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Invariant Extended Kalman Filter: theory and application to a

velocity-aided attitude estimation problem

Silvère Bonnabel, Philippe Martin and Erwan Salaün

Abstract— A new version of the Extended Kalman Filter
(EKF) is proposed for nonlinear systems possessing symmetries.
Instead of using a linear correction term based on a linear
output error, it uses a geometrically adapted correction term
based on an invariant output error; in the same way the gain
matrix is not updated from of a linear state error, but from an
invariant state error. The benefit is that the gain and covariance
equations converge to constant values on a much bigger set of
trajectories than equilibrium points as is the case for the EKF,
which should result in a better convergence of the estimation.

This filter is applied to the practically relevant problem of
estimating the velocity and attitude of a moving rigid body,
e.g. an aircraft, from GPS velocity, inertial and magnetic
measurements. In this context it can be seen as an extension of
the “Multiplicative EKF” often used for quaternion estimation.

I. INTRODUCTION

Estimating the state of a nonlinear system from the knowl-
edge of its input and output is an ubiquitous problem in
system theory. A widely used approach to design such an
estimator (also termed filter or observer) is the so-called
Extended Kalman Filter (EKF). The system is seen as a
stochastic differential equation,

ẋ = f (x,u)+Mw (1)

y = h(x,u)+Nv, (2)

where x,u,y belong to an open subset of Rn ×Rm ×Rp; w,v
are independent white gaussian noises of size n and p, and
M,N are square matrices. The input u and output y are known
signals, and the state x must be estimated. An estimation x̂(t)
of x(t) is then computed by the EKF

˙̂x = f (x̂,u)+K ·
(

y−h(x̂,u)
)

Ṗ = AP+PAT +MMT −PCT (NNT )−1CP,

with K = PCT (NNT )−1, A = ∂1 f (x̂,u) and C = ∂1h(x̂,u) (∂i

means the partial derivative with respect to the ith argument).
The rationale is to compute the gain K as in a linear Kalman
filter since the estimation error ∆x = x̂ − x satisfies up to
higher order terms the linear equation

∆ẋ = (A−KC)∆x−Mw+KNv. (3)

Of course the convergence of the EKF is not guaranteed in
general as in the linear case, see e.g. [1] for some (local)
convergence results.
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Another drawback of this “linear” approach is that it does
not respect the geometry when (part of) the state space
is a manifold. This situation frequently arises e.g. in the
context of aerospace engineering, where the attitude of an
aircraft is usually represented by a unit quaternion rather
than Euler angles; ad hoc modifications of the EKF are then
used, in particular the so-called Multiplicative EKF (MEKF)
introduced in [2], [3], [4].

In this paper we propose a modification of the EKF for
nonlinear systems possessing symmetries. Instead of using a
linear correction term based on a linear output error, it uses a
geometrically adapted correction term based on an invariant
output error; in the same way the gain matrix is not updated
from of a linear state error, but from an invariant state error.
For that to make sense from a stochastic point of view, we
assume the driving and observation noise enter the system
in an invariant way. This “Invariant EKF” (IEKF) builds on
the ideas developed in [5], [6], [7], see also [8], [9], [10]
for related approaches. More generally it adds to the several
attempts to introduce geometry in the problem of nonlinear
filtering, see e.g. [11], [12], [13].

The main benefit of the IEKF is that the matrices A and C

are constant on a much bigger set of trajectories (so-called
“permanent trajectories” [6]) than equilibrium points as is
the case for the EKF. Near such trajectories, we are back
to the “true”, i.e. linear, Kalman filter where convergence
is guaranteed. Informally, this means the IEKF should in
general converge at least around any slowly-varying perma-
nent trajectory, rather than just around any slowly-varying
equilibrium point for the EKF.

We then apply the IEKF to the practically relevant problem
of estimating the velocity and attitude of a moving rigid
body, e.g. an aircraft, from velocity, inertial and magnetic
measurements. We design two different versions (Left and
Right IEKF), which can be seen as extensions of the MEKF.

Finally we present experimental and simulation results.

II. INVARIANT EXTENDED KALMAN FILTER

A. Symmetry-preserving observers

We briefly recall here the main ideas of [5], [6]. The
theory is constructive and is directly applicable to the system
considered in this paper.

