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Control of the Toycopter Using a Flat Approximation
Philippe Mullhaupt, Member, IEEE, Balasubrahmanyan Srinivasan, Jean Lévine, and Dominique Bonvin

Abstract—This paper considers a helicopter-like setup called the
Toycopter. Its particularities reside first in the fact that the toy-
copter motion is constrained to remain on a sphere and second in
the use of a variable rotational speed of the propellers to vary the
propeller thrust. A complete model using Lagrangian mechanics is
derived. The Toycopter is shown to be nondifferentially flat. Never-
theless, by neglecting specific cross-couplings, a differentially flat
approximation can be generated and used for controller design,
provided the controller gains do not exceed certain bounds that
are given explicitly. The achieved performance is better than with
standard linear controllers, especially during large displacements
that induce strong nonlinear gyroscopical forces. The results are
illustrated both in simulation and experimentally on the setup.

Index Terms—Flat systems, Lagrange mechanics, nonlinear con-
trol, underactuated mechanical system.

I. INTRODUCTION

T HE Toycopter (see Fig. 1) is a rigid-body mechanical
system composed of two links, a vertical shaft articulated

to the base through a rotational joint, and another rod articulated
to the first link through another rotational joint and equipped with
two propellers, one at each end. The main propeller controls the
vertical motion and the other one the horizontal heading. Note
that the main differences with a real helicopter are first that the
toycopter motion is constrained to remain on a sphere and second
that the propellers vary their rotational speed instead of varying
the blade angle of attack with constant rotational speed.

This setup can be used to illustrate many control challenges
and has been used here to validate our control approach based on
a flat approximation of the model. In particular, it is a strongly
coupled multi-input multioutput system that is highly nonlinear
and underactuated [3]. It is also very interesting from an aero-
engineering point of view since the blades cannot change their
angle of attack. The fact that the propeller thrust is varied by
changing the rotational speed of the propellers introduces strong
nonlinear couplings and makes the control task difficult. Note
that this aspect makes the Lagrangian dynamics much more
complex, which justifies presenting all necessary modeling de-
tails in this paper for the sake of completeness. However, such a
strategy is very attractive from a practical point of view since it
simplifies the design of the rotors, which is particularly delicate
in real helicopters.
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Fig. 1. Toycopter setup.

The objective of this paper is to design a nonlinear controller
for the Toycopter by going through all the steps from modeling
to the final implementation. The nonlinear controller tries to
compensate the cross-couplings and internal forces that limit the
stability of the system as much as possible. However, it will be
shown that, since the Toycopter, in contrast to real helicopters
[7], is not differentially flat or, roughly speaking, not dynami-
cally feedback linearizable, all the couplings and internal forces
cannot be compensated exactly. The theoretical analysis that as-
sesses this property uses the ruled manifold criterion [9].

Furthermore, it will be shown that, under the additional as-
sumption that certain cross-couplings remain small, a flat non-
linear approximation of the Toycopter dynamics can be used for
controller design. The approximation introduced is valid for rel-
atively slow maneuvers and therefore limits the controller gains
and thus the reaction time constants of the system. Neverthe-
less, the controller, which is tested both in simulation and on the
experimental setup, shows excellent results compared to clas-
sical linear controllers, in particular during rotational maneu-
vers when the Toycopter is pitching.

Other approaches to approximate feedback linearization can
be found in [5] and [6]. A robust controller design for a sim-
ilar setup can be found in [10]. For motion planning, one might
also consider [11]. For the modeling aspects, instead of a knowl-
edge-based model as proposed in this paper, one might consider
[12], where an experimental parametric model of a similar setup
is considered. For a different setup using twin propellers, the
reader is invited to consider [13].

The paper is organized as follows. Section II briefly describes
the Toycopter setup and summarizes its dynamics. A full de-
velopment of the model is given in the Appendix. The anal-
ysis of the differential flatness property of the corresponding
model is presented in Section III. This section also discusses
the non-minimum-phase property using as outputs the natural
coordinates describing the rotation and pitch of the setup. A flat
approximation that will be used to design the controller is also
presented in this section. Section IV introduces the control struc-
ture and discusses a technique for motion planning. A stability
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analysis of the proposed control scheme is given in Section V.
Section VI presents simulations and experimental results, while
conclusions are given in Section VII.

II. TOYCOPTER

A. Setup

The setup under study is a rigid-body mechanical system
composed of two main links. The first link is positioned ver-
tically and is articulated to the base through a rotational joint,
giving rise to the horizontal motion of the Toycopter. A second
link, termed the arm, is articulated to the first link through an-
other rotational joint allowing vertical motion. DC-motors are
mounted at both ends of the arm, each equipped with a propeller.
These motors are mounted such that their rotational axis points
in the direction of the corresponding motion they are actuating.

The spherical coordinates , where is the horizontal
angle between the arm projection on the horizontal base, and
is the pitch angle, i.e., the vertical angle between the vertical axis
and the arm, can be used to describe the toycopter motion since
the end points of the arm remain on a sphere. The main motor
varies its speed in order to control the thrust perpendicular
to the rotor’s plane, while the rear motor varies its speed to
control the horizontal motion.

