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On stability of discrete-time quantum filters

Pierre Rouchon∗

May 18, 2010

Fidelity is known to increase through a Kraus map: the fidelity between two density
matrices is less than the fidelity between their images via a Kraus map. We prove here
that, in average, the square of the fidelity is also increasing for a quantum filter: the square
of the fidelity between the density matrix of the underlying Markov chain and the density
matrix of its associated quantum filter is a super-martingale. Thus discrete-time quantum
filters are stable processes and tend to forget their initial conditions.

1 Kraus maps and quantum Markov chains

Take the Hilbert space S = Cn of dimension n > 0 and consider a quantum channel
described by the Kraus map (see [3], chapter 4)

K(ρ) =
m
∑

µ=1

MµρM
†
µ (1)

where

• ρ is the density matrix describing the input quantum state, K(ρ) being then the
output quantum state; ρ ∈ Cn×n is a density matrix, i.e., an Hermitian matrix semi-
positive definite and of trace one;

• for each µ ∈ {1, . . . , m}, Mµ ∈ Cn×n/{0}, and
∑

µM
†
µMµ = I.

To this quantum channel is associated the following discrete-time Markov chain:

ρk+1 = Mµk
(ρk) (2)

where

• ρk is the quantum state at sampling time tk and k the sampling index (tk < tk+1).

• µk ∈ {1, . . . , m} is a random variable; µk = µ with probability pµ(ρk) = Tr
(

MµρkM †
µ

)

.
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• Mµ(ρ) =
1

Tr(MµρM
†
µ)
MµρM †

µ = 1
pµ(ρ)

MµρM †
µ .

Kraus maps are contractions for the trace distance, i.e., nuclear distance (see [3], the-
orem 9.2, page 406): for all density matrices σ, ρ, one has

Tr (|K(σ)−K(ρ)|) ≤ Tr (|σ − ρ|)

where, for any Hermitian matrix A with spectrum {λl}l∈{1,...,n}, Tr (|A|) =
∑n

l=1 |λl|. The
Kraus map tends also to increase fidelity F (see [3], theorem 9.6, page 414): for all density
matrices ρ and σ, one has

Tr

(
√

√

K(σ)K(ρ)
√

K(σ)

)

= F (K(σ),K(ρ)) ≥ F (σ, ρ) = Tr

(

√√
σρ

√
σ

)

(3)

where, for any Hermitian semi-positive matrix A = UΛU †, U unitary matrix and Λ =
diag{λl}l∈{1,...,n},

√
A = U

√
ΛU † with

√
Λ = diag{

√
λl}l∈{1,...,n}.

The conditional expectation of ρk+1 knowing ρk is given by the Kraus map:

E (ρk+1/ρk) = K(ρk).

This result from the trivial identity
∑m

µ=1 Tr
(

MµρM †
µ

) MµρM
†
µ

Tr(MµρM
†
µ)
,= K(ρ). In section 2, we

show during the proof of theorem (1) the following inequality

m
∑

µ=1

Tr
(

MµρM
†
µ

)

F 2

(

MµσM
†
µ

Tr(MµσM
†
µ)
, MµρM

†
µ

Tr(MµρM
†
µ)

)

≥ F 2(σ, ρ) (4)

for any density matrices ρ and σ. The left-hand side is related to a conditional expectation.
Inequality (4), attached to the probabilistic mapping (2), can be seen as the stochastic
counter-part of inequality (3) attached to the deterministic mapping (1). When for some
µ, Tr

(

MµσM †
µ

)

= 0 with Tr
(

MµρM †
µ

)

> 0, one term in the sum at the left-hand side

of (4) is not defined. This is not problematic, since in this case, if we replace MµσM
†
µ

Tr(MµσM
†
µ)

by MµξM
†
µ

Tr(MµξM
†
µ)

where ξ is any density matrix such that Tr
(

MµξM †
µ

)

> 0, this term is then

well defined (in a multi-valued way) and inequality (4) remains satisfied for any such ξ.
During the proof of theorem (8), we extend this inequality to any partition of {1, . . . , m}

into p ≥ 1 sub-sets Pν :

ν=p
∑

ν=1

Tr

(

∑

µ∈Pν

MµρM
†
µ

)

F 2

(

∑

µ∈Pν
MµσM

†
µ

Tr(
∑

µ∈Pν
MµσM

†
µ)
,

∑

µ∈Pν
MµρM

†
µ

Tr(
∑

µ∈Pν
MµρM

†
µ)

)

≥ F 2(σ, ρ) (5)
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2 The standard case.

Take a realization of the Markov chain associated to the Kraus map K. Assume that
we detect, for each k, the jump µk but that we do not know the initial state ρ0. The
objective is to propose at sampling k, an estimation ρ̂k of ρk based on the past detections
µ0, . . . , µk−1. The simplest method consists in starting from an initial estimation ρ̂0 and
at each sampling step to jump according to the detection. This leads to the following
estimation scheme known as a quantum filter:

ρ̂k+1 = Mµk
(ρ̂k) (6)

with pµ(ρk) = Tr (MµρkMµ) as probability of µk = µ. Notice that when Tr (Mµk
ρ̂kMµk

) =
0, Mