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Redundant Wavelet Filter Banks on the Half-Axis
with Applications to Signal Denoising with Small Delays

François Chaplais, Panagiotis Tsiotras and Dongwon Jung

Abstract—A wavelet transform on the negative half real axis is
developed using an average-interpolation scheme. This transform is
redundant and can be used to perform causal wavelet processing,
such as signal denoising, without delay. Nonetheless, in practice some
boundary effects occur and thus a small amount of delay is required
to reduce them. Results from the experimental implementation of
the proposed algorithm for the denoising of a feedback signal for
controlling a three-phase permanent-magnet synchronous brushless
DC motor are presented.

I. INTRODUCTION

Wavelets have become very popular in signal processing during
the last two decades. They allow compact representation of a signal
with a small number of wavelet coefficients. Given a sequence of
data {a0[k]}k∈Z the wavelet transform generates for each scale
depth J ≥ 1 a sequence of scale coefficients aJ = {aJ [k]}k∈Z
which give an approximation of the signal at the low resolution
scale J along with a family of detail coefficients dj = {dj [k]}k∈Z,
1 ≤ j ≤ J , which contain the information which is lost from
going from a finer resolution scale to a coarser resolution one.
The simplest and probably most common method for signal

denoising via wavelet decomposition is thresholding. In thresh-
olding one keeps only the coefficients dj which are larger than
a pre-specified tolerance. Thresholding applied on the coefficients
of a wavelet transform is also known to be an efficient method
for denoising signals with sharp transients [1], [2]. Standard
thresholding typically is performed using wavelets on the whole
real line. This causes significant delays in the processing, because
some of the filters involved in the composition/decomposition
phases of are not causal; see Fig. 1. These delays are typically of
order 2j , where j is the number of scales used in the transform.
When operating on on-line data (such as for denoising signals
within a feedback control loop) it is imperative to use wavelets on
the negative half real axis (the half axis in this context representing
past, known values of the signal). Any delays arising from the
process of denoising in will be detrimental in the feedback loop,
may impair performance, and even cause instability. In order to
minimize any delays arising from wavelet processing, herein we
propose a method that operates only on past data.
It should be mentioned at this point that although the word

“wavelet” will be used throughout in the sequel, the basic point
of view taken in this paper is that of FIR filter banks [3], [4].
The various signal decomposition and reconstruction schemes
described in this paper were inspired by the average-interpolation
scheme of Donoho [5] and Sweldens [6]; see also [7]. As noted
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in [6], this scheme can be modified to process signals on the half-
axis. We explicitly show how this can be done. The proposed
scheme is subsequently modified to provide a redundant transform
on the negative half-axis. Redundant transforms have several
attractive properties such as translation invariance [3]. Recall that
the standard (non-redundant) wavelet transform on the other hand
is not translation invariant: if the signal is shifted, the wavelet
coefficients are not simply a shifted version of the coefficients of
the original signal.
For simplicity of exposition, in this paper we will restrict

ourselves to wavelets with three discrete vanishing moments.
However, the results are easily extendable to wavelets with any
number of moments. Recall that a filter h has N discrete vanishing
moments if and only if

∑

n∈Z
n!h[n] = 0, ! = 0, . . . , N − 1 (1)

II. THE AVERAGE-INTERPOLATION SCHEME

A very simple, yet classic, scheme for building a discrete
wavelet transform with discrete vanishing moments is based on
so called “cell averages” [7], also known as “blocky kernels”
[5]. This discrete transform has two parts: the decomposition,
which yields the wavelet coefficients, and the reconstruction,
which retrieves a signal from these coefficients. The decomposition
and reconstruction are both obtained using a pair of FIR filters.
While these filters are actually identical [5] to the (1, 3) spline
biorthogonal filters of Daubechies [8], here we will use average-
interpolation together with the usual FIR filter presentation, as
illustrated in Fig. 1. Average interpolation can be easily adapted
to derive a similar scheme for processing signals over the half
axis, which is the main objective of this paper.

2
!"#$%#&'()"$*+,!%-#.!,/()#01!21
!%"()/"#$#3()&#4(/0((%#('()5
"$*+,(

2
!"#$%#6%7()"$*+,!%-#.!,/()#01!21
)(*&'("#/1(#"$*+,("#0!/1#&77
!%7!2("

2

2

2 g

2 h

a0

~

~

g
_

h
_

a0

Fig. 1. Perfect reconstruction filter banks, used for the implementation
of the wavelet transform on the real axis.

A. Decomposition

As usual in wavelet processing, the data is filtered by a low
pass and a high pass filter.
1) Low pass filter: Up to a normalizing scalar of

√
2, the low

pass filter computes the average of two successive signal values.
This is the Haar decomposition filter [3]

aj+1[n] =
aj [2n] + aj [2n − 1]√

2
. (2)



2) High pass filter: First, we present the high pass filter using
the average-interpolation scheme, giving its numerical value later
on.
We wish the high pass decomposition filter to have discrete

vanishing moments. This means that there exists an integer p
such that, for discrete polynomial sequences of the form a[n] =∑k=p

k=0 aknk of degree less than or equal to p, their output through
the filter is zero. This vanishing moments property ensures that
the corresponding low pass reconstruction filter will efficiently
approximate sufficiently “regular” signals with an order deter-
mined by p. This property is satisfied with the use of an average-
interpolation scheme.
The high pass filter considers the averages (aj [2n] + aj [2n −

1])/2 = aj+1[n]/
√

2 and identifies the unique polynomial P (x)
of degree less or equal to p whose averages of the coarser grid with
step 2j+1 coincides with p + 1 successive values of aj+1[n]/

√
2.

It then computes the averages of P (x) on the fine grid with
step 2j , subtracts the actual values of the signal from these fine
averages, and normalizes the result by a factor

√
2. This sequence

of operations is illustrated in Fig. 2.
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Fig. 2. Average interpolation using a polynomial of degree less than
or equal to two. The solid piecewise constant line represents the original
discrete time signal. The solid curve is the unique polynomial of degree
less than or equal to two such that its averages on the three intervals
defined by the dotted lines are precisely equal to the three dotted values.
The dashed piecewise constant line is the sequence the averages of the
polynomial on the two middle fine intervals defined by the original signal.

Let us explicitly build this high pass decomposition filter for p =
2. To have three discrete vanishing moments, the filter proceeds
as follows:
(i) At scale j and time 2n, the three low pass outputs aj+1[n−1],

aj+1[n] and aj+1[n + 1] are computed.
(ii) Let P (x) be the unique polynomial of degree less than or

equal to two such that the discrete averages aj+1[n−1]/
√

2,
aj+1[n]/

√
2 and aj+1[n+1]/

√
2 are the averages of P on the

intervals [−2j+1, 0], [0, 2j+1] and [2j+1, 2j+2] respectively.
Denote by pj+1[n] the average of P on [2j , 2j+1]. pj+1[n] is
the called the prediction of P (x) obtained from aj+1[n−1],
aj+1[n] and aj+1[n + 1].

(iii) The output of the high pass filter (or detail) is then the
difference

dj+1[n] =
√

2(aj [2n] − pj+1[n]). (3)

Up to
√

2, this is the difference between the actual value
of the signal and its prediction of the average interpolating
polynomial P (x).

These operations can be conveniently represented as convolution
with the filter (before subsampling)

ḡ =

[
−
√

2
16

,−
√

2
16

,

√
2

2
,−

√
2

2
,

√
2

16
,

√
2

16

]
(4)

with support [−2, 3]; see Fig. 1. These coefficients are computed
from (3) after writing down explicitly the expression for pj+1[n]
which results in the following expression for the detail coefficients

dj [n] =
√

2
( 1
16

aj−1[2n − 3] +
1
16

aj−1[2n − 2] − 1
2
aj−1[2n − 1]

+
1
2
aj−1[2n] − 1

16
aj−1[2n + 1] − 1

16
aj−1[2n + 2]

)

a) Vanishing moments: We now show explicitly the vanish-
ing moments property for polynomials of degree less than or equal
to two. If aj [2n− 3], . . . , aj [2n+2] is a polynomial sequence of
degree less than or equal to two, then by definition it is a sequence
of the averages of some polynomial Q(x) of degree less than or
equal to two on the intervals [n2j , (n + 1)2j ] for n = −2, . . . , 3.
Since the averages of averages on disjoint intervals are averages,
necessarily P (x) at step (ii) of the high pass filter construction
satisfies P (x) = Q(x), and its average on the interval [2j , 2j+1]
is equal to aj [2n]. This proves that dj+1[n] = 0.

b) Oscillation of the details: Denote by p̃j+1[n] the average
of P (x) on [0, 2j ] at step (ii) of the high pass construction filter
above. Recall that aj+1[n]/

√
2 is both the average of aj [2n] and

aj [2n− 1] and the average of P (x) on [0, 2j+1]. Hence it is also
the average of pj+1[n] and of p̃j+1[n], which are the averages of
P on the half intervals. This yields

aj [2n] + aj [2n − 1]
2

=
aj+1[n]√

2
=

pj+1[n] + p̃j+1[n]
2

.

