [n], |dj [n]| > ε,

0, otherwise.
(1)

When using soft thresholding each coefficient is reduced by a small amount. For instance,

d̂j [n] :=

{
sgn(dj [n])(|dj [n]|− ε), |dj [n]| > ε,

0, otherwise.
(2)

Several methods have been proposed for choosing the threshold value ε. Donoho and Johnstone [1] propose, for
instance, to use ε = σ

√
2 loge N , where σ2 is the variance of the original data set of N samples. It can be shown

that this choice of threshold minimizes (as the number of samples goes to infinity, N → ∞) the thresholding risk
amongst all diagonal estimators [2].
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Thresholding applied to the coefficients of a wavelet transform is also known to be an especially efficient
method for denoising signals with sharp transients [3], [4]. Standard thresholding however typically uses wavelets
on the whole real line. This causes significant delays in the processing, because some of the filters involved in
the composition/decomposition phases of are not causal; see Fig. 1. In addition, when operating on on-line data
(such as for denoising signals within a feedback control loop) it is imperative to use wavelets on the negative
half real axis (the half axis in this context representing past, known values of the signal). When operating on data
within a feedback loop, any delays arising from the process of denoising may impair performance, or even cause
instability. In order to minimize any delays arising from wavelet processing, in this paper we propose a method that
operates only on past data, so as to minimize or eliminate any delays associated with traditional wavelet denoising
algorithms.
The proposed method, in summary, works as follows: (i) at each time t (the “current time”), a wavelet transform

is performed on the whole available past data from −∞ to t; (ii) the wavelet coefficients from this wavelet transform
are then processed/denoised, using thresholding; and (iii) the original signal is recovered by cycle spinning [4], that
is, by averaging all different reconstructions obtained from the various shifts of the signal. After reconstruction, a
value of the signal at time t − τ is extracted, where τ is a user-specified small delay which – ideally – is zero. In
fact, for τ = 0, the previous procedure provides a true online wavelet processing without delay. One should contrast
this to the case of wavelet processing on the whole real axis, which introduces a delay of order 2J−1, where J is
the number of scales used in the transform. In practice, however, boundary effects occur and a non-zero τ must be
chosen. Note that only a finite amount of past data is required for the computations in practice since the processing
uses Finite Impulse Response (FIR) filters on a finite number of scales.
It should be mentioned that although the word “wavelet” will be used throughout in the sequel, the basic point

of view taken in this paper is that of FIR filter banks [5], [2]. The various signal decomposition and reconstruction
schemes described in this paper were inspired by the average-interpolation scheme of Donoho [6] and Sweldens [7];
see also [8]. As noted in [7], this scheme can be modified to process signals on the half-axis. We show explicitly
how this can be done. In addition, the proposed scheme is modified to provide a redundant transform on the negative
half-axis.
For simplicity of exposition, in this paper we will restrict ourselves to wavelets with three discrete vanishing

moments. However, the results are easily extendable to wavelets with any number of moments. We remind the
reader that a filter h has M discrete vanishing moments if and only if

∑
n∈Z n!h[n] = 0, with $ = 0, . . . , M − 1.

The paper is organized as follows. In Section II we review the average-interpolation scheme, which is the
main building block behind our algorithm. We use average-interpolation to construct the low-pass and high-pass
decomposition and reconstruction filters. The results of Section II assume that data are available both for past and
future values of the signal. In Section III we modify the algorithm so that it uses only past data. The modification
consists essentially of a decentering scheme when the data are close to the boundary. It is well known that redundant
algorithms perform better than non-redundant ones for denoising applications. Specifically, translation invariant
transforms are redundant, in general; see, for instance, [5, p.132-133] and [4], [9]. The standard (non-redundant)
wavelet transform, on the other hand, is not translation invariant: if the signal is shifted, the wavelet coefficients are
not simply a shifted version of the original signal. In Section IV we show how the denoising algorithm of Section III
can be modified to obtain a redundant version of wavelet denoising on the half-axis. The benefits brought about
by the redundancy are demonstrated in Section V, where the proposed algorithm is applied to a rather challenging
signal having sharp transients. Since the main motivation of on-line denoising has to do with processing signals
within a feedback loop, in Section VI we provide experimental validation of the proposed algorithm from denoising
the angular velocity signal of a three-phase permanent magnet synchronous DC motor of a reaction wheel assembly.
The angular velocity signal is used as an input to a PI loop to provide tight torque control of the reaction wheel.
Finally, Section VII summarizes the theoretical and experimental results of the paper.

II. THE AVERAGE-INTERPOLATION SCHEME
A very simple, yet classic, scheme for building a discrete wavelet transform with discrete vanishing moments

is to use average-interpolation. The method is based on the so-called “cell averages” [8], also known as “blocky
kernels” [6]. The starting point of average-interpolation is the interpretation of the data samples as averages of
a function over the sample intervals. Specifically, given a sequence aj , average-interpolation assigns to each data
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sample aj [n] the dyadic interval Ij,n = [2j(n−1), 2jn] of length1 2j , and assumes that each sample aj [n] represents
the average of some (unknown) function f on Ij,n. In other words,

aj [n] = 2−j
∫ 2jn

2j(n−1)
f(x) dx. (3)

The discrete wavelet transform using average-interpolation then proceeds as usual, and involves two parts: the
decomposition phase, which yields the transformed signal in wavelet space, and the reconstruction phase, which
retrieves a signal from its transform, that is, its wavelet coefficients. The decomposition and reconstruction can both
be obtained using a pair of FIR filters, namely, the wavelet decomposition and wavelet reconstruction filters. If no
processing is performed on the data after the decomposition phase, the approach results in perfect reconstruction:
the original data sequence is recovered without any error.
For clarity, the whole process for a one-step decomposition/reconstruction is shown in Fig. 1. The filters h̄ and

ḡ are the low- and high-pass (decomposition) filters and h̃ and g̃ are the low- and high-pass (reconstruction) filters.
The details of the construction of these filters can be found in [6] and [7]. For filters with three vanishing moments,
as considered in this paper, Donoho [6] has shown that these filters are actually identical to the (1, 3) B-spline
biorthogonal filters2 of Daubechies [10]. Nonetheless, here we will use an alternative derivation of the transform
starting from the average-interpolation framework, together with the usual FIR filter presentation, as illustrated in
Fig. 1. The reason for doing this, is because average interpolation can be easily adapted to derive a similar scheme
for processing signals over the half-axis, which is the main objective of this paper. In addition, as it will be shown
in Section IV, one can use the average-interpolation framework in order to obtain a redundant transform on the
half-axis.
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Fig. 1. Perfect reconstruction filter banks, used for the implementation of the wavelet transform on the real axis. One-step decomposi-
tion/reconstruction shown. The filters h̄ and ḡ are the low- and high-pass (decomposition) filters and h̃ and g̃ are the low- and high-pass
(reconstruction) filters, respectively.