B. Dynamics

The modeling procedure using Lagrangian formulation is de-
scribed in Appendix I. The result is a sixth-order dynamical
system with the states and the two inputs

and

(1)

(2)

(3)

(4)

The terms appearing in these equations have the following
physical interpretation:

• Inertial counter torques: is a torque along the co-
ordinate, and a torque along the coordinate.
These torques are due to the reaction produced by a change
in rotational speed of the rotor propeller. Note the presence
of the projection factor owing to the Toycopter con-
struction.

• Gravity effect: and are due to the po-
sition of the center of mass with respect to the center of
rotation.

• Coriolis and centrifugal torques: Along the direction:
Centrifugal torque and Coriolis torque

owing to the change in orientation of the
kinetic momentum of the main propeller. Along the
direction: Coriolis torque generated by the change of
inertia with respect to , and Coriolis
torque due to the change in orientation of
the kinetic momentum of the main propeller.

• Aerodynamic effects:. Principal (thrust):
and . Auxiliary (air resistance):

and
• Friction forces: .
• Electromechanical torques: .

III. FLATNESS OF THE TOYCOPTER

It is first shown that the system is not differentially flat, i.e.,
that there are no flat outputs. The Toycopter with natural out-
puts is then verified to be non-minmum-phase. Finally, an ap-
proximation of the original dynamics is obtained, for which the
natural outputs are flat.

A. Toycopter Is Not Flat

The nonflatness of the Toycopter will be established through
the use of the ruled manifold criterion [9], [14]. In fact, this
result is slightly more general since it is proved to be a necessary
condition for dynamic feedback linearizable systems [15].1 For
the sake of completeness, we recall this criterion. Consider the
control system

(5)

with and and such
that .

Theorem 1: Let and assume that (5) is flat
around the origin. Then, there exist and , open
neighborhoods of 0, such that the projection of the submanifold

of
onto is a submanifold, , of , and such that

is a ruled submanifold: for each point , there exists an
open segment of a straight line parallel to the p-coordinates and
included in .

In other words, there exists a nonzero vector such that
an open segment of the line is included in

, i.e., upon denoting by the remaining equation
after elimination of in , there exists a nonzero
vector such that if for
every in an open subset of .

Thus, to prove that the toycopter model is not flat, one needs
to show that it is impossible to find such a nonzero vector. For
simplicity’s sake, we prove it in the idealized case where no fric-
tion forces are present in the model. For this purpose, we change
the state variables and to the generalized momenta

(6)

(7)

1For more details concerning the comparison between flatness and dynamic
feedback linearization, the reader is referred to [16] and [17].
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The Toycopter dynamics, when no friction is present and oper-
ating such that both and 2 can be written as

(8)

Replacing and in the above equations by the gen-
eralized momenta and using (6) and (7) leads to
the implicit system with the state variables

. Applying the ruled manifold criteria by
replacing by ( and are four dimensional, for
instance let and )
and using the fact that and
gives two polynomial equations in , and

whose coefficients are

(9)

(10)

These four coefficients should vanish since the associated
polynomial equations in must be valid independently of the
value of . It can be verified that and form a
system of two equations in the two unknowns and whose
only solution is and , thus . The
remaining coefficients and then force and .
Therefore, there exists no vector different from 0 such that

is satisfied for all . Hence, the Toycopter is
not flat.

B. Non-Minimum-Phase Property With Natural Outputs

The following subsection is concerned with checking that the
system is not minimum phase with the natural outputs and ,
thus preventing the use of a dynamical inversion-type controller
as it is widely done for robots. Appendix II presents the non-
minimum-phase property that will be checked for the Toycopter.

The relative degree of the system with the inputs and
and the outputs and is since the (1) and (2) contain the
inputs and that are defined in (3) and (4). To assess the
non-minimum-phase property of the system, let us choose the
natural outputs and , where
and are arbitrary constant values. The zero dynamics are those

2This is not restrictive and the other cases lead to the same result.

internal dynamics consistent with and .
Imposing these conditions on the dynamics given by (1) and (2)
gives

(11)

(12)

Suppose, without loss of generality, that
are all positive quantities. These conditions can be guaranteed by
suitably constructing and mounting the propellers so that their
rotation with a positive velocity creates positive torques along
the convention chosen in the modeling. The equilibrium points
parametrized by then fall into three different kind of sets

The set is a singular set, in the sense that, at corre-
sponding equilibria, the linearization of (11) and (12) becomes
uncontrollable when considering the propeller velocities as the
inputs, since the terms and vanish due to
the propeller velocities going to zero at equilibrium, i.e., when

. Fortunately, these sets contain only two phys-
ically distinct positions , namely the solution , such that

and , and
the opposite angle for which .
Thereafter, modulo is an open interval and is the
union of two singletons and is an open interval

The local stability around an equilibrium point of the homo-
geneous part of dynamics (11) and (12) will now be analyzed to
assess the non-minimum-phase property of the system with the
outputs and . The set of equilibria will be considered in
detail. Since the other set is analogous, its treatment is left
to the reader.