This proves that the details are oscillating, that is,

aj [2n − 1] − p̃j+1[n] = −dj+1[n]/
√

2 (5)

At the reconstruction stages, the low pass outputs aj+1 are
available, and the average interpolated polynomial P (x) can be
computed. Hence pj+1[n] and p̃j+1[n] can be computed; since
dj+1[n] is also available, aj [2n] and aj [2n− 1] can be recovered
using (3) and (5). In short, the sequence aj can be reconstructed
from the sequences aj+1 and dj+1.

B. Reconstruction
The reconstruction stage is based of the same ideas as those

presented in the section devoted to the high pass decomposition
filter. First, a polynomial of degree less than or equal to two is
identified as in step (ii) of the high pass decomposition filter, using
the outputs of the decomposition low pass filter. The averages
pj+1[n] and p̃j+1[n] of this polynomial on the intervals [2j , 2j+1]
and [0, 2j ] are then computed. The part of the signal aj which has
even indices is recovered from the prediction and details using (3).
The part with odd indices uses equation (5), as explained in the
section about the oscillation of the details. If the decomposition has
not been modified, the reconstruction restores the signal exactly.
It is common to express the reconstruction process as the sum

of the outputs of a low pass and a high pass reconstruction filters.
Then the filters are expressed as the succession of an oversampling
of the signal by zero insertion1, followed by the filtering itself, as
in Fig. 1.

1That is, a zero is inserted between every sample value.



1) Low pass filter: Computing explicitly the two predictions on
the left and right subintervals of [2j+1(n − 1), 2j+1n] gives the
following values for the coefficients of the low pass reconstruction
filter: [

−1
8
,
1
8
, 1, 1,

1
8
,−1

8

]
1√
2

with support [−3, 2].
2) High pass filter: This is the Haar reconstruction high pass

filter, e.g., [
− 1√

2
,

1√
2

]

with support [−1, 0].

III. ADAPTATION TO THE HALF AXIS

Here we wish to take into account the fact that only past
values are available for processing. Assume that N is the index
representing the present time. We wish to design a wavelet related
scheme to process the data a0[n] with n ranging from −∞ to N ;
without loss of generality, we can assume that N = 0.
The scheme of Section II can be modified at the right boundary

to use only past values of the signal. This adaptation essentially
decenters the prediction scheme at the boundary to account for the
absence of future values.

A. Decomposition
The low pass averaging filter does not require any modification

since it uses only past values. For negative output indices, the
high pass filter uses data with negative or zero indices. This is
because the prediction at index n is at the center of the average
interpolating polynomial and therefore does not uses input data
past the index 2n + 2 (see Fig. 2). Hence the high pass filter
needs only to be modified for the prediction at output index n = 0
when input data is not available at the indices n = 1, 2. To do
so, the polynomial is identified on the last three averages and the
prediction is computed at the index n = 0, as illustrated in Fig. 3.
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Fig. 3. The average interpolation scheme is decentered to produce a
prediction at the boundary. Here j = 0.

The details are given below:
(i) At scale j and index n = 0, the three low pass outputs

aj+1[−2], aj+1[−1] and aj+1[0] are computed.
(ii) Let P (x) be the unique polynomial of degree less than or

equal to two such that aj+1[−2]/
√

2, aj+1[−1]/
√

2 and
aj+1[0]/

√
2 are the averages of P (x) on [−3 · 2j+1,−2 ·

2j+1], [−2·2j+1,−2j+1] and [−2j+1, 0] respectively. Denote
by pj+1[0] the average of P (x) on [−2j , 0], that is, the
rightmost half interval.