Definition 1: Let G be a Lie Group with identity e and Σ

an open set (or more generally a manifold). A transformation

group (φg)g∈G on Σ is a smooth map

(g,ξ ) ∈ G×Σ $→ φg(ξ ) ∈ Σ

such that:
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• φe(ξ ) = ξ for all ξ
• φg2

◦φg1
(ξ ) = φg2g1

(ξ ) for all g1,g2,ξ .
By construction φg is a diffeomorphism on Σ for all g.
The transformation group is local if φg(ξ ) is defined
only for g around e. In this case the transformation law
φg2

◦φg1
(ξ ) = φg2g1

(ξ ) is imposed only when it makes sense;
“for all g” accordingly means “for all g around e, and “for
all ξ ” means “for all ξ in some neighborhood”.

Consider now the smooth output system

ẋ = f (x,u) (4)

y = h(x,u) (5)

where x belongs to an open subset X ⊂ Rn, u to an open
subset U ⊂ Rm and y to an open subset Y ⊂ Rp, p ≤ n.

Consider also the local group of transformations on X ×
U defined by (X ,U) =

(

ϕg(x),ψg(u)
)

, where ϕg and ψg are
local diffeomorphisms.

Definition 2: The system ẋ = f (x,u) is invariant if
f
(

ϕg(x),ψg(u)
)

= Dϕg(x) · f (x,u) for all g,x,u.
The property also reads Ẋ = f (X ,U), i.e., the system is left
unchanged by the transformation.

Definition 3: The output y = h(x,u) is equivariant if there
exists a transformation group (ρg)g∈G on Y such that
h
(

ϕg(x),ψg(u)
)

= ρg

(

h(x,u)
)

for all g,x,u.
With (X ,U) =

(

ϕg(x),ψg(u)
)

and Y = ρg(y), the definition
reads Y = h(X ,U).

Definition 4: The observer ˙̂x = F(x̂,u,y) of the sys-
tem (4)-(5) is symmetry-preserving (or invariant) if
F

(

ϕg(x̂),ψg(u),ρg(y)
)

= Dϕg(x̂) ·F(x̂,u,y) for all g, x̂,u,y.

The property also reads ˙̂X = F(X̂ ,U,Y ), i.e., the system is
left unchanged by the transformation.

We now state the two main results in the special case
where g $→ϕg(x) is invertible (i.e. when G is of dimension n),
see [5] for the general case. X can then be (locally)
identified with G; if X = G from start with globally defined
transformations (as in the example treated in this paper),
all computations are moreover global. The group action
coincides with left translations Lg, i.e. ϕg(x) = Lg(x); right
translations Rg write Rg(x) = xg = ϕx(g). See [6] for details.

Theorem 1: A symmetry-preserving observer reads

˙̂x = f (x̂,u)+DLx̂(e) ·K ·
(

ρx̂−1(y)−ρx̂−1

(

h(x̂,u)
)
)

,

where the matrix gain K may depend only on the invariant
quantity Î := ψx̂−1(u) and of the invariant output error
ρx̂−1(y)−ρx̂−1

(

h(x̂,u)
)

.
Instead of the usual “linear” error x̂− x, we can now use

an invariant error, with the remarkable following property.
Theorem 2: The error system for the invariant state er-

ror η := x−1x̂ reads η̇ = ϒ(η , Î).
Explicitly, after using repeatedly invariance properties,

η̇ = DLx−1(x̂) · ˙̂x+DRx̂(x
−1) ·

˙︷︸︸︷

x−1

= DLx−1(x̂) · ˙̂x−DRx̂(x
−1) ·

(

DRx−1(e) ·DLx−1(x) · ẋ
)

= DLη(e) · f (e, Î)−DRη(e) · f
(

e,ψη(Î)
)

+DLη(e) ·K ·
(

h(η−1, Î)−h(e, Î)
)

. (6)

This result greatly simplifies the convergence analysis,
since the error equation is autonomous but for the “free”
known invariant Î. For a general (not symmetry-preserving)
nonlinear observer the error equation depends on the tra-
jectory t $→

(

x(t),u(t)) of the system, hence is in fact of
dimension 2n. In some sense this extends a result valid
around equilibrium points (the linearization of the error
equation around an equilibrium point is autonomous) to the
much wider class of the so-called permanent trajectories [6]
characterized by the fact that Î is constant along them.