A. Decomposition
Similarly to standard wavelet processing, the data is first filtered by a low-pass filter h̄ and a high-pass filter

ḡ. This separates the signal to low-frequency and high-frequency components. The construction of these filters is
given next.
1) Low-Pass Filter: Up to a normalizing scalar of

√
2, the proposed low-pass filter computes the average of two

successive signal values as follows:
aj+1[n] =

aj [2n] + aj [2n − 1]√
2

. (4)

In wavelet theory, it is convenient to write the decomposition filters as a convolution with a filter followed by
subsampling, as in Fig. 1. This representation will be particularly useful for generating the redundant transforms
of Section IV, where the subsampling operation is removed from the process. From (4) we have that

aj+1[n] =
1∑

!=0

h̄[$] aj [2n − $] =
2n∑

k=2n−1

h̄[2n − k] aj [k]. (5)

1Note that in the closed interval Ij,n we have 2j + 1 distinct integers.
2This indexing scheme implies that the scaling function is a first order cardinal B-spline and the wavelet has three vanishing moments.
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Therefore the low-pass decomposition filter is the Haar decomposition filter [5, p. 60]

h̄ =
[

1√
2
,

1√
2

]
, (6)

which has support [0, 1]. It is noted at this point that the use of a Haar filter in the low-pass decomposition
phase is mandated by the restriction to have a polynomial identification that is performed on successive, non-
overlapping intervals. The latter implies that averages of averages over these intervals are also averages over the
union of intervals, something that is not true if the intervals are overlapping. This property makes the polynomial
identification task (see next section as well as the Appendix) much easier.
2) High-Pass Filter: We first introduce the high-pass filter ḡ using the average-interpolation scheme. Later

we will explicitly compute the values of its coefficients. To begin, we impose the restriction that the high-pass
decomposition filter has three discrete vanishing moments. That is, the output through the filter of all discrete
polynomial sequences of the form a[n] =

∑k=2
k=0 aknk, of degree less than or equal to two, is zero
∑

n∈Z
ḡ[$ − n] a[n] = 0. (7)

This vanishing moments property of the high-pass decomposition filter ensures that three moments of the original
data will be retained during signal decomposition, and the corresponding low-pass reconstruction filter (h̃ in Fig. 1)
will efficiently approximate sufficiently “regular” signals up to order two.
Recall next that, given a regularly spaced grid on R with step 2j , for instance, xj,n := 2jn, n ∈ Z, we say that

a discrete signal pj is a polynomial if and only if it is a sequence of the averages of a continuous polynomial p(x)
over the intervals determined by the grid, that is, if and only if

pj [n] = 2−j
∫ 2jn

2j(n−1)
p(x) dx. (8)

The proposed high-pass filter therefore considers the averages
aj [2n] + aj [2n − 1]

2
=

aj+1[n]√
2

(9)

from (4) and identifies the unique polynomial p(x) of degree less than or equal to two, whose averages on the
coarser grid with step 2j+1 coincides with three successive values of aj+1[n]/

√
2. It then computes the averages of

p(x) on the fine grid with step 2j , subtracts the actual values of the signal from these fine averages, and normalizes
the result by a factor

√
2. This sequence of operations is illustrated in Fig. 2. In Fig. 2 the solid piecewise constant

line represents the original discrete time signal aj [−5], aj [−4], . . . , aj [0]. The dotted line depicts the averages of
two successive discrete values at scale j. The result is a signal sampled at half the frequency of the original signal.
The solid curve is the unique polynomial of degree less than or equal to two such that its averages on the three
coarse scale intervals [−6,−4], [−4,−2] and [−2, 0] defined by the dotted lines are precisely equal to the three
values given as aj+1[−2]/

√
2, aj+1[−1]/

√
2 and aj+1[0]/

√
2, respectively. The two dashed piecewise constant lines

in the middle interval [−4,−2] are the averages of the polynomial on the two middle fine intervals defined by the
original signal.
Observe that the difference between the value p̃j+1[−1] on the left subinterval and the original value aj [−3] is the

opposite of the similar difference computed on the right interval, that is, aj [−3]− p̃j+1[−1] = pj+1[−1]− aj [−2].
Hence, only one of these differences needs to be retained during the algorithm.
The steps of the construction of the high-pass decomposition filter ḡ can now be summarized as follows:
(i) At scale j and index 2n, the three low-pass outputs aj+1[n− 1], aj+1[n] and aj+1[n + 1] are computed from

the six data points aj [2n−3], aj [2n−2], aj [2n−1], aj [2n], aj [2n+1], aj [2n+2] at the previous (finer) scale
according to (4). That is,

aj+1[k] =
aj [2k − 1] + aj [2k]√

2
, k = n − 1, n, n + 1 (10)

This is shown in Fig. 3.
(ii) Let p(x) be the unique polynomial of degree less than or equal to two such that the discrete averages

aj+1[n − 1]/
√

2, aj+1[n]/
√

2 and aj+1[n + 1]/
√

2 are the averages of p(x) on the intervals [2j+1(n −
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.
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2), 2j+1(n − 1)], [2j+1(n − 1), 2j+1n] and [2j+1n, 2j+1(n + 1)], respectively. Denote by pj+1[n] the average
of p(x) on [2j(2n − 1), 2j+1n], that is, let

pj+1[n] := 2−j
∫ 2j+1n

2j(2n−1)
p(x) dx (11)

Then pj+1[n] is the prediction of aj [2n] obtained from aj+1[n − 1], aj+1[n] and aj+1[n + 1].
(iii) The output of the high pass filter (or detail) is the difference

dj+1[n] =
√

2
(
aj [2n] − pj+1[n]

)
. (12)

Up to
√

2, this is the difference between the actual value of the signal and its prediction from the average-
interpolating polynomial p(x).