At any equilibrium point corresponding to a value in the
set . Then, considering (11) and
(12), one has

(13)

Now, since and are side-effects coefficients and
and are the main propeller thrust coefficients, is at least
a full order of magnitude larger that , respectively is at
least a full order of magnitude larger than . Moreover,
is larger than (respectively is larger than ) but of the
same order of magnitude because the main propeller is slightly
larger than the rear propeller.

This means that the only way for the propeller forces to com-
pensate the positive gravitational torque
is when and (recall that
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and ). Thus the following conditions must
be fulfilled:

(14)

(15)

The solution to this system is

(16)

(17)

where . To asses the instability, define
and perform a Taylor

series expansion of the nonlinear dynamics retaining only the
first-order terms

The resulting dynamics have both a stable eigenvalue

and an unstable one

as explained next. From the above considerations about the
order of magnitude of the aerodynamical coefficients, the
expression appearing under the square root is the sum of two
positive terms. Thus, since the square root term is strictly larger
than , the eigenvalue is positive.
This proves the non-minimum-phase property of the Toycopter
with the natural outputs and .

C. Flat Approximation With Natural Outputs

Suppose that the system moves along and in a suffi-
ciently gentle manner, so that not much inertial cross-coupling
is induced by the rate of change of the propeller velocities. It
is then possible to neglect the forces due to the accelerations
of the propellers. This means neglecting both terms, ap-
pearing in the first equation of the dynamics and
appearing in the second equation. This leads to the following
approximate system with the four states and the
two inputs that will be used as a model to construct
the control law

(18)

Fig. 2. Block diagram of the cascade control structure (I: outer controllers,
II: approximate linearizing controller, III: toycopter).

(19)

Note that the system is of reduced order compared to the
original system since the propeller speeds are considered as
inputs.

IV. CONTROL BASED ON A FLAT APPROXIMATION

For the control structure part, the system is considered as
evolving so that the propeller accelerations remain small. This
helps make the flat approximation presented in the previous
section feasible. The approximate flat model is then used to:
1) precompute the open-loop control to steer the system along
predefined trajectories that will be presented in Subsection B,
and 2) linearize the system using feedback linearization.

A. Control Structure

The cascade control structure is depicted in Fig. 2 and consists
of an approximate linearizing controller and outer controllers
with gains and .

The controller is based on inverting the dynamics (18) and
(19). Because the direct inertial cross-coupling has been ne-
glected (no appearance of and ), these equations can be
seen as defining ideal propeller velocities and . The pro-
peller velocities being the inputs to this system, dynamical in-
version follows by simply imposing convenient accelerations
and and computing the velocities and from (18) and
(19). To achieve stability, and should then be set to

(20)

so as to create, after suitably choosing , and , two
second-order stable differential equations. For instance, by
choosing two sets of identical real poles, the following gains
can be obtained: with

and .
This insight is used to design a controller for the orginal

system that has the cross-coupling terms involving and .
It is obtained by replacing and previously computed with
the reference values and for the propeller velocities,
together with the systematic replacement of by by
by by . A high-gain loop then enforces the true propeller
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speed to follow its reference. Setting
gives

The controller is written in implicit form, since the first two
equations form a set of two quadratic equations for the vari-
ables and . Solving this system is straightforward.
This way, the controller compensates the gyroscopical forces

and by computing the suitable
reference . Additionally, the nonlinear gravitational force

, and both the Coriolis
and centrifugal accelerations are directly com-
pensated. Notice also that both viscuous friction forces are
compensated using feedforward control, i.e.,
instead of the feedback compensation and . This
prevents instability in case these forces are overcompensated.

One drawback of the previous controller is the high gains
and . Hence, to circumvent this limitation,

reconsider (18) and (19), and proceed in a similar way as be-
fore, after differentiating these equations with respect to time
once more. This is possible, since and do not appear
yet. These quantities become the inputs and once the
variables , and are changed respectively to

, and . Moreover, the third-order differentials
and appear instead of the second-order ones. Therefore, set-
ting and with

leads to the expressions

(21)

(22)

from which the controller follows upon solving for and .
Two sets of three identical real poles are chosen for the approx-
imate linear equivalent system, which leads to the following
values of the gains:

, with and .

B. Motion Planning

The control strategy is complete once the reference trajecto-
ries and are specified. Here, polynomial expressions
are used to plan the motion. Since the equivalent system is a 3-3
chain of integrators, it suffices to fix a polynomial of order 7 to
set the initial and terminal conditions. However, because extra
smoothness is desired in the trajectory, four derivative condi-
tions per coordinate are additionally imposed, thereby leading
to the following reference trajectories:

is the transient time needed for the reference tra-
jectory to go from the initial condition to the
terminal condition . The and are ob-
tained from these initial and final conditions. Typically, the ini-
tial conditions are measured on the system, and the trajectory is
computed according to the desired terminal position.

V. STABILITY ANALYSIS

To be able to derive an analytical bound for the controller
gains, the gravity effect is neglected and the study will con-
centrate on the cross-couplings between inertial effects
and aerodymical forces . Moreover, the auxiliary aero-
dynamical and friction forces are considered negligible, i.e.,

.
Since the analysis is of local nature, the controller and the

plant can be linearized. Without loss of generality, the coordi-
nates and are chosen so that the equilibrium corresponds to

and . Notice that the equilibrium is given in the
original coordinates and . The linearized system with

and reads

(23)

(24)

(25)

(26)

Remark 1: The equilibrium propeller speeds and ap-
pear in the expressions of the propeller thrust constants
and . It is assumed hereafter that these propeller speeds are
nonzero but correspond to the equilibrium values when gravity
and auxiliary forces are present, even though these forces are not
in the model used for the forthcoming analysis. Since it is im-
possible to derive a precise analytical bound when all forces are
present, the purpose of this section is only to provide a qualita-
tive picture based on a sound computation of the limiting gains.