B. Invariant noises

Consider now the system

ẋ = f (x,u)+M(x)w (7)

y = h(x,u)+N(x)v (8)

where w,v are independent white gaussian noises. We also
want the driving noise w and observation noise v to preserve
invariance and extend the definitions of the previous section.

Definition 5: The system with noise (7)-(8) is invariant

with equivariant output and invariant noises if for all g,x,u,

f
(

ϕg(x),ψg(u)
)

+M
(

ϕg(x)
)

w = Dϕg(x) ·
(

f (x,u)+M(x)w
)

h
(

ϕg(x),ψg(u)
)

+N
(

ϕg(x)
)

v = ρg

(

h(x,u)+N(x)v
)

.
We will also assume ρg is linear, i.e. ρg(y1 + y2) =

ρg(y1)+ρg(y2) for all g,y1,y2. This assumption is not used
for the derivation of the IEKF, but only for a simple analysis
of the stochastic error equations (9) and (10); it could be
relaxed at the cost of a more complicated analysis.

C. Invariant Extended Kalman Filter

The Invariant EKF is given by

˙̂x = f (x̂,u)+DLx̂(e) ·K ·
(

ρx̂−1(y)−ρx̂−1(h(x̂,u))
)

K = PCT
(

N(e)NT (e)
)−1

Ṗ = AP+PAT +M(e)MT (e)−PCT
(

N(e)NT (e)
)−1

CP,

where C := ∂1h(e, Î) and A is defined by

Aξ :=
[

ξ , f (e, Î)
]

−∂1 f (e, Î) ·∂1ψ(e, Î) ·ξ

(where [∗,∗] is the Lie bracket of the Lie algebra of G and
ψ is seen as a function of two variables, see [6] for details).

The idea is the same as for the usual EKF, but instead of
using a linear correction term based on a linear output error,
it uses a geometrically adapted correction term based on an
invariant output error; in the same way the gain matrix is not
updated from of a linear state error, but from an invariant
state error. Indeed the error equation (6) becomes

η̇ = DLη(e) · f (e, Î)−DRη(e) ·
(

f
(

e,ψη(Î)
)

+M(e)w
)

+DLη(e) ·K ·
(

h(η−1, Î)−h(e, Î)+N(η−1)v
)

, (9)

hence for η close to e, the linearized error equation is

ξ̇ = A−KC +Q1

(

ξ ,M(e)w)
)

+Q2

(

ξ ,KN(e)v)
)

, (10)

where Q1,Q2 are quadratic functions of their arguments.
Notice A and C depend only on Î, rather than on (x̂,u) as
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in (3); this much simpler dependence and its consequences
is the main interest of the IEKF.

There is nevertheless a slight problem with the linearized
error equation (10) because of the quadratic terms Q1,Q2,
which do not appear in the usual linearized equation (3).
Rather than a linear inhomogeneous equation of the form

ζ̇ = A0(t)ζ +αW1(t),

it is a multiplicative inhomogeneous equation of the form

ξ̇ = A0(t)ξ +αW1(t)+αW2(t)ξ . (11)

Here W1 and W2 are time-varying matrices with entries linear
functions of the mutually independent white noises w and v,
hence have zero average 〈W1〉 and 〈W2〉; and α is a constant
encoding the noises magnitudes. Following [14, page 403ff.]
it can be proved that whereas the average 〈ζ 〉 satisfies

d

dt
〈ζ 〉 = A0(t)〈ζ 〉+α 〈W1〉 = A0(t)〈ζ 〉 , (12)

the average 〈ξ 〉 satisfies

d

dt
〈ξ 〉 =

(

A0(t)+α 〈W2〉+α2
〈

W 2
2

〉
)

〈ξ 〉

+α2 〈W1W2〉+O(α3)

= A0(t)〈ξ 〉+O(α2)

This means that whereas 〈ζ 〉 tends to zero (provided the
EKF works, i.e. its linearized error equation (3) without noise
converges), 〈ξ 〉 will be biased by O(α2) terms.

In a similar way and still following [14, page 403ff.], the
covariance of ξ obeys the same equation as the covariance
of ζ up to α2 terms.