Similarly to the low-pass case, we can construct a filter to be used before subsampling. This filter can be computed
from (12) after writing down explicitly the expression for pj+1[n]. A simple calculation shows that

pj+1[n] =
√

2
(
− 1

16
aj+1[n − 1] +

1
2
aj+1[n] +

1
16

aj+1[n + 1]
)

. (13)

Using (12) and (10) this yields,

dj+1[n] =
√

2
(

1
16

aj [2n − 3] +
1
16

aj [2n − 2] − 1
2
aj [2n − 1] +

1
2
aj [2n]

− 1
16

aj [2n + 1] − 1
16

aj [2n + 2]
)

. (14)

Therefore the high-pass decomposition filter is given by

ḡ =

[
−
√

2
16

,−
√

2
16

,

√
2

2
,−

√
2

2
,

√
2

16
,

√
2

16

]
(15)

which has support [−2, 3]. One can then write

dj+1[n] =
3∑

!=−2

ḡ[$] aj [2n − $] =
2n+2∑

k=2n−3

ḡ[2n − k] aj [k]. (16)

Notice that if the original discrete signal aj is a sequence of averages of a polynomial q(x) on the fine grid, the
averages on the coarse grid of the averages of q(x) are still averages of q(x) (on the coarse grid). Hence the uniquely
identified polynomial p(x) whose averages on the coarse scale are identical to the signal values aj+1 on the coarse
scale coincides with q(x). Moreover, the averages of p(x) on the fine grid coincide with the discrete values of the
signal aj at the fine scale (which are the averages of q(x)). As a result, the output of any polynomial of degree
less than or equal to two through this high-pass filter will be zero. We use this result to show in the Appendix that
the proposed high-pass decomposition filter satisfies the vanishing moments property. In the Appendix it is also
shown that the details are oscillating, as required by the definition of a wavelet function.
After processing, the signal is reconstructed from the coarse approximation and the detail coefficients. During

reconstruction we use the coarse scale data aj+1 and detail dj+1 to obtain the data aj at the finer scale. The process
is essentially the inverse of the decomposition phase. Specifically, at the reconstruction stage, the low-pass outputs
aj+1 are available, and thus the average-interpolated polynomial p(x) can be computed from these averages. Hence
pj+1[n] and p̃j+1[n] can also be computed, for instance from (13) and (A.3). Since dj+1[n] is also available, aj [2n]
and aj [2n − 1] can be recovered using (12) and (A.2). In short, the sequence aj can be reconstructed from the
sequences aj+1 and dj+1. The details of the reconstruction phase are given next.
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B. Reconstruction
The reconstruction stage is based of the same ideas as those presented in the section devoted to the high-pass

decomposition filter. The reconstruction basically involves reversing the decomposition steps. Specifically, first a
polynomial p(x) of degree less than or equal to two is identified as in step (ii) of the high-pass decomposition filter,
using the outputs of the decomposition low-pass filter aj+1. The averages pj+1[n] and p̃j+1[n] of this polynomial on
the sub-intervals [2j(2n−1), 2j+1n] and [2j+1(n−1), 2j(2n−1)] are then computed using (13) and (A.3). The part
of the signal aj which has even indices is then recovered from the prediction and details using (12), whereas the
part with odd indices uses equation (A.2). If the decomposition has not been modified, the reconstruction restores
the signal exactly.
It is common to express the reconstruction process as the sum of the outputs of a low-pass and a high-pass

reconstruction filter. Then the filters are expressed as the cascade of an oversampling of the signal by zero insertion3,
followed by the filtering itself, as in Fig. 1. These filters will be useful in the next section for defining the
reconstruction filters from redundant transforms.
1) Low-pass filter: The low-pass filter is constructed by writing down explicitly the two predictions pj+1[n] and

p̃j+1[n] as the outputs πj [2n] and πj [2n − 1] of the low-pass reconstruction filter after a zero insertion on aj+1.
That is,

πj [2n] = pj+1[n] =
n+1∑

p=n−1

h̃[2n − 2p] aj+1[p] =
1∑

p=−1

h̃[2p] aj+1[n − p] (17a)

πj [2n − 1] = p̃j+1[n] =
n+1∑

p=n−1

h̃[2n − 1 − 2p] aj+1[p] =
1∑

p=−1

h̃[2p − 1] aj+1[n − p] (17b)

Using the expressions (13) and (A.3) of pj+1[n] and p̃j+1[n] yields the following value for the low-pass recon-
struction filter h̃

h̃ =
1√
2

[
−1

8
,
1
8
, 1, 1,

1
8
,−1

8

]

which has support [−3, 2].
2) High-pass filter: Up to

√
2, the high-pass filter outputs the detail for the even indices and the opposite of the

detail for the odd indices. If δj [2n] and δj [2n − 1] are the outputs for the even and odd indices, we have

δj [2n] =
1√
2
dj+1[n] =

n∑

p=n

g̃[2n − 2p]dj+1[p] =
0∑

p=0

g̃[2p]dj+1[n − p] (18a)

δj [2n − 1] = − 1√
2
dj+1[n] =

n∑

p=n

g̃[2n − 1 − 2p]dj+1[p] =
0∑

p=0

g̃[2p − 1]dj+1[n − p] (18b)

which leads to the Haar reconstruction filter [5],

g̃ =
[
− 1√

2
,

1√
2

]
, (19)

with support [−1, 0].
Given the expressions (17) and (18) we can finally reconstruct the signal at the fine scale as follows:

aj [2n] =
1∑

p=−1

h̃[2p] aj+1[n − p] +
0∑

p=0

g̃[2p] dj+1[n − p], (20a)

aj [2n − 1] =
1∑

p=−1

h̃[2p − 1] aj+1[n − p] +
0∑

p=0

g̃[2p − 1] dj+1[n − p]. (20b)

3A zero value is inserted between each successive values of the discrete signal.
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And explicitly,

aj [2n] =
√

2
(

1
16

aj+1[n + 1] +
1
2
aj+1[n] − 1

16
aj+1[n − 1] +

1
2
dj+1[n]

)
, (21a)

aj [2n − 1] =
√

2
(
− 1

16
aj+1[n + 1] +

1
2
aj+1[n] +

1
16

aj+1[n − 1] − 1
2
dj+1[n]

)
. (21b)

III. ADAPTATION TO THE HALF-AXIS
The discussion thus far has assumed that a sufficient amount of data is available to process the signal. At each

sample point there are enough samples to its left and to its right to construct the average-interpolating polynomial.
In particular, it has been assumed that in order to estimate the denoised signal at the current instant, data past
this instant is available. This may not always be possible. For instance, for on-line applications we have only
access to past data. If t is the present time corresponding to time index n = 0 and the data are ordered such that
. . . , aj [−3], aj [−2], aj [−1], aj [0], it is clear that the construction described in the previous section is not possible
for sample aj [0] since aj [1] is not yet available. In this section we modify the previous scheme in order to take into
account the case when only past values are available for processing. We achieve this by designing a wavelet-like
scheme that only processes the data aj [n] with −∞ < n ≤ 0. The idea we use is quite simple: The scheme of
Section II will be modified at the right boundary so that it uses only the available, past values of the signal. This
modification essentially decenters the prediction scheme at the boundary to account for the absence of future sample
values.