By analogy with (21) and (22), the controller becomes

(27)

(28)
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The following theorem gives an upper bound on the gains
before instability occurs. To make its derivation tractable,
and are set to .

Theorem 2: As long as the gain is chosen such
that , System (23)–(26) is asymptot-
ically stable.

Proof: Replacing (27) and (28) in (23)–(26) and differen-
tiating the resulting equations gives a system in the state space

that takes the form with
the matrix, shown at the bottom of the page, with

.
The characteristic polynomial reads

Let

and regroup by successive polynomial division (Routh’s
criterion)

(29)

with

If the system is stable, all the are positive.
This will be verified next.

First, as long as . This condition can also
be used to show that . Since never vanishes
and is negative for is monotonically decreasing. Then,
since for both and never
vanishes in between, which proves the assertion.

Next, and are always positive since both the expression
for and the second factor of have positive factors in and
negative determinants. Finally, is a quartic in that can be
written in the following way:

with and quadratics in that are always positive since
their coefficients in are positive and their determinants are
negative. Hence, we have proved that the are
all positive as long as

(30)

The bound is clearly seen to be related to the inertial cross-
coupling terms and that were neglected for
generating the flat approximation. If the Toycopter had very
small propeller inertia, thus causing negligible cross-couplings,
then the flat approximation would be excellent.

It is worth mentioning a few considerations about the conser-
vative nature of the gain margin given above. The hypothesis
under which the computations are performed shows that the re-
sult is essentially due to the behavior of the first-order approxi-
mation around an equilibrium point. This means that this bound
is a hard one since, if it is violated, immediate instability will
be induced due to the first-order terms in the dynamics excited
by the inevitable measurement noise, the latter acting as a slight
perturbation of the system around the equilibrium.

VI. SIMULATION AND REAL-TIME EXPERIMENTS

A. Experimental Setup

The controller is transformed into a digital algorithm by ap-
proximating the continuous time derivatives using Euler approx-
imation, e.g., , where
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Fig. 3. Simulation results. Upward motion using . The transient time is [s]. (a) Positions and , (b) Propeller velocities and ,
(c) Inputs and .

Fig. 4. Experimental results. Upward motion using . The transient time is [s]. (a) Positions and , (b) Propeller velocities and
, (c) Inputs and .

[ms] is the sampling time chosen. The control scheme does not
suffer much from this approximation. For implementation, the
following equipment is used:

• PowerMac computer G4/1 GHz;.
• digitial analog acquisition board PCI-1200 from National

Instruments having eight AD, 2 DA, and 24 Digitial I/0.
• custom-made real-time kernel, whose description can be

found in [8];
• incremental encoder interface and power electronics by

Schorderet Technics S.A.
The theoretical part used a model with the inputs

and . However, the real system has the additional dy-
namics of the dc-drives that must be taken into account. These
dynamics are given in Appendix I as (55) and (56). After iso-
lating and on the left-hand side, they become

B. Normal Operation

Simulation results for normal operating conditions are pre-
sented in Fig. 3. The reference signal is given so that the Toy-
copter moves up but without turning, i.e., the reference for the
horizontal motion is kept constant. The Toycopter moves in the
vertical direction while creating only a small cross-coupling

motion, which is rapidly corrected for, thus resulting in a zero
steady-state error.

The exact same motion is then carried out on the real setup
and the results are given in Fig. 4. Again, the Toycopter
moves up and shows almost perfect decoupling except for
the steady-state behavior on the horizontal axis: there is a
steady-state error in the horizontal positioning. This is due to
the presence of dry friction. Incidently, the compensating force
created by the controller due to the positioning error is insuffi-
cient to force the system out of stiction. This problem can be
alleviated through the use of an extra integral effect. However,
thiswould require further stability study. The purpose of this
comparison is to show the resemblance between the simulation
results and those obtained using the controller implemented in
real time on the setup, without any particular addition to the
proposed methodology.

C. Linear Model

A local linear model, valid around an equilibrium point,
is computed and used to design classical linear controllers,
namely a PD controller and a MIMO linear state-feedback
controller. These linear controllers are used as comparison to
assess the value of the nonlinear cascade controller design in
Section IV. Despite the wide operational equilibrium set (in
practice, ranges between 0.3 and 1.68), a single equilibrium
point is chosen as . This choice corresponds
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to the arrival point of the nonlinear control strategy illustrated
previously. It also corresponds to an angle for which the non-
linear centrifugal accelerations are still active when turning
sharply around the -axis. This way, this equilibrium point
offers all the characteristics for a fair comparison. For this
equilibrium point, [rad/s], [rad/s],

[V], and [V]. This leads to the following
linear model with the states , and

:

Considering the outputs and , there are four transfer
functions, namely two main transfer functions

and , and two auxiliary
transfer functions for the cross-coupling
and

All transfer functions share three poles in common, of which
two are stable and one unstable . The
two transfer functions and have an integral effect that
stems from the absence of an external force acting on the rota-
tional axis (i.e., no gravity is present along that axis). The main
transfer function has a single non-minimum-phase zero.
Computing the Smith–McMillan form [18] of the transfer func-
tion matrix confirms the presence of this non-minimum-phase
zero, which goes along the analysis performed in Section III-B.
The proximity of this right-half plane zero to the unstable pole
accounts for part of the difficulty in controlling the system.