(iii) The output of the high pass filter (or detail) is the difference

dj+1[0] =
√

2(aj [0] − pj+1[0]). (6)

The prediction is now decentered. It is still based on average
interpolation. In particular, if a sequence is a sequence averages of
a polynomial Q(x), the identified polynomial P (x) will be equal
to Q(x) and the detail dj+1[0] will be zero. Overall, the high pass
filter still has three discrete vanishing moments. Using the same
arguments as in the centered scheme, one can show that the details
are also oscillating at n = 0.
One can compute the prediction explicitly and then use it to

compute the high pass output dj+1[0] at the boundary. Its value
is

dj+1[0] =
√

2
( 5
16

aj [0] − 11
16

aj [−1] +
1
4
aj [−2]

+
1
4
aj [−3] − 1

16
aj [−4] − 1

16
aj [−5]

)

B. Reconstruction
Except for the indices n = −1 and n = 0, the reconstruction

is performed exactly as in Section II-B; the signal is recovered
for negative indices. At the boundary, the prediction pj+1[0] is
performed as in Section III-A, with an extra prediction p̃j+1[0],
which computes the average of the interpolation polynomial P (x)
on the interval [−2j+1,−2j ]. Up to a shift, this amounts to
predicting the averages on the last two intervals of the fine grid
from the identified polynomial.
The value aj [0] at the edge is recovered using (6), while

aj [−1] is recovered with a similar equation which uses p̃j+1[0]
and the oscillation of the detail, as in the centered scheme. The
reconstruction is performed at the edge by using the following
equations, which are obtained by explicitly writing down the
predictions:

aj [0] =
1
√

2

( 1

8
aj+1[−2] −

1

2
aj+1[−1] +

11

8
aj+1[0] + dj+1[0]

)

aj [−1] =
1
√

2

(
−

1

8
aj+1[−2] +

1

2
aj+1[−1] +

5

8
aj+1[0] − dj+1[0]

)

IV. REDUNDANCY ON THE HALF-AXIS
The transform presented in the previous sections are nonre-

dundant. That is, any pair of sequences aj+1 and dj+1 can
be interpreted as the decomposition of a signal aj . Redundant
transforms can also be designed. These transforms provide more
data per time unit than nonredundant ones. The price to pay is
that not all pairs of sequences aj+1 and dj+1 can be interpreted
as the decomposition of a signal aj .
Redundant transforms are known to improve signal processing

with wavelets, especially for denoising [2]. Ideally, the proposed
redundant transform should be shift invariant. When wavelets on
the real line are used, this is achieved by removing the subsampling
and zero insertions in the filter banks of Figure 1 and using filters
which depend on the scale. More precisely, at the input scale j,
2j − 1 zeros are inserted between each coefficient of the original
filter. The corresponding algorithm is known as the algorithme à
trous [9], because of the insertion of zeros in the filters2. This
scheme cannot be used directly for transforms on the half-axis

2“trous” means “holes” in french.



because boundary effects are not properly handled by the zero
insertion trick. Here we develop a redundant transform on the half-
axis in two steps: the first step extends the transform of Section III
to a redundant transform at the base scale j = 0. The second one
interprets the zero insertion on filters3 as filtering on multiplexed
signals. This interpretation is still valid for time-varying filters and
it will be used later on to define the boundary filters for the scales
j > 0.

A. Redundancy at the first scale
The task of this section is to extend the transform of Section III

to a redundant transform such that
• The transform of Section III is obtained by keeping the values
with even indices in the redundant transform

• Keeping the odd indices also provides perfect reconstruc-
tion, provided one also knows the last decomposition output
aj+1[0].

The simplest idea for generating the values of the transform for
the odd indices is to shift the signal one step to the right, drop
the boundary value a0[0], use the previous transform, and shift
back the result to the left. It has two small flaws that we wish to
remedy: first, a0[0] cannot be reconstructed; second, the average
interpolation scheme at the last index is still decentered, meaning
that an extrapolation is performed in the prediction step instead of
an interpolation. If we used the extra value a1[0], in addition to the
low pass output of the shifted transform, the boundary high pass
filter can be modified to use interpolation instead of extrapolation
and, moreover, a0[0] can be recovered at the reconstruction.
1) Decomposition: The shift invariant filters of Section II-A are

first applied to the signal, and the output is now subsampled at
the odd indices, the last output index being n = −1 for the low
pass, and n = −3 for the high pass. For the index n = −1, the
detail d1[−1] is computed as follows:
(i) Let P (x) be the unique polynomial of degree less than

or equal to two such that a1[−3]/
√

2, a1[−1]/
√

2 and
a1[0]/

√
2 are the averages of P (x) on the intervals [−5,−3],

[−3,−1] and [−2, 0] respectively. Denote by p1[−1] the
average of P (x) on [−2,−1]. The difference with the
boundary scheme of the previous section is that the average
interpolating polynomial is not drawn from disjoint intervals,
and the prediction is computed from an interpolation, thanks
to the use of a1[0]. This prediction scheme is illustrated in
Fig. 4.