A. Decomposition
The low-pass averaging filter does not require any modification since it uses only past values; see equation (4). For

n < 0 the output of the high-pass filter dj+1[n] uses only data with negative or zero input indices. This is because the
prediction at index n is at the center of the average interpolating polynomial and therefore it does not use any input
data past the index 2n + 2 (see equation (14)). In particular, dj+1[−1] is computed from aj [−5], aj [−4], . . . , aj [0].
Use of (14) to compute dj+1[0] would require knowledge of aj [1] and aj [2]. Hence, the high-pass filter needs to be
modified for the prediction at output index n = 0, since input data is not available at the indices n = 1, 2. In order to
do so, the interpolating-polynomial is identified based on the three most recent averages, that is, aj+1[−2], aj+1[−1]
and aj+1[0], and the prediction is now computed at the index n = 0 instead of index n = −1. This is illustrated
in Fig. 4.
The details of the construction are given below:
(i) At scale j and index n = 0, the three low-pass outputs aj+1[−2], aj+1[−1] and aj+1[0] are computed, as

usual, from aj+1[−5], aj+1[−4], . . . , aj+1[−1], aj+1[0] using (4).
(ii) Let p(x) be the unique polynomial of degree less than or equal to two, such that aj+1[−2]/

√
2, aj+1[−1]/

√
2

and aj+1[0]/
√

2 are the averages of p(x) on the intervals [−3 · 2j+1,−2 · 2j+1], [−2 · 2j+1,−2j+1] and
[−2j+1, 0], respectively. Denote by pj+1[0] the average of p(x) on [−2j , 0], that is, the rightmost half interval.

(iii) The output of the high-pass (or detail) filter is the difference

dj+1[0] =
√

2(aj [0] − pj+1[0]). (22)

One can compute the prediction pj+1[0] explicitly as follows

pj+1[0] =
√

2
(

1
16

aj+1[−2] − 1
4
aj+1[−1] +

11
16

aj+1[0]
)

. (23)

It follows that the high-pass output dj+1[0] at the boundary is given by

dj+1[0] =
√

2
(

5
16

aj [0] − 11
16

aj [−1] +
1
4
aj [−2] +

1
4
aj [−3] − 1

16
aj [−4] − 1

16
aj [−5]

)
.

The prediction has now been decentered. Nonetheless, it is still based on average interpolation. In particular, if the
input data represents a sequence of averages of a polynomial q(x) on the intervals [n2j , (n+1)2j ], n = −6, . . . ,−1,
the identified polynomial p(x) will be equal to q(x) and the detail dj+1[0] will be zero. Overall, the high-pass filter
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Fig. 4. The average interpolation scheme is decentered to produce a prediction at the boundary.

still has three discrete vanishing moments. Using the same arguments as in the centered scheme, one can show that
the details are also oscillating at n = 0, that is,

1√
2
dj+1[0] = aj [0] − pj+1[0] = p̃j+1[0] − aj [−1], (24)

where p̃j+1[0] is the prediction on the interval [−2j+1,−2j ] given by

p̃j+1[0] =
√

2
(
− 1

16
aj+1[−2] +

1
4
aj+1[−1] +

5
16

aj+1[0]
)

. (25)

B. Reconstruction
Except for the indices n = −1 and n = 0, the reconstruction is performed exactly as in Section II-B. The value

aj [0] at the right boundary is recovered using equations (22) and (23), while aj [−1] is recovered from the formula
aj [−1] = p̃j+1[0] − dj+1[0]/

√
2 (see also equation (24)), where p̃j+1[0] from (25).

Numerically, the reconstruction is performed at the right boundary using the following equations

aj [0] =
1√
2

(
1
8
aj+1[−2] − 1

2
aj+1[−1] +

11
8

aj+1[0] + dj+1[0]
)

, (26)

aj [−1] =
1√
2

(
−1

8
aj+1[−2] +

1
2
aj+1[−1] +

5
8
aj+1[0] − dj+1[0]

)
. (27)

IV. REDUNDANCY ON THE HALF-AXIS

The transforms presented in the previous sections are nonredundant, that is, any pair of sequences aj+1 and
dj+1 can be interpreted as the (unique) decomposition of a signal aj . Redundant transforms which provide more
data per time step than their nonredundant counterpart can also be designed. These redundant transforms provide
reconstructions which are more robust to errors and noise. The price to pay is that not all pairs of sequences aj+1

and dj+1 can be interpreted as a decomposition of the signal aj . One must therefore be careful how to choose the
pairs aj+1 and dj+1 to recover the original signal.
Redundant transforms are known to improve signal processing using wavelets, especially for denoising [4].

Ideally, the redundant transform should be shift-invariant. When wavelets on the whole real line are used, this is
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achieved by removing the subsampling and zero insertion operations in the filter banks of Fig. 1 and by using
instead filters which depend on the scale. More precisely, at input scale j ≥ 1, 2j − 1 zeros are inserted between
each coefficient of the original filter. The corresponding algorithm is known as the algorithme à trous [11]. This
scheme cannot be used directly for transforms on the half-axis however, because boundary effects are not properly
handled by the zero insertion trick.
In this section we develop a redundant transform on the negative half-axis. This will be achieved in two steps:

first, we will extend the transform of Section III into a redundant transform at the original (fine) scale j = 0;
second, by interpreting the zero insertion on filters as filtering of multiplexed signals, we extend the method to
higher scales. The idea is that we now work with time-varying filters, and this point of view allows us to define
the boundary filters for all scales j > 0.