III. THE “LOW-COST” INERTIAL NAVIGATION PROBLEM

We now apply the IEKF to the practically relevant problem
of estimating the velocity and attitude of a moving rigid
body, e.g. an aircraft, from Global Positioning System (GPS)
velocity, inertial and magnetic measurements. We consider
cheap strapdown inertial sensors, hence cannot rely on the
Schuler effect due to as in “true” inertial navigation. A model
of a flat non-rotating Earth is then sufficient; for more details
about inertial navigation with or without GPS aiding, see
e.g. [15].

See also [16] for a discussion of the specific problem
setting used here, as well as a more detailed approach on
the design of a symmetry-preserving observer.

A. Motion equations

The motion of a flying rigid body (assuming a flat non-
rotating Earth) is described by

q̇ =
1

2
q∗ω

V̇ = A+q∗a∗q−1,

where

• q is the unit quaternion representing the orientation of
the body-fixed frame with respect to the Earth-fixed
frame

• ω is the instantaneous angular velocity vector
• V is the velocity vector of the center of mass with

respect to the Earth-fixed frame
• A = (0 0 g)T is the (constant) gravity vector in North-

East-Down (NED) coordinates
• a is the specific acceleration vector, i.e. all the non-

gravitational forces divided by the body mass.

The first equation describes the kinematics of the body,
the second is Newton’s force law. It is customary to use
quaternions instead of Euler angles since they provide a
global parametrization of the body orientation, and are well-
suited for calculations and computer simulations. The basic
facts used in this paper are summarized in the following
section; for more detail see any good textbook on aircraft
modeling, for instance [17].

B. Quaternions

A quaternion p can be thought of as a scalar p0 ∈ R

together with a vector !p ∈ R3, i.e., p = (p0,!p)T . The (non
commutative) quaternion product ∗ then reads

p∗q !

(

p0q0 −!p ·!q
p0!q+q0!p+!p×!q

)

.

To any quaternion q with unit norm is associated a rotation
matrix Rq ∈ SO(3) by q−1 ∗!p∗q = Rq ·!p for all !p ∈R3. Any

scalar p0 ∈ R can be seen as the quaternion (p0,!0)T , and
any vector !p ∈ R3 can be seen as the quaternion (0,!p)T . We
often use the formula p× q ! !p×!q = 1

2 (p ∗ q− q ∗ p) The

quaternions (with non zero norm) form a group with (1,!0)T

as the identity element, and (p∗q)−1 = q−1 ∗ p−1.
If q depends on time, then q̇−1 = −q−1 ∗ q̇∗q−1. Finally,

consider the differential equation q̇ = q∗u+v∗q with u,v ∈
R3; then ‖q(t)‖ = ‖q(0)‖ for all t.

C. Measurements

We use four triaxial sensors, yielding twelve scalar mea-
surements: 3 gyros measure ωm = ω +ωb, where ωb is a
constant vector bias; 3 accelerometers measure am = asa,
where as > 0 is a constant scaling factor; 3 magnetome-
ters measure yB = q−1 ∗ B ∗ q, where B = (B1 0 B3)T is
the Earth magnetic field in NED coordinates; the velocity
vector V is provided by the navigation solutions yV of a
GPS engine (the GPS velocity is obtained from the carrier
phase and/or Doppler shift data, and not by differentiating
the GPS position, hence is of rather good quality). There is
some freedom in the modeling of the sensors imperfections,
see [16] for a discussion. All the measurements are of course
also corrupted by noise.

It is reasonable to assume each scalar sensor is corrupted
by an additive gaussian white noise with identical variance
for each of the three scalar sensors constituting a triaxial
sensor, and all the noises mutually independent (this is
technologically motivated for the acceleros, gyros and mag-
netic sensors, though much more questionable for the GPS
engine). Hence we can see each triaxial sensor as corrupted
by a “coordinate-free vector noise” whose coordinates are
gaussian in the body frame as well as the Earth frame (or
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any other smooth time-varying frame). Indeed, the mean and
the auto-correlation time of such a noise is not affected by
a (smoothly) tyme-varying rotation.