(ii) The detail is defined by

d1[−1] =
√

2(a0[−1] − p1[−1]) (7)

The detail d1[−1] can be computed by writing down the value
of the prediction

d1[−1] =
√

2
( 1
24

a0[−4] +
1
24

a0[−3] − 3
8
a0[−2]

+
11
24

a0[−1] − 1
6
a0[0]

)
.

Since the outputs of the decomposition of Section II-A are
to be now the even subsampling of a redundant transform, we
shall denote by a1[2k] and d1[2k] their values, with k ≤ 0.
We therefore have just defined the outputs of the decomposition
for all odd indices n = . . . ,−5,−3,−1. This complements the
sequences a1[2k], d1[2k] into a redundant transform with values
for all negative or zero integer indices.

3As opposed to signals.
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Fig. 4. Computation of the prediction for index n = −1. The polynomial
is fit on overlapping intervals, using the values a1[−3], a1[−1] and a1[0].

a) Vanishing moments: If a0[−4], . . . , a0[0] are the averages
of a polynomial Q(x) of degree less than or equal to two on the
intervals [−5,−4] . . . [−1, 0], then a1[−3]/

√
2, a1[−1]/

√
2 and

a1[0]/
√

2 are the averages of Q(x) on the intervals [−2, 0], [0, 2]
and [1, 3] respectively. Hence P (x) = Q(x) and the detail is
zero at step (ii) above. This shows that the previous boundary
management preserves the vanishing moments property.

b) Oscillation of the details: Denote by p̃1[−2] the average
of P (x) on [0, 1]. Then

a0[−2] + a0[−1]√
2

= a1[−1] =
p1[−1] + p̃1[−2]

2

since all quantities are averages of P (x) over [0, 2]. This proves
that

−d1[−1] = a0[−2]
√

2 − p̃1[−2] (8)

and the details are oscillating.
2) Perfect reconstruction from the odd samples only: The signal

can be entirely recovered provided the last even low pass output
a1[0] is added to the previous transform. For indices smaller or
equal to n = −3, the signal is recovered as in Section II-B, since
there was no boundary management at the decomposition. For the
indices n = −2 and n = −1, the predictions p1[−1] and p̃1[−2]
can be computed from the polynomial P which is computed from
a1[−3], a1[−1] and a1[0]. Together with d1[−1], equations (7)
and (8) provide the reconstruction of a0[−1] and a0[−2]. Finally,
a0[0] is restored trough the equation

a0[0] =
√

2a1[0] − a0[−1].

Specifically, the reconstruction of a0[−2] and a0[−1] is given by

a0[−2] =
1√
2

( 1
12

a1[−3] +
5
4
a1[−1] − 1

3
a1[0] − d1[−1]

)

a0[−1] =
1√
2

(
− 1

12
a1[−3] +

3
4
a1[−1] +

1
3
a1[0] + d1[−1]

)

This proves that the signal can be recovered from the odd outputs
of the redundant transform, to which a1[0] is added.
3) Perfect reconstruction from the redundant transform: For

shift-invariant transforms on the real line, the signal is recon-
structed by computing the average of the two possible recon-
structions, e.g., from the even- and odd-indexed subsamples of
the transform. We do the same here and restore the signal by
computing the average of the reconstructions of Sections III-B
and IV-A.2. For indices smaller than n = −2, the reconstruction



is performed as for shift-invariant redundant transforms. For the
indices n = −2, n = −1 and n = 0, the boundary filters can be
precomputed by averaging the reconstruction formulas from the
even and odd subsamples.

a0[−2] =
1
√

2

(
−

1

16
a1[−4] +

1

24
a1[−3] +

1

2
a1[−2] +

5

8
a1[−1]

−
5

48
a1[0] +

1

2
d1[−2] −

1

2
d1[−1]

)

a0[−1] =
1
√

2

(
−

1

16
a1[−4] −

1

24
a1[−3] +

1

4
a1[−2]

+
3

8
a1[−1] +

23

48
a1[0] +

1

2
d1[−1] −

1

2
d1[0]

)

a0[0] =
1
√

2

( 1

16
a1[−4] +

1

24
a1[−3] −

1

4
a1[−2]