A. Redundancy at the first scale
The task of this section is to modify the transform of Section III to obtain a redundant transform. This is achieved

by keeping the values with even indices in the transform of Section III (without subsampling). Note that keeping
the odd indices also provides perfect reconstruction, provided one also knows the last decomposition output a1[0].
The simplest idea for generating the values of the transform for the odd indices is to shift the signal one step to the

right, drop the boundary value a0[0], use the transform of Section III, and then shift back the result to the left. This
method has two flaws that we wish to remedy: first, a0[0] cannot be reconstructed with this approach; second, the
average-interpolation scheme at the last index is still decentered, meaning that an extrapolation is performed in the
prediction step instead of an interpolation. If we use the extra value a1[0] in addition to the low-pass output of the
shifted transform instead, the boundary high-pass filter can be modified to use interpolation instead of extrapolation.
Moreover, a0[0] can be recovered at the reconstruction. This method is described in detail next.
1) Decomposition: The shift-invariant filters of Section II-A are first applied to the signal, and the output is now

subsampled at the odd indices, the last output index being n = −1 for the low-pass filter, and n = −3 for the
high-pass filter. That is,

a1[n] =
a0[n] + a0[n − 1]√

2
, n = . . . ,−3,−1, (28)

and

d1[n] =
√

2
(

1
16

a0[n − 3] +
1
16

a0[n − 2] − 1
2
a0[n − 1] +

1
2
a0[n]

− 1
16

a0[n + 1] − 1
16

a0[n + 2]
)

, n = . . . ,−5,−3. (29)

For the index n = −1, the detail d1[−1] is computed as follows:
(i) Let p(x) be the unique polynomial of degree less than or equal to two such that a1[−3]/

√
2, a1[−1]/

√
2 and

a1[0]/
√

2 are the averages of p(x) on the intervals [−5,−3], [−3,−1] and [−2, 0] respectively. Denote by
p1[−1] the average of p(x) on [−2,−1]. The difference with the boundary scheme of the previous section
is that the average interpolating polynomial is not drawn from disjoint intervals, so that the prediction is
computed from an interpolation, thanks to the use of a1[0]. This prediction scheme is illustrated in Fig. 5.

(ii) The detail is now defined by
d1[−1] =

√
2(a0[−1] − p1[−1]). (30)

The detail d1[−1] can be computed by writing down the value of the prediction p1[−1]

p1[−1] =
√

2
(
− 1

24
a1[−3] +

3
8
a1[−1] +

1
6
a1[0]

)
, (31)

which yields, via (28),

d1[−1] =
√

2
(

1
24

a0[−4] +
1
24

a0[−3] − 3
8
a0[−2] +

11
24

a0[−1] − 1
6
a0[0]

)
. (32)

Since the outputs of the decomposition of Section II-A are to be now the even subsamples of a redundant
transform, we shall denote by a1[2n] and d1[2n] their values, with n ≤ 0. We have just defined the outputs of
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Fig. 5. Computation of the prediction for the index n = −1. The polynomial p(x) is fitted on overlapping intervals, using the values
a1[−3], a1[−1] and a1[0].

the decomposition for all odd indices n = . . . ,−5,−3,−1. This complements the sequences a1[2n], d1[2n] into
a redundant transform with values for all negative or zero integer indices. In the Appendix it is shown that the
previous modification at the boundary preserves the vanishing moments property. Similarly, therein we also show
that this modification does not destroy the property of oscillation of the details.
2) Perfect reconstruction from the odd samples only: The signal can be entirely recovered, provided the last even

low-pass output a1[0] is added to the previous transform. Specifically, for all indices less than or equal to n = −3,
the signal is recovered as in Section II-B, since there is no interference with the boundary during decomposition.
For the indices n = −2 and n = −1, the predictions p1[−1] and p̃1[−2] can be computed from the interpolating
polynomial p(x) via (31) and (A.5). Together with d1[−1], equations (30) and (A.4) provide the reconstruction of
a0[−1] and a0[−2]. Finally, a0[0] is restored through the equation

a0[0] =
√

2a1[0] − a0[−1]. (33)

Summarizing, the reconstruction of a0[−2], a0[−1] and a0[0] is given by

a0[−2] =
1√
2

(
1
12

a1[−3] +
5
4
a1[−1] − 1

3
a1[0] − d1[−1]

)
, (34a)

a0[−1] =
1√
2

(
− 1

12
a1[−3] +

3
4
a1[−1] +

1
3
a1[0] + d1[−1]

)
, (34b)

a0[0] =
1√
2

(
1
12

a1[−3] − 3
4
a1[−1] +

5
3
a1[0] − d1[−1]

)
. (34c)

This proves that the signal can be recovered from the odd outputs of the redundant transform, to which a1[0] has
been added.
3) Perfect reconstruction from the redundant transform: For shift-invariant transforms on the real line, the signal

is reconstructed by computing the average of the two possible reconstructions, e.g., from the even and odd indexed
subsamples of the transform. We do the same thing here, and restore the signal by computing the average of the
reconstructions of Sections III-B and IV-A.2. For indices smaller than n = −2, the reconstruction is performed
as for the regular shift-invariant redundant transforms on the whole real line. For the indices n = −2, n = −1
and n = 0, the boundary filters are computed by averaging the reconstruction formulas from the even and odd
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subsamples. Using (21) and equations (33) and (34) yields,

a0[−2] =
1√
2

(
− 1

16
a1[−4] +

1
24

a1[−3] +
1
2
a1[−2] +

5
8
a1[−1] − 5

48
a1[0]

+
1
2
d1[−2] − 1

2
d1[−1]

)
,

a0[−1] =
1√
2

(
− 1

16
a1[−4] − 1

24
a1[−3] +

1
4
a1[−2] +

3
8
a1[−1] +

23
48

a1[0]

+
1
2
d1[−1] − 1

2
d1[0]

)
,

a0[0] =
1√
2

(
1
16

a1[−4] +
1
24

a1[−3] − 1
4
a1[−2] − 3

8
a1[−1] +

73
48

a1[0]

−1
2
d1[−1] +

1
2
d1[0]

)
.

B. Redundancy at coarser scales
When using wavelets on the whole real axis, the redundant transforms at the coarse scales are obtained via the

standard method, that is, by inserting zeros into the original filters. We give here an interpretation of this zero
insertion as an operation of the original filters on a multiplexed signal. This interpretation can be used to extend
the zero insertion to time-varying filters, specifically, filters whose coefficients take different values close to the
boundary.
At the decomposition from scale j ≥ 1 to scale j + 1, we consider a signal x to be a combination of 2j signals

{x!}0≤!<2j , with x![n] = x[2jn − $]. Let us recall that, at the scale j, the zero insertion operation on the filter h
results in the filter defined by

hj [n] :=

{
h[p], if n = 2jp,

0, otherwise.
(35)

The redundant decomposition from scale j to scale j +1 is obtained by convolving the input with the zero insertion
filters at the scale j. Then the convolution y of the signal x with the filter hj can be split into the series of 2j

convolutions

y![n] := y[2jn − $]

=
∑

k∈Z
hj [k] x[2jn − $ − k]

=
∑

p∈Z
hj [2jp] x[2jn − $ − 2jp]

=
∑

p∈Z
h[p] x![n − p]

=
∑

p∈Z
h[n − p] x![p]

= h ∗ x![n], 0 ≤ $ < 2j .