D. The considered system

To design our observers we therefore consider the system

q̇ =
1

2
q∗ (ωm −ωb) (13)

V̇ = A+
1

as
q∗am ∗q−1 (14)

ω̇b = 0 (15)

ȧs = 0, (16)

where ωm and am are seen as known inputs, together with
the output

(

yV

yB

)

=

(

V

q−1 ∗B∗q

)

. (17)

IV. MULTIPLICATIVE EXTENDED KALMAN FILTER

We start with the design of a Multiplicative EKF in the
spirit of [2], [3], [4], see also [18], [19]. The idea is to
respect the geometry of the quaternion space, by using for
the quaternion estimation a multiplicative correction term
q̂ ∗KqE which preserves the unit norm, and by computing
the error equation with the error q−1 ∗ q̂ (or equivalently
q̂−1 ∗q = (q−1 ∗ q̂)−1). Notice the standard linear correction
term does not preserve the norm, hence some projection
would be needed, whereas the standard linear error q̂− q

does not really make sense for quaternions.

A. Problem setting

We consider the noise enters the system as

q̇ =
1

2
q∗ (ωm −ωb)+q∗Mqwq (18)

V̇ = A+
1

as
q∗am ∗q−1 +q∗MV wV ∗q−1 (19)

ω̇b = Mω wω (20)

ȧs = Mawa, (21)

and the output as
(

yV

yB

)

=

(

V +NV vV

q−1 ∗B∗q+NBvB

)

, (22)

with Mq,MV ,Mω ,NV ,NB diagonal matrices. The driving and
observation noises are thus consistent with a scalar additive
noise on each individual sensor.

B. MEKF equations

The MEKF then takes the form

˙̂q =
1

2
q̂∗ (ωm − ω̂b)+ q̂∗KqE (23)

˙̂V = A+
1

âs
q̂∗am ∗ q̂−1 +KV E (24)

˙̂ωb = Kω E (25)

˙̂as = KaE. (26)

where the output error is given by

E =

(

ŷV − yV

ŷB − yB

)

=

(

V̂ −V −NV vV

q̂−1 ∗B∗ q̂− yB −NBvB

)

.

But for (23), the MEKF has the form of a standard EKF.

We consider the state error µ = q−1 ∗ q̂, ν = V̂ −V , β =
ω̂b −ωb and α = âs −as. A tedious but simple computation
yields the error system

µ̇ = −
1

2
β ∗µ + µ × Ĵω −Mqwq ∗µ + µ ∗KqE

ν̇ = Îa −
1

âs −α
q̂µ ∗am ∗µ−1 ∗ q̂−1

−µ ∗ q̂∗MV wV ∗ q̂−1 ∗µ−1 +KV E

β̇ = Kω E −Mω wω

α̇ = αKaE −αMawa,

where the output error is rewritten as

E =

(

ν −NV vV

ĴB −µ−1 ∗ ĴB ∗µ −NBvB

)

,

and Ĵω = ωm − ω̂b, Îa = 1
âs

q̂∗am ∗ q̂−1 and ĴB = q̂−1 ∗B∗ q̂.

We next linearize this error system around (µ,ν ,β ,α) =
(1,0,0,0), drop all the quadratic terms in noise and infinites-
imal state error according to the approximation in section II-
C, and eventually find







δ µ̇
δ ν̇
δ β̇
δ α̇







= (A−KC)







δ µ
δν
δβ
δα







−M







wq

wV

wω

wa







+KN

(

vV

vB

)

,

which has the desired form (3) with

A =







−Ĵω× 033 − 1
2 I3 031

2Ĵa×R(q̂) 033 Ĵω× −Ĵa

033 033 033 031

031 031 031 031







C =

(

033 I3 033 031

−2ĴB× 033 033 031

)

M = Diag(Mq,R(q̂)MV ,Mω ,Ma)

N = Diag(NV ,NB)

K = −(Kq, KV , Kω , Ka)
T .

We have used the matrices I× and R(q) defined by I×u :=
I ×u and R(q)u := q∗u∗q−1 for all for u ∈ R3.

C. Features of the MEKF

Sound geometric structure for the quaternion estimation

equation: by construction equation (23) preserves the unit
norm of the estimated quaternion.

Possible convergence issues in many situations: indeed,
the matrices A and C used for computing the gain matrix K

are constant only in level flight, i.e. Îω - 0 and Îa - −A,
because of the trajectory-dependent terms R(q) in A.
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V. LEFT INVARIANT EXTENDED KALMAN FILTER

We now design a first Invariant Extended Kalman Filter,
which can be seen as a generalization and an improvement of
the MEKF. It is a direct application of the method presented
in section II-C. It is termed “Left IEKF” (LIEKF) because
in the transformation group defined below the quaternion q

is multiplied on the left by a constant quaternion p0.