−
3

8
a1[−1] +

73

48
a1[0] −

1

2
d1[−1] +

1

2
d1[0]

)

B. Redundancy at coarser scales
When using wavelets on the real axis, the redundant transforms

at the coarse scales are obtained, as usual, by inserting zeros into
the original filters. We give here an interpretation of this zero
insertion as an operation of the original filters on a multiplexed
signal. This interpretation is then used to extend the zero insertion
to time-varying filters, specifically, filters which take different
values close to the boundary.
At the decomposition from scale j to scale j + 1, we consider

a signal x to be a combination of 2j signals {x!}0≤!<2j , with
x![n] = x[n2j − !]. Recall now at the scale j the zero insertion
of the filter h is the filter defined by

hj [n] =

{
h[p], if n = 2jp,

hj [n] = 0, otherwise.
(9)

The redundant decomposition from scale j to scale j + 1 is
obtained by convolving the input with the zero insertion of the
filters at the scale j. Then the convolution y with hj can be split
into the series of 2j convolutions

y![n] = y[2jn − !]

=
∑

k∈Z
hj [k] x[2jn − ! − k]

=
∑

p∈Z
hj [2

jp] x[2jn − ! − 2jp]

=
∑

p∈Z
h[p] x![n − p]

=
∑

p∈Z
h[n − p] x![p]

= h ∗ x![n], 0 ≤ ! < 2j

Hence the convolution with zero inserted filters can be viewed as
the merging of 2j parallel convolutions y! of the filter h with the
2j signals x!. This can be extended to time varying filters hn[p]
by setting

y![n] =
∑

p∈Z
hn[p] x![p]. (10)

In practice, zero insertion is used only when the filtering
coincides with the time invariant processing of Section II. When
close to the boundary, the multiplexed formula (10) is used on
the explicit expressions of the boundary filters. Similarly, during
reconstruction, zero insertion is used when wavelets on the whole
real axis are used. When boundary filters are used, then the

Fig. 5. Main components of the VSCMG assembly. In reaction wheel
mode only the wheel DC motor is active while the gimbal remains fixed.

multiplexed formula (10) is used as in the decomposition stage.
Finally, the reconstructed signal is obtained, as usual, i.e., by
adding the outputs of the low pass and high pass filters and
dividing the sum by two at each scale [9].

V. EXPERIMENTAL RESULTS
The greatest benefit of an on-line denoising algorithm, as the

one proposed in this paper, is the potential of its use for denoising
signals in a feedback loop. In this section we report experimental
results from the implementation of the previous algorithm to
denoise the angular velocity signal of a three-phase permanent
magnet synchronous DC motor which is used to drive a reaction
wheel. Specifically, the DC motor used in the experiments is
part of a variable-speed control moment gyro (VSCMG) actuator
module4 which provides attitude control for the Integrated Attitude
Control Simulator (IACS) located at the School of Aerospace
Engineering at the Georgia Institute of Technology. IACS is an
experimental facility for simulating three-axis spacecraft attitude
maneuvers. In reaction wheel mode four wheels are available for
complete control about all three axis (with one redundant wheel).
Figure 5 shows the VSCMG assembly with the wheel spin motor
and Fig. 6 shows the complete spacecraft simulator. Details for
the design, construction and other specifications of this spacecraft
simulator can be found in Ref. [10].
In reaction wheel mode control is provided by accelerating or

decelerating each of the four wheels. For accurate attitude control
it is necessary for the motors to be able to promptly deliver
the commanded angular accelerations. Figures 7 and 8 show the
open-loop motor responses to a square and a sinusoidal angular
acceleration command, respectively. These open-loop responses
are not satisfactory owing to friction, nonlinear effects in the
motor dynamics, etc. Such discrepancies will have deleterious
effects in achieving tight pointing attitude requirements. It was
therefore deemed necessary to implement a PI controller to achieve
tight angular velocity control. The PI controller uses the angular
velocity error of the wheel as an input in order to provide tight
closed-loop torque (i.e., angular acceleration) control. Before used
by the PI controller, any measurement noise in the angular velocity
should be removed.
4Each VSCMG actuator has two motors. One motor controls the wheel

speed (reaction wheel mode) and the other controls the gimbal rate (CMG
mode).
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Fig. 6. The body-axes definition for the IACS. The x-axis is designated
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The rotational speed of the wheel was obtained by numerically
differentiating angular position data of the wheel provided via
digital encoders at a sampling rate of 100 Hz. Numerical dif-
ferentiation introduces noise in the angular velocity signal which
must be reduced before the signal is used by the PI controller. The
purpose of denoising was therefore to remove the noise due to the
differentiation of the encoder signal.
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Fig. 7. Open-loop response of angular acceleration and velocity to square-
wave angular acceleration commands.