Hence the convolution with zero inserted filters can be viewed as the merging of 2j parallel convolutions y! of the
filter h with the 2j signals x!. This can be extended to time varying filters hn[p] by setting

y![n] =
∑

p∈Z
hn[p] x![p]. (36)

In practice, zero insertion is used when the filtering coincides with the time-invariant processing of Section II.
When close to the boundary, the multiplexed formula (36) is used on the explicit expressions of the boundary
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filters. Similarly, during reconstruction, zero insertion is used when wavelets on the whole real axis are used. When
boundary filters are used, the multiplexed formula (36) is used instead, as in the decomposition stage. Finally, the
reconstructed signal is obtained, as usual, that is, by adding the outputs of the low-pass and high-pass filters and
dividing the sum by two at each scale [11].

V. NUMERICAL EXAMPLE
In this section we test and compare the denoising transforms developed in the previous sections. To this end,

a noisy reference signal with sharp transients is introduced, which is denoised using both the non-redundant and
redundant transforms on the half-axis proposed in this paper. The results obtained from denoising using a wavelet
transform on the interval, taken from Ref. [12], [13], are also presented for comparison purposes.
Figure 6 shows the original signal. The steep jump after sample number 2000 makes this signal particularly

relevant to wavelet-based denoising methods. This is because it is known that wavelet thresholding can be used to
efficiently denoise piecewise regular signals [3], [4].

500 1000 1500 2000

27

28

29

30

31

32

33

34

35
Original signal; SNR = 33.0434 dB

Fig. 6. Original signal. The horizontal axis indicates sample number. The sharp jump of the signal after 2000 has a duration of 60 samples.

The denoising procedure is performed as follows: at each time t, a time window [t−T, t] of length T is used to
select the data on which the transform is computed. The window length T is essentially determined by the number
of scales used in the transform. It is equal to the length of the filter which is the longest at the fine scale, multiplied
by 2j−1, j = 1 being the finest scale. For this problem, with a choice of j = 6 scales, a maximum filter length of
six and a delay of τ = 20 samples, gives a window of T = 213 samples. Hard thresholding is then performed on
the wavelet coefficients4, that is, all dj [n] which are below a given threshold ε are set to zero. The signal is then
reconstructed using the techniques of Section IV-A.3. Ideally, sampling the reconstructed signal at time t provides
an estimate of the denoised signal without any delay. In practice, however, it was observed that the estimate is
degraded at instants close to the present time. For this reason, a user-defined delay τ is introduced and the value of
the reconstructed signal at time t− τ is taken as an estimate of the denoised signal at time t− τ . The main purpose
of the numerical experiments in this section is to find a delay τ which is smaller than the duration of any notable
sharp transients of the signal, while still providing acceptable denoising levels. This scheme suggests a procedure
of how online denoising could be performed in practice.
Figure 7(a) shows the effect of thresholding using the nonredundant transform of Section III. Figure 7(b) shows

4The number of scales and the threshold have been determined empirically. They are the same for all transforms.
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Processed signal (decimated transform) with a delay of 20 and a window of 213 past values, SNR = 53.9538 dB

(a) Nonredundant transform
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Processed signal (redundent transform) with a delay of 20 and a window of 213 past values, SNR = 72.4459dB

(b) Redundant transform

Fig. 7. Denoising with wavelet transform over 6 scales, a hard threshold of 8 and a delay of τ = 20 samples.

the results using the redundant transform with the same threshold value. One can see – at least visually – the
benefits brought about by the redundancy. The signal to noise ratio (SNR) has been increased from 53.9 dB to
72.4 dB via the use of the redundant transform. Note that the SNR of the original signal is 33 dB. In Fig. 7 six
scales have been used, with a hard threshold of 8 and a delay τ = 20 samples. As a comparison, the large jump
of the signal after 2000 has a duration of 60 samples.
For comparison, the Cohen-Daubechies-Vial-Jawerth (CDVJ) wavelets were used to denoise the signal of Fig. 6.

Recall that the CDVJ wavelets [12], [13] are orthogonal wavelets on the interval and here have two vanishing
moments. Nonetheless, the associated filters do not have vanishing moments, that is, polynomial sequences do not
vanish through the high-pass filter. Figure 8 shows the result of denoising using hard thresholding with the CDVJ
wavelet filters, and with the same threshold (ε = 8) and number of scales as before (j = 6). The delay is again
taken to be τ = 20 samples. It is evident that the performance is much poorer than the one obtained using the
average interpolation scheme. In particular, the SNR is 36.34 dB versus a SNR of 72.4 dB for the redundant average
interpolation scheme, and a SNR of 53.9 dB for the nonredundant scheme. We can improve the performance of the
CDVJ filtering, and achieve a SNR closer to the ones of Fig. 7, by increasing the number of scales. Figure 9(a)
shows that by increasing the number of scales from 6 to 8 we can increase the SNR to 52.2 dB, which is similar
to the SNR achieved when using the nonredundant average interpolation algorithm. If, on the other hand, we want
to achieve a SNR close to the SNR of the redundant transform, the number of scales to be processed increases to
10. The SNR for the latter case is 74.3 dB (see Fig. 9(b)), which is close to the SNR of 72.4 dB when using the
redundant average interpolation scheme.
Since the computational complexity of any denoising algorithm increases with the number of scales involved in

the processing, it is evident from these results that the proposed denoising algorithm outperforms CDVJ filtering
since the quality of denoising is better when the same number of scales is used in both cases. Although one can,
in principal, achieve SNRs similar to ones from average interpolation using CDVJ wavelet filtering, the required
number of scales will most likely prohibit its implementation for on-line applications. It should be noted at this
point that the number of computations does not increase merely because the computations are performed over a
larger number of scales. Rather, the increased number of computations stems mainly from the increasingly larger
windows of data to be processed as the number of scales increases. For instance, in Figure 9(b) only half the data
are processed since the window is quite large (1024 samples from a total of 2424) in this case. A large window
implies, in turn, a large delay before the filter can produce some output. It is well known that delays within a
feedback loop are detrimental in terms of stability and performance of the closed-loop.
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Fig. 8. Denoising with Cohen-Daubechies-Vial-Jawerth wavelets over 6 scales, a hard threshold of ε = 8 and a delay of
τ = 20 samples.
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(a) CDVJ denoising with 8 scales
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(b) CDVJ denoising with 10 scales

Fig. 9. Denoising with Cohen-Daubechies-Vial-Jawerth wavelets using 8 scales and 10 scales. A hard threshold of ε = 8 and
a delay of τ = 20 samples has been used in both cases. For the case of 10 scales only half the data is processed because of
the very large window length.
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Fig. 10. Main components of the VSCMG assembly. In reaction wheel mode only the wheel DC motor is active while the gimbal remains
fixed.