D. PD Controller Design

Two PD controllers, , and
, are designed upon neglecting the

auxiliary transfer functions and , which are simply
considered as generators of unknown disturbances acting on
the decoupled closed-loop systems. This means that: 1) the
inputs are set to

, and 2) the closed-loop system
is designed independently of the

closed-loop system . Fig. 5 gives the
corresponding open-loop Bode diagrams.

Fig. 5. Bode diagram of the main harmonic responses before PD compensa-
tion. (a) Magnitude of , (b) Phase of , (c) Magnitude of

, (d) Phase of .

Fig. 6. Bode diagram of the main harmonic responses after PD compensation.
(a) Magn. of , (b) Phase of , (c) Magn.
of , (d) Phase of .

The gain of each of the PD controllers is first increased
so as to have a crossover frequency corresponding to compa-
rable closed-loop time constant as for the nonlinear control
design. The derivative term is then adjusted to achieve
[dB/decade] which should guarantee stability. This leads to the
values and .
The resulting Bode diagrams are represented in Fig. 6. Never-
theless, local stability has yet to be rigorously justified. The PD
controllers are embedded in the gain matrix

(31)

It is straightforward to verify that all the eigenvalues of
are stable, which ensures local asymp-

totic stability when the PD controllers are applied to the
nonlinear system, notwithstanding that both controllers have
been designed independently from each other.

1) Setpoint Change: A step response is illustrated in
Fig. 7. The Toycopter is initially at its equilibrium position
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Fig. 7. Heading motion when using PD control (without polynomial interpo-
lation). (a) versus . (b) versus .

Fig. 8. Heading motion when using PD control (with polynomial interpola-
tion). (a) versus . (b) versus .

and then asked to move up to and
. Some ripple occurs during the vertical motion, and

cross-coupling occurs along the -axis as well, which is also
oscillatory.

However, interpolating between the equilibrium points, this
inconvenience can be alleviated. The inputs are set to

where are suitable polynomials that interpo-
late between the two corresponding equilibrium values associ-
ated with and . is a constant value. The
polynomials are chosen of order 7, whose derivatives are set to
zero at both interpolating points, and for which

, and ; finally ;
a similar interpolation occurs for between to

, and for between to
. The result of applying this type of controller on the non-

linear model is shown in Fig. 8.
2) Disturbance Rejection: Even though the PD control

shows comparable behavior to the nonlinear controller while
tracking a heading reference (as long as the reference is con-
veniently filtered or interpolated before applying PD control),
the PD controller is nevertheless inferior in rejecting sudden
unknown disturbances. Indeed, this type of disturbance can be
interpreted as artificial resetting of the initial conditions, upon
which the designer has not much information before the effect
of the disturbance can be detected. The consequence is a return
to normal operation following the type of response illustrated
in Fig. 7, which is not that satisfactory due to the presence
of ripples. One could also envision a detection scheme and a
suitable interpolation mechanism, but this would raise the issue
of stability when confronted with a persistent disturbance (i.e.,
a new loop would be introduced by the detection/interpolation
scheme whose influence should be analyzed).

E. MIMO Pole Placement

Looking back at the constant gain matrix (31) associated with
the PD controllers proposed in the previous section, one sees
that little of its potential has been used, owing to the numerous
zero entries in this matrix. It is now proposed to design the gain
matrix so as to have complete control on the pole location of the
closed-loop system.

The linearized system is controllable since
. This

means that all six poles can be set to arbitrary desired values
using the feedback laws and ,
where and are appropriate row vectors representing
the controller gains. To determine these gains, we proceed by
considering the Brunovský canonical form associated with the
controllability matrix [1], [2], [19], [20]. The reason for this,
is threefold. On one side, it gives a simple way of computing
the gains and . Secondly, it relates very naturally to
the flatness approach considered earlier in the paper. Indeed,
the outputs of such a canonical form are flat outputs of the
linearized system. Finally, (and, to a certain extent, this is a
direct consequence of the second reason), had the nonlinear
system been assessed as a flat system, then the nonlinear
flat outputs would have been connected to these Brunovský
outputs, at least from a local analysis point of view. However,
although the full nonlinear system has been shown not to be
flat, the nonlinear controller has been designed based on the
assumption of approximate flatness. Hence, it is even more
compelling to compare the behavior around the vicinity of
an equilibrium point with a controller designed based on the
Brunosvký output of the linearized system. Of course, nothing
prevents from extrapolating by examining the performance of
this linear controller applied to the nonlinear model for wild
excursions in the full nonlinear domain, even though neither
global stability nor performance can then be guaranteed.