A. Problem setting in terms of transformation groups

We notice the state space is a group for the law given by







p0

V0

ω0

a0







.







q

V

ωb

as







:=







p0 ∗q

p0 ∗ (V +V0)∗ p−1
0

ωb +ω0

asa0







,

hence acts on itself (the physical meaning is clear: rotation
and translation in Earth axes, translation in body axes, and
scaling). It also yields the transformation groups

ψ(p0,V0,ω0,a0)







ωm

am

A

B







=







ωm +ω0

a0am

p0 ∗A∗ p−1
0

p0 ∗B∗ p−1
0







ρ(p0,V0,ω0,a0)

(

yV

yB

)

=

(

p0 ∗ (yV +V0)∗ p−1
0

yB

)

.

The system (13)–(16) is clearly invariant, for instance

˙︷ ︸︸ ︷

p0 ∗q = p0 ∗ q̇ =
1

2
(p0 ∗q)∗

(

(ωm +ω0)− (ωb +ω0)
)

,

whereas the output (17) is equivariant since

(

p0 ∗ (V +V0)∗ p−1
0

(p0 ∗q)−1 ∗ (p0 ∗B∗ p−1
0 )∗ (p0 ∗q)

)

= ρ(q0,V0,ω0,a0)

(

V

q−1 ∗B∗q

)

.

The complete set of invariants is given by ψx̂−1(u), with
x̂−1 = (q̂−1,−V̂ ,−ω̂b,

1
âs

), hence reads







Ĵω

Ĵa

ĴA

ĴB







=







ωm − ω̂b
1
âs

am

q̂−1 ∗A∗ q̂

q̂−1 ∗B∗ q̂







.

Moreover the driving noise as defined in (18)–(21) for
the MEKF is also invariant. We finally define an invariant
observation noise by

(

yV

yB

)

=

(

V +q∗NV vV ∗q−1

q−1 ∗B∗q+NBvB

)

. (27)

Notice the noise on yV is different from the noise in (22),
which is not invariant: it is additive in body axes rather
than in Earth axes, see section III-C for a tentative physical
justification.

B. Left IEKF equations

Directly following section II-C, the LIEKF reads

˙̂q =
1

2
q̂∗ (ωm − ω̂b)+ q̂∗ (KqE) (28)

˙̂V = A+
1

âs
q̂∗am ∗ q̂−1 + q̂∗ (KV E)∗ q̂−1 (29)

˙̂ωb = Kω E (30)

˙̂as = âsKaE, (31)

where the invariant output error is given by

E = ρx̂−1

(

ŷV

ŷB

)

−ρx̂−1

(

yV

yB

)

=

(

q̂−1 ∗ (V̂ − yV )∗ q̂

q̂−1 ∗B∗ q̂− yB

)

.

Notice (28) and (30) are the same as (23) and (25) in the
MEKF, while (29) and (31) are different from (24) and (26).

The invariant state error x−1x̂ reads






µ
ν
β
α







=







q−1 ∗ q̂

q−1 ∗ (V̂ −V )∗q

ω̂b −ωb
âs
as







,

hence we recover the quaternion error used in the MEKF.

The error system is

µ̇ = −
1

2
β ∗µ + µ × Ĵω −Mqwq ∗µ + µ ∗KqE

ν̇ = µ ∗ Ĵa ∗µ−1 −α Ĵa +ν × (Ĵω +β )

−MV wV +2ν ×Mqwq + µ ∗KV E ∗µ−1

β̇ = Kω E −Mω wω

α̇ = αKaE −αMawa,

where the invariant output error is rewritten as

E =

(

µ−1 ∗ (ν −NV vV )∗µ
ĴB −µ ∗ ĴB ∗µ−1 −NBvB

)

.