VI. EXPERIMENTAL RESULTS
The greatest benefit of an on-line denoising algorithm, as the one proposed in this paper, is its potential for

denoising signals in a feedback loop. Traditional orthogonal wavelet denoising algorithms introduce too much
delay that may destabilize the closed-loop system. In general, a compromise must be reached between the level of
acceptable delay and the requirement for noise removal.
In this section we report experimental results from the implementation of the algorithm of Section IV to denoise

the angular velocity signal of a three-phase permanent magnet synchronous DC motor. The DC motor used in
the experiments controls the wheel spin axis of a variable speed control moment gyro (VSCMG)5. A cluster of
four VSCMGs is used to provide attitude control for the Integrated Attitude Control Simulator (IACS) located
at the School of Aerospace Engineering at the Georgia Institute of Technology. IACS is a three-axial air-bearing
experimental facility for simulating three-axis spacecraft attitude maneuvers. Four wheels are available for complete
control about all three axis (with one redundant wheel). Figure 10 shows one of the four VSCMG modules used
for the experiments. Details for the design, construction and other specifications for the IACS spacecraft simulator
can be found in [14].
In reaction wheel mode, control is provided by accelerating or decelerating each of the four spin axis wheels. For

accurate attitude control it is necessary that the motors promptly deliver the commanded control torques. Figures 11
and 12 show the open-loop motor responses to a square and a sinusoidal angular acceleration command, respectively.
Clearly, the open-loop response of the spin DC motor is not satisfactory. This behavior is primarily due to bearing
friction and other nonlinear effects.
Such discrepancies between commanded and delivered torque have deleterious effects in achieving tight pointing

attitude requirements with the IACS. It was therefore deemed necessary to improve the torque command following
performance for each motor by implementing a PI controller. The PI controller was designed to use the angular
velocity error of the wheel (angular velocity measurements provided by a Hall sensor embedded in the DC motor)
as an input in order to provide tight closed-loop torque (i.e., angular acceleration) control.
A C code of the algorithm of Section IV was written and implemented as an S-function in SIMULINK!.

The Real-Time Workshop! toolbox was used to compile and generate the code from the complete SIMULINK!

diagram and the xPCTarget! (with Embedded Option) toolbox was used to run the executable module in real-time.

5Each VSCMG actuator has two motors. One motor controls the wheel speed (reaction wheel mode) and the other controls the gimbal
rate (CMG mode). Only the spin wheel axis was used in the experiments. The gimbal angle was kept constant by physically locking the
gimbal.



17

0 5 10 15 20 25 30 35
−15

−10

−5

0

5

10

15

20
: Actual
: Reference

Time [sec]

Ω̇
[ra
d/
se
c2
]

0 5 10 15 20 25 30 35
−50

0

50

100

150

200

250

300
: Actual
: Reference

Time [sec]

Ω
[ra
d/
se
c]

Fig. 11. Open-loop response of angular acceleration and velocity to a square-wave angular acceleration command.
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Fig. 12. Open-loop response of angular acceleration and velocity to a sinusoidal angular acceleration commands.

The results from three separate experiments are presented below.
During the first experiment, measurements of the angular velocity signal from the Hall sensor were processed

off-line using the wavelet denoising algorithm. The purpose of those experiments was to estimate appropriate values
for the number of scales, threshold and user-defined delay parameter τ for the wavelet filter.
Figure 13 shows typical angular velocity data from the Hall sensor. The results of denoising with a hard threshold

of 50, a delay of 15 samples and for 4 and 6 scales are shown in Fig. 14.
During the second set of experiments, the denoised angular velocity signal was used as the input to a PI controller.

The purpose of the PI controller is to achieve good tracking to torque (i.e., angular acceleration) commands.
Remark 1: Although in the presence of nonlinearities the denoising filter may introduce a small bias (hence the

closed-loop system may not remain stable when denoised variables are used in lieu of their true values), nonetheless
it was found in our experiments that such effects were negligible, and denoising did not alter the overall stability
characteristics, except – of course – in cases when the delay induced by the denoising process was prohibitively
large.
Figure 15 shows the simplified block diagram schematic of the PI/Motor interconnection. In the figure, the block

labeled PWM contains the internal servo loop implemented by the motor amplifier. The measurements from the
Hall sensor were noisy, with a very slow measurement update rate (about 3 Hz). This low update rate induces a
significant delay (about 0.3 sec) in the overall closed-loop system that makes it rather challenging to control.
Figure 16 shows the results from the closed-loop control using the Hall sensor measurements. A wavelet filter
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Fig. 13. Angular velocity measurements from Hall sensor.
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(b) scales=6

Fig. 14. Wavelet denoising of angular velocity signal from Hall sensor using a threshold of 50 and a delay of 15 samples.

with j = 5, τ = 15 and threshold of 30 was used to clean up the signal. Figures 16 and 17 show the closed-loop
response to a square wave and a sinusoidal angular acceleration command, respectively.
As shown in these figures, the torque following performance has been significantly improved, although owing to

the low update rate (3 Hz) of the Hall sensor, the response exhibits some large overshoot and appears to be a bit
sluggish. In order to improve the performance it was necessary to obtain measurements at higher rates. Therefore, a
set of angular encoders (US Digital E4) were installed on each wheel. Angular velocity was obtained from numerical
differentiation of angular position data of the wheel spin axis provided via the encoders at a sampling rate of 100 Hz.
Although having a much better performance than the Hall sensors, numerical differentiation still introduced noise
in the angular velocity signal. In addition, the type of noise induced by differentiation is of a different character
than the one from Hall sensor, which was mainly due to electromagnetic interference from surrounding electronics
and motor. The noise due to differentiation is mainly due to quantization and can be seen in Figure 19. The purpose
of denoising was to remove this noise from the signal before it is used by the PI controller.
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Fig. 15. Closed loop control for Ω̇ using velocity feedback.
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Fig. 16. Closed-loop control response of angular acceleration and velocity to square wave angular acceleration command. Hall sensor
measurements.