A C code of the proposed algorithm was written and im-
plemented as an S-function in SIMULINK!. The Real-Time
Workshop! toolbox was used to compile and generate the code
from the complete SIMULINK! diagram and the xPCTarget!
(with Embedded Option) toolbox was used to run the executable
module in real-time.
The results from two separate experiments are shown below.

During the first experiment measurements of the angular veloc-
ity signal where processed off-line using the wavelet denoising
algorithm. The purpose of those experiments was to estimate
appropriate values for the number of scales, threshold and delay.
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Fig. 8. Open-loop response of angular acceleration and velocity to
sinusoidal angular acceleration commands.

The results of this experiment for a sawtooth angular velocity
input are shown in Fig. 9. The actual and filtered signal are very
close to each other at this scale. Zooming in around t = 15 sec
allows a more detailed examination of the results. Figure 10(a)
shows the results of denoising over a 3 sec interval (300 samples).
The dotted line shows the angular velocity data and the solid line is
the result after wavelet denoising using 4 scales, a threshold of 20
and a delay of 5. The measured data has been smoothed and most
of the noise has been removed. A small delay is evident because
of the processing and a small amount of noise has remained in
the signal. This noise can be further removed at the expense of
more delay. For instance, Fig. 10(b) shows the results of denoising
using a delay of 15 samples or 0.15 sec. It is reminded that
in contrast to other signal processing applications, delays due to
signal processing in a feedback loop may lead to instability and
should be avoided. A compromise must be reached between the
level of acceptable delay and the requirement for noise removal.
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Fig. 9. Wavelet denoising of angular velocity signal using 4 scales and
a threshold of 20.
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Fig. 10. Wavelet denoising of angular velocity signal using 4 scales and
a threshold of 20 (detailed view).



For the second experiment, the denoised angular velocity signal
is used as the input to a PI controller. The purpose of the PI
controller is to achieve good tracking to torque (i.e., angular
acceleration) commands. This achieved by a tight loop on the
measured angular velocity. The block diagram schematic of the
PI/Motor interconnection is shown in Fig. 11. The results from two
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Fig. 11. Closed loop control for Ω̇ using velocity feedback

separate angular acceleration commands are presented below. First,
the results from a square-wave angular acceleration command of
magnitude 10 rad/ sec2 are shown in Fig. 12. In Fig. 12(a) the
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Fig. 12. Closed-loop response of angular acceleration and velocity to
square-wave angular acceleration commands; on-line denoising of angular
velocity signal using a wavelet filter with 4 scales, a threshold of 30 and
a delay of 10 samples.

command is shown by a dashed line and the response is shown by
a solid line. The corresponding response of the angular velocity is
shown in Fig. 12(b). The results for a sinusoidal torque command
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Fig. 13. Closed-loop response of angular acceleration and velocity to
sinusoidal angular acceleration commands; on-line denoising of angular
velocity signal using a wavelet filter with 4 scales, a threshold of 30 and
a delay of 10 samples.

of amplitude 15 rad/ sec2 and frequency of 0.03 Hz are shown
in Fig. 13. As before, in Fig. 13 the dotted line is the reference
angular velocity whereas the solid line is the actual response of
the DC motor. Both Figs. 12 and 13 show very good tracking of
the commanded signals (compare with the open-loop responses in
Figs. 7 and 8.)
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VI. CONCLUSION
In this paper we propose a method for wavelet signal processing

on the half-axis. The starting point for the development of the
results in this paper is the method of average-interpolating poly-
nomials of Donoho and the lifting scheme of Sweldens. Using this
method boundary effects arising from working in a semi-infinite
interval can be handled is a straightforward manner. The motiva-
tion behind denoising on the half-axis stems from the need for
on-line denoising for certain applications (e.g., within a feedback
loop) where future values of the data are not available. We provide
experimental evidence for the potential of the proposed scheme for
on-line denoising by applying it to denoise the feedback signal
used for angular velocity and angular acceleration control of a
brushless DC motor of a reaction wheel assembly.
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