We then linearize this error system around the group
identity element (µ,ν ,β ,α) = (1,0,0,1). We drop all the
quadratic terms in noise and infinitesimal state error accord-
ing to the approximation in section II-C, and eventually find







δ µ̇
δ ν̇
δ β̇
δ α̇







= (A−KC)







δ µ
δν
δβ
δα







−M







wq

wV

wω

wa







+KN

(

vV

vB

)

,

which has the desired form (10) with

A =







−Ĵω× 033 − 1
2 I3 031

−2Ĵa× 033 −Ĵω× −Ĵa

033 033 033 031

031 031 031 031







C =

(

033 I3 033 031

2ÎB× 033 033 031

)

M = Diag(Mq,MV ,Mω ,Ma)

N = Diag(NV ,NB)

K = −(Kq, KV , Kω , Ka)
T .
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C. Features of the LIEKF

Symmetry-preserving structure: rotations, translations
and scaling in the appropriated frames leave the error system
unchanged, which is meaningful from an engineering point
of view.

Sound geometric structure for the quaternion estimation

equation: by construction equation (28) preserves the unit
norm of the estimated quaternion.

Larger expected domain of convergence: the matrices
A and C used for computing the gain matrix K are constant
not only in level flight but also on every permanent trajectory
defined by constant Ĵω , Ĵa, ĴA, ĴB. This is a much bigger set
of trajectories, especially if Kq is kept small by choosing a
large NB (little confidence in the magnetic measurements) so
that ĴB does not really matter.

VI. RIGHT INVARIANT EXTENDED KALMAN FILTER

We now design a second Invariant Extended Kalman Filter,
with a different transformation group. It is termed “Right
IEKF” (RIEKF) because the quaternion q is now multiplied
on the right by a constant quaternion q0.

A. Problem setting in terms of transformation groups

The state space is also a group for the law given by






q0

V0

ω0

a0







.







q

V

ωb

as







:=







q∗q0

V +V0

q−1
0 ∗ωb ∗q0 +ω0

asa0







,

hence acts on itself (the physical meaning is now: translation
in Earth axes, rotation and translation in body axes, and
scaling). It also yields the transformation groups

ψ(q0,V0,ω0,a0)

(

ωm

am

)

=

(

q−1
0 ∗ωm ∗q0 +ω0

a0q−1
0 ∗am ∗q0

)

ρ(q0,V0,ω0,a0)

(

yV

yB

)

=

(

yV +V0

q−1
0 ∗ yB ∗q0

)

.

The system (13)–(16) is invariant and the output (17) is
equivariant. The complete set of invariants, given by ψx̂−1(u)
with x̂−1 = (q̂−1,−V̂ ,−q̂∗ ω̂b ∗ q̂−1, 1

âs
), reads

(

Îω

Îa

)

=

(
q̂∗ (ωm − ω̂b)∗ q̂−1

1
âs

q̂∗am ∗ q̂−1

)

.

To be invariant the driving noise must enter the system as

q̇ =
1

2
q∗ (ωm −ωb)+Mqwq ∗q (32)

V̇ = A+
1

as
q∗am ∗q−1 +MV wV (33)

ω̇b = q−1 ∗Mω wω ∗q (34)

ȧs = asMawa, (35)

and the observation noise as
(

yV

yB

)

=

(

V +NV vV

q−1 ∗ (B+NBvB)∗q

)

. (36)

The noise configuration used here is “dual” to the one used
for the LIEKF, with Earth and body axes exchanged.

B. Right IEKF equations

Following once again section II-C, the RIEKF reads

˙̂q =
1

2
q̂∗ (ωm − ω̂b)+KqE ∗ q̂ (37)

˙̂V =
1

âs
q̂∗am ∗ q̂−1 +A+KV E (38)

˙̂ωb = q̂−1 ∗Kω E ∗ q̂ (39)

˙̂as = âsKaE, (40)

where the invariant output error is given by

E = ρx̂−1

(

ŷV

ŷB

)

−ρx̂−1

(

yV

yB

)

=

(

ŷV − yV

B− q̂∗ yB ∗ q̂−1

)

.

The invariant state error x−1x̂ reads






µ
ν
β
α







=







q̂∗q−1

V̂ −V

q∗ (ω̂b −ωb)∗q−1

âs
as







.