The results of this experiment for a sawtooth angular velocity input are shown in Fig. 18. The actual and filtered
signal in this case are very close to each other at this plot scale. Zooming in around t = 15 sec allows a more
detailed examination of the results. Figure 19(a) shows the results of denoising over a 3 sec interval (300 samples).
The dotted line shows the angular velocity data, and the solid line is the result after wavelet denoising using 4
scales, a threshold of 20 and a delay of 5 samples. The measured data has been smoothed out, and most of the
noise has been removed. A small delay is evident because of the processing, and a small amount of noise has
remained in the signal. This noise can be further removed at the expense of more delay. For instance, Fig. 19(b)
shows the results of denoising using a delay of 15 samples or 0.15 sec.
The results from the feedback implementation of square-wave angular acceleration command of magnitude

20 rad/ sec2 are shown in Fig. 20, and from a sinusoidal angular acceleration command of amplitude 30 rad/ sec2

and frequency of 1/15 Hz are shown in Fig. 21. In Fig. 20(a) the command is shown by a dashed line and the
actual response of the DC motor is shown by a solid line. The corresponding response of the angular velocity is
shown in Fig. 20(b). Both Figs. 20 and 21 show very good tracking of the commanded signals.
Remark 2: Although the same, constant threshold has been used across all scales in all previous experiments, the

proposed algorithm can be easily adapted to be used with a time-varying threshold. Several algorithms exist (e.g.,
the SURE algorithm [2, pp. 455-462]) which can adjust the threshold on-line based on an estimate of the noise
variance. For the IACS the noise characteristics remain the same with time. Therefore the use of a constant value
for the threshold was deemed sufficient. The reader should be aware of this additional flexibility of the proposed
algorithm since in practice one may want to use an adaptive threshold, especially when the noise level is not known
a priori or if it is changing.

VII. CONCLUSIONS
In this paper we propose a method for wavelet signal processing on the half-axis. The starting point for the

development of the results in this paper is the method of average-interpolating polynomials. Using this method
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Fig. 17. Closed-loop control response of angular acceleration and velocity to sinusoidal angular acceleration command. Hall sensor
measurements.
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Fig. 18. Wavelet denoising of angular velocity signal using 4 scales and a threshold of 20. Encoder measurement feedback.

boundary effects arising from working in a semi-infinite interval can be handled is a straightforward manner. In
addition, the algorithm can be easily implemented using wavelet filter banks. The motivation behind denoising
on the half-axis stems from the need for on-line denoising for certain applications (e.g., within a feedback loop),
where future values of the data are not available. It is well known that redundant transforms are typically superior
to non-redundant ones for eliminating or reducing noise in a signal. We thus extend our results and we also provide
a redundant wavelet transform on the half-axis. The superiority of the redundant transform is demonstrated via a
numerical example of a very noisy signal with a sharp discontinuity. In addition, we provide experimental evidence
from the use of the proposed wavelet method for on-line denoising of feedback signals. Specifically, experimental
results from angular velocity and angular acceleration control of a brushless DC motor of a reaction wheel assembly
using noisy angular velocity measurements are shown.

Acknowledgement: The second and third author acknowledge the support from NSF through awards CMS-
0084954 and CMS-0510259.
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(a) τ = 5
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Fig. 19. Wavelet denoising of angular velocity signal using 4 scales and a threshold of 20 (detailed view). Encoder measurement feedback.
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Fig. 20. Closed-loop response of angular acceleration and velocity to square-wave angular acceleration commands; on-line denoising of
angular velocity signal using a wavelet filter with 4 scales, a threshold of 20 and a delay of 10
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APPENDIX
Below we show that the high-pass decomposition filter (15) satisfies a vanishing moments property and that the

details oscillate.
a) Vanishing moments: It suffices to show that the detail coefficients are all zero when the input signal is a

discrete polynomial of degree two. To this end, assume that aj [2n− 3], . . . , aj [2n+2] is a polynomial sequence of
degree less than or equal to two. That is, aj [2n−3], . . . , aj [2n+2] is a sequence of the averages of some polynomial
q(x) of degree less than or equal to two on the intervals [k2j , (k + 1)2j ] for k = 2n − 4, . . . , 2n + 1. Since the
averages of averages on disjoint intervals are averages, the average-interpolating polynomial p(x) at step (ii) of the
high-pass filter construction necessarily satisfies p(x) = q(x). Moreover, the average of p(x) on [2j(2n−1), 2j+1n]
is exactly equal to aj [2n], which proves that dj+1[n] = 0.

b) Oscillation of the details: Let us denote by p̃j+1[n] the average of the average-interpolating polynomial
p(x) on the interval [2j+1(n − 1), 2j(2n − 1)]. Recall that, by construction, aj+1[n]/

√
2 is both the average of

aj [2n] and aj [2n− 1] and the average of p(x) on [2j+1(n− 1), 2j+1n]. Hence it is also the average of pj+1[n] and
of p̃j+1[n], the latter two being the averages of p(x) on the left and right half sub-intervals of [2j+1(n−1), 2j+1n];
see Fig. 3. This yields

aj [2n] + aj [2n − 1]
2

=
aj+1[n]√

2
=

pj+1[n] + p̃j+1[n]
2

. (A.1)

This proves that the details are oscillating (compare with (12)), that is,

aj [2n − 1] − p̃j+1[n] = −dj+1[n]/
√

2. (A.2)

Notice that (A.1) and (13) imply that

p̃j+1[n] =
√

2
(

1
16

aj+1[n − 1] +
1
2
aj+1[n] − 1

16
aj+1[n + 1]

)
. (A.3)

Similarly, we next show that the high-pass decomposition filter of Section III has similar properties.
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a) Vanishing moments: If a0[−4], . . . , a0[0] are the averages of a polynomial q(x) of degree less than or equal
to two on the intervals [−5,−4], . . . , [−1, 0], then a1[−3]/

√
2, a1[−1]/

√
2 and a1[0]/

√
2 are the averages of the

interpolating polynomial p(x) on the intervals [−5,−3], [−3,−1] and [−2, 0], respectively. Hence, by construction,
p(x) = q(x) and the detail is zero. This shows that the previous modification at the boundary preserves the vanishing
moments property.

b) Oscillation of the details: Denote by p̃1[−2] the average of the interpolating polynomial p(x) on [−3,−2].
Then

a0[−2] + a0[−1]
2

=
a1[−1]√

2
=

p1[−1] + p̃1[−2]
2

since both quantities give the average of p(x) over the interval [−3,−1]. This proves that

−d1[−1] =
√

2(a0[−2] − p̃1[−2]) (A.4)

and the details are oscillating. It can be easily verified that p̃1[−2] is given by

p̃1[−2] =
√

2
(

1
24

a1[−3] +
5
8
a1[−1] − 1

6
a1[0]

)
. (A.5)