Two outputs are constructed, and ,
upon imposing that is in the null space of all columns of
the controllability matrix except for and that is in
the null space of all columns of the controllability matrix except
for

with both and .
Then, consider both third-order differential equations

(32)

(33)

to which we associate the polynomials

The closed-loop system (yet to be explicitly constructed) will
have the zeros of these two polynomials as poles. For the simula-
tions, the poles are chosen to be real and located at the same po-
sitions, i.e., ,
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Fig. 9. Heading motion when using the MIMO pole-placement controller.
. (a) versus , (b) versus .

Fig. 10. Comparison between the MIMO pole-placement controller (dashed
line) and the proposed nonlinear controller (solid line) when turning the Toy-
copter angle from: 1) 2 to 0 (top), and 2) 4 to 0 (bottom), while simultane-
ously trying to keep the heading angle at the constant value 0.7. The poles
have been set so as to induce similar decrease rates along the -axis and gains
have been balanced to have the same time constants along the - and -axis (i.e.,

for the MIMO pole-placement design). (a) versus ,
(b) versus , (c) versus , (d) versus .

and , with and . Expliciting
the differential (32) and (33) gives

from which the required gains and can be obtained by
comparing the last two equations with and

. The same experiment as for the PD controller is carried
out and the result of the heading motion is given in Fig. 9. No
interpolation is needed in this case, since there is no ripple in the
responses. The results indicate that cross-coupling is present,
but not in an unsatisfactory way.

Nevertheless, this linear controller shows its limitation when
manoeuvres emphasizing the strong gyroscopical nonlinear
forces are selected. For instance, after setting the Toycopter
heading angle to the constant value and setting the
reference value so as to strongly rotate the setup along the
corresponding axis, the nonlinear centrifugal and gyroscopical
torques act heavily on the system. This is illustrated in Fig. 10.
As long as the initial rotational angle is small, the linear
controller is only slightly inferior to the proposed nonlinear
controller [(a) and (b)]. When the angle increases, the linear
controller cannot properly handle the induced nonlinear forces
[(c) and (d)].

Fig. 11. Instability occurs when the external loop gains are too large:
.

Notice that the proposed MIMO controller is different from
a linear controller derived from the proposed nonlinear design
(compare for instance with ). The MIMO
controller uses minimum-phase outputs, whereas is gener-
ated considering the natural non-minimum-phase outputs and

. Although the MIMO controller has the advantage of being
minimum phase, it cannot overcome other disadvantages caused
by fast motions.

F. Limitation Due to Approximation

Theoretical analysis has shown that a flat approximation is
possible under the condition that certain cross-coupling terms
are neglected. It is interesting to see to what extent this approx-
imation limits the overall behavior, once the controller has been
implemented on the system. In the following experiment, the
outer gains are gradually increased to enforce rapid transient be-
havior on the system. The system responds more swiftly when
the gains are increased. However, once a certain threshold is
reached, a completely unsatisfactory behavior occurs since un-
stable oscillations take place as shown in Fig. 11. This is nothing
else but the expression of the cross terms that have been ne-
glected during controller design. Their effect are amplified by
the outer gains. This threshold in the gains, observed during
the experiment, is simply the manifestation of the theoretical
bound (30).

VII. CONCLUSION

The paper has discussed several dynamic features of the
Toycopter, which is an excellent testbed for illustrating
many interesting control challenges. A detailed modeling
approach and the design of a nonlinear controller that uses a
flat approximation based on physical insight have been pre-
sented. The controller was tested both in simulation and on
a laboratory-scale experimental setup. It outperformed two
classical control designs, namely a PD-based controller and a
MIMO pole-placement controller. Although these linear con-
trollers gave satisfactory results for specific maneuvers, they
did not show the universality of the nonlinear control scheme,
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Fig. 12. Computing the main angular speed. (a) A frame is attached to the rigid body formed by the main propeller and its motor rotor . The two coordi-
nates and are also indicated. (b) and (c): Contributions of and with respect to the attached frame. The light arrows represent in (b) and in (c).

especially when confronted with large-scale displacements over
the full nonlinear domain, during which strong gyroscopical
forces acted on the system.

Nevertheless, the fixed blade angle for each of the propellers
introduces cross-couplings that cannot be completely compen-
sated for by feedback. Hence, some approximation is introduced
to make the system feedback linearizable. The main implication
is a limit on the controller gains, thus restricting the system re-
sponsiveness. An interesting point is that this limit is linked to
the ratio between the thrust and inertia coefficients of the pro-
pellers. Hence, ideally, the Toycopter should be constructed with
very lightweight propellers having good aerodynamical proper-
ties. This seems quite trivial. However, this type of propelling
mechanism is much easier to realize for a small-scale system
than for large ones, the inertia tending to diminish more rapidly
than the aerodynamical lift coefficient with reduction in size.

APPENDIX I
LAGRANGIAN MODELING

The dynamics of the Toycopter will be derived using La-
grange formulation of analytical mechanics. Although the in-
ertial cross-coupling terms can be obtained straightforwardly,
care must be taken in evaluating the generalized forces. For this
setup, the following modeling assumptions are made.