The error system is

µ̇ = −
1

2
µ ∗β −µ ∗Mqwq +KqE

ν̇ = Îa −αµ−1 ∗ Îa ∗µ −MV wV +KV E

β̇ = (µ−1 ∗ Îω ∗µ)×β

+ µ−1 ∗Kω E ∗µ +Mqwq ×β −Mω wω

α̇ = −αMawa +αKaE.

where the invariant output error is rewritten as

E =

(

ν +NV vV

B−µ ∗ (B+NBvB)∗µ−1

)

We linearize this error system around the group identity
element (µ,ν ,β ,α) = (1,0,0,1). We drop all the quadratic
terms in noise and infinitesimal state error according to the
approximation in section II-C, and eventually find







δ µ̇
δ ν̇
δ β̇
δ α̇







= (A−KC)







δ µ
δν
δβ
δα







−M







wq

wV

wω

wa







+KN

(

vV

vB

)

,

which has the desired form (10) with

A =







033 033 − 1
2 I3 031

−2Îa× 033 033 −Îa

033 033 Îω× 031

031 031 031 031







C =

(

033 I3 033 031

2B× 033 033 031

)

M = Diag(Mq,MV ,Mω ,Ma)

N = Diag(NV ,NB)

K = −(Kq, KV , Kω , Ka)
T .

C. Features of the RIEKF

Symmetry-preserving structure: rotations, translations
and scaling in the appropriated frames leave the error system
unchanged, which is meaningful from an engineering point
of view.
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Sound geometric structure for the quaternion estimation

equation: by construction equation (37) preserves the unit
norm of the estimated quaternion.

Larger expected domain of convergence: the matrices A

and C used for computing the gain matrix K are constant not
only in level flight but also on every permanent trajectory
defined by constant Îω , Îa. Since there are less invariant
quantities than in the LIEKF, and in particular not ĴB, there
are in consequence more permanent trajectories.

VII. NUMERICAL RESULTS
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Fig. 1. Experiment: estimated Euler angles

We illustrate the behavior of the proposed filters on
simulations and experimental data. The noises wi,vi (in the
simulations) are independent normally distributed random
3-dimensional vectors with mean 0 and variance 1. The
tuning of the EKF is made via the choice of covariance
matrices Mq = 0.5I3, MV = 0.01I3, Mω = 0.001I3 , Ma = 0.1,
NV = 0.1I3, NB = 0.1I3. The (scaled) Earth magnetic field is
taken as B = (1 0 1)T (roughly the value in France).

To enforce ‖q̂‖ = 1 despite numerical round off, we
systematically add the term λ (1−‖q̂‖2)q̂ in the estimated
quaternion equation (otherwise the norm would slowly drift),
which is a standard trick in numerical integration with
quaternions. For instance for the right IEKF, we take

˙̂q =
1

2
q̂∗ (ωm − ω̂b)+KqE ∗ q̂+λ (1−‖q̂‖2)q̂.

Notice this correction term is invariant under both left and
right multiplication by a constant quaternion. We have used
λ = 1 (this value is not critical).

Since the RIEKF behaves better than the LIEKF, we do
not show plots with the LIEKF for lack of space.

A. Experimental results

We first briefly compare the behavior of the RIEKF with
the commercial INS-GPS device MIDG2 from Microbotics.
The IEKF is fed with the raw measurements from the MIDG2
gyros, acceleros and magnetic sensors (update rate 50Hz),
and the velocity provided by the navigation solutions of its
GPS engine (update rate 4Hz). The IEKF estimations are
compared with the MIDG2 estimations produced from the
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Fig. 2. Simulation: estimated Euler angles (top) and velocities (bottom)

same raw data (and computed according to the user manual
by some kind of Kalman filter).

The experiment consists in keeping the system at rest for a
few minutes (for the biases to converge), and then moving it
for about 35s. The IEKF and MIDG2 results are very similar,
see Fig. 1 (only the Euler angles, converted from quaternions,
are displayed).

B. Simulation results: comparison of MEKF and IEKF

The system follows a (nearly) permanent trajectory T0,
quite representative of a small UAV flight. The MEKF and
RIEKF are initialized with the same values. Both filters give
correct estimations after the initial transient, see Fig. 2-3.

We now illustrate the invariance property of the IEKF:
both IEKF are initialized with three different initial con-
ditions having the same norms. The MEKF behavior does
depend on the initial conditions, while the RIEKF behavior
does not, see Fig. 4 (for lack of space only the norm
EV = ‖ν‖ of the velocity error is displayed).

Finally we show the RIEKF gain matrix K becomes as
expected constant on the permanent trajectory T0, while the
MEKF gain does not, see Fig. 5. This is remarkable since
T0 is far from being an equilibrium point.
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