• The ground and relative velocity effects are neglected.
• The propeller thrust is considered to be proportional to the

square of the propeller speed [21].
Hypotheses on the dissipative effects are as follows.
• The air generates a friction torque on the propellers pro-

portional to the speed squared.
• Motor friction is purely viscous.
• Arm and body friction is viscous. Dry friction is not

modeled.
The first modeling step is to select appropriate generalized

coordinates. The set chosen is where and
stand for the propeller angles. The subscript means “main”
and “rear.”
Evaluating the kinetic and potential energy

Kinetic Energy: The total kinetic energy consists in four
terms, each corresponding to one of the rigid bodies (arm: ,
body: , main propeller: and rear propeller: )

(34)

To obtain each of these terms, we will use the following gen-
eral formula for the kinetic energy of a single rigid body that we

call . Let a point of the rigid body translate with instanta-
neous linear velocity , and let denote the instantaneous an-
gular velocity. Furthermore, let denote the mass of the rigid
body centered at and the inertia tensor with respect to a
frame attached to the rigid body at point . Then

(35)

Since there are four different rigid bodies in the setup, we
need to compute eight velocities and apply the formula to each
of the bodies. The main angular velocity is obtained by vectori-
ally adding the three angular velocities that stem from rotations
along and . This follows from the composition of an-
gular velocities of moving referentials. A similar computation is
performed for the rear axis. Fig. 12 illustrates the contributions
of and to the main angular velocity. A similar computation
can be performed for the rear axis but only the result will be
given, the details being left to the reader. It follows that

(36)

(37)

For the main and rear propellers and rotors, the point in
the genereal kinetic energy formula is chosen to be equal to the
center of mass . It remains to compute the linear velocities of
these two centers. Let denote the center of mass of the
main (rear) propeller rotor rigid body. Then, and will
designate the length between the center of rotation of the arm
and the corresponding center of mass. The linear velocity is due
to the two rotations at angular velocity and . The instanta-
neous linear velocity of the propeller center of mass expressed
in the fixed frame attached to the propeller is given for the main
and rear propellers as

(38)

(39)

Due to the choice of the point being equal to , the second
term in the kinetic energy formula (35) cancels. Considering a
diagonal inertia tensor for both propellers gives

(40)

(41)
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Fig. 13. Helicopter with its center of mass and the projected distances needed
to compute the potential energy.

In the above equations, the propeller angle does not appear since
we admit that, under high velocity, = and

. This will reduce by one the order of the dynamic
system. The coordinates and are called cyclic (i.e., ignor-
able) since they do not explicitly appear in the Lagrangian nor
in the generalized force. Following the same approach, the re-
maining kinetic energies can be expressed as

(42)

(43)

Potential Energy: The center of mass of the setup (
is used here to distinguish it from , the generic variable to
indicate the center of mass of any of the four rotating bodies
to which the kinetic energy formula is applied) is purposely not
on the center of rotation. It is supposed to lie somewhere in the
plane containing the arm and the center of rotation. Thus two
parameters are necessary to describe its position. Using Fig. 13,
the potential energy can be put in the form

(44)

Expanding the Lagrangian
shows a regrouping of the physical constants into phenomeno-
logical constants

The Lagrangian then reads

(45)

The phenomenological constants can either be computed
from the model parameters (Table I), when these are known, or
identified experimentally.

A. Generalized Forces

The external forces to the system are due to three physical
effects, namely the aerodynamical forces, the viscous friction
forces and the electromechanical forces.

Firstly, regarding the aerodynamical forces, the propellers
generate torques that are proportional to the square of rotational

TABLE I
MODEL PARAMETERS

speed. Along with the main propeller thrusts ( and
), the propellers generate aerodynamical cross-cou-

plings ( and ). Air resistance is present
on the blade angles and and also on
the motors as and . Secondly, dissipa-
tive effects are present in the system and modeled as viscous
forces. On the -axis, only viscous friction will be considered
with the corresponding torque acting on that axis. Simi-
larly, on the -axis, will represent the viscous friction. Fi-
nally, the electrical motors receive an electromotive torque as

for the main motor and for the rear one, where
and stand for the input voltage to the respective motor. These
torques are accompanied by: 1) reactive torques due to viscous
friction and back electromotive force due to rotation modeled as

and , and 2) air resistance
and .

Since all constraints do not depend on time, it is sufficient to
consider a small displacement of the coordinate of interest
to evaluate . The associated generalized force will then be the
value such that , where is the work performed
by all forces when takes place. Notice that the forces are con-
stant along the displacement . After straightforward algebraic
manipulations, one obtains

(46)

(47)

(48)

(49)

B. Dynamics

The dynamics are derived from the previous Lagrangian and
generalized forces using the formula

(50)

Since and are cyclic coordinates (i.e., they do not ap-
pear explicitly in this Lagrangian) and these coordinates do not
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appear in the generalized forces, a new notation will be used
to describe the propeller angular velocities, and

.
The dynamics read (setting and )

(51)

(52)

(53)

(54)

From a practical point of view, the couplings appearing in
the motor equations such as the acceleration appearing along
with the main propeller acceleration can be neglected. This
can be justified by the fact that the forces and are
of comparable order of magnitude and, hence, implies that the
force is in the inertia ratio smaller than the main pro-
peller driving force . The simplified propeller equations
then read

(55)

(56)

where and serve as inputs to the system.

APPENDIX II
NON-MINIMUM-PHASE PROPERTY [22]

For linear systems, non-minimum-phase systems are defined
as those possessing transmission zeros whose real parts are pos-
itive (i.e., their zeros lie in the complex plane on the right-hand
side of the imaginary axis). However, for nonlinear systems, this
definition is not applicable since associated transfer functions
do not exist. The general definition of non-minimum-phase sys-
tems are then defined based on the instability of the zero dy-
namics [22], a concept that applies to both cases.

Let us assume that the system
with output has vector relative degree 3

at and that the distribution spanned by the vector fields
is involutive. It is therefore possible to find

real-valued functions , locally de-
fined near and vanishing at , which, together with
the components of the output map , qualify as a

3The notion of relative degree is well described in ([23, Sec. 5.1]).

new set of local coordinates. In the new coordinates , the
system is represented by

where the matrix is nonsingular for all near .
The zero dynamics of a system describe those internal dy-

namics that are consistent with the external constraint . If
a system has relative degree at , its zero dy-
namics exist locally in a neighborhood of , evolve on
the smooth -dimensional manifold

(the zero-dynamics manifold), and are described by a differen-
tial equation of the form

in which (the zero-dynamics vector field) denotes the re-
striction to of the vector field

with

Definition 1: A system whose zero dynamics are asymptoti-
cally stable is called a minimum phase system.

Definition 2: A system whose zero dynamics are unstable is
called a non-minimum-phase system.

Remark 2: The second definition is strengthened somehow
with respect to the negation of Definition 1. Byrnes et al. [22]
make a distinction between weakly minimum phase systems,
i.e., systems having stable zero dynamics (but possibly not
asymptotically) for which there exists a time-independent
Lyapunov function, and systems having stable zero dynamics
but with a time-dependent Lyapunov function (i.e., not weakly
minimum phase).

These definitions generalize to systems with a vector rela-
tive degree different from . For example, for a SISO
system having strong relative degree , i.e.,

we have

(57)

In other words, the vector field

(58)
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is tangent to and the dynamics of its restriction to is
the zero dynamics of the system. Then, minimum phase is a
consequence of the asymptotic stability of these zero dynamics.

APPENDIX III
SHORT APPENDIX ON DIFFERENTIAL FLATNESS

An elementary exposition of differential flatness will be given
without resorting to a precise mathematical framework. The in-
terested reader may find a more complete presentation in [1]
and [2].

A. Basic Definitions

Consider a system with an -dimensional input and -di-
mensional state

(59)

Recall that if is a smooth function of time, we denote by
, its th-order time derivative for every

, with the convention that .
Definition 3: System (59) is differentially flat if there exists

an -dimensional output , with functionally
independent components, function of and possibly a finite
number of derivatives of

satisfying

(60)

for a given sequence of finite integers . The output
is called a flat output.

B. Flatness and Motion Planning

By definition, flatness means that arbitrary (sufficiently
smooth) trajectories

can be followed, and that the corresponding state and open-
loop control are obtained exactly and explicitly by (60) without
integrating the system equations.

In particular, the motion-planning problem is significantly
simplified if the trajectories to be followed are designed in the
flat output coordinates. The corresponding state and open-loop
control are then obtained by the static relations (60).

C. Flatness and Linearization

The expressions (60) may also be interpreted as a notion of
system equivalence since the original nonlinear system (59) is
transformed by (60) into the linear controllable system

(61)

Note that, since the dimension of the trans-
formed linear system (61) satisfies , this equivalence rela-
tion is more general than the classical equivalence by diffeo-
morphism and static feedback (see, e.g., [23] and [24]). It is
called endogenous feedback equivalence in the differential al-

gebraic framework [1], and Lie-Bäcklund equivalence [2] in the
infinite-dimensional differential geometric framework, and may
be interpreted as a special case of dynamic feedback, namely en-
dogeneous dynamic feedback.

Flatness clearly implies the full-state linearizability of the
system by dynamic feedback [15], [25]. More precisely:

Theorem 3: Flatness is equivalent to dynamic endogeneous
feedback linearization.

In particular the following result holds.
Corollary 1: A linear system is flat if and only if it is control-

lable.
In this case, the flat output is directly obtained in the coordi-

nates of the Brunovksy controllability canonical form or using
the approach of [26].

A general criterion to decide whether a system is flat or not
has been found in [27].

D. Flatness and Trajectory Tracking

Away from singularities, the dynamic feedback lineariza-
tion is particularly interesting in designing the feedback
loop. If is a reference trajectory for the flat output , and

, it suffices to set

(62)

(63)

and choose the gains to suitably place the poles of the in-
dependent linear subsystems (62) and (63) in the left-half com-
plex plane. The nonlinear feedback to be applied to (59) is fi-
nally obtained by using once again (60).

In summary, the flatness property may be used in the control
design to obtain: 1) a “good” reference trajectory and the as-
sociated open-loop control reference and 2) the feedback that
linearizes the dynamics of the error with respect to this refer-
ence trajectory and thus stabilize the system.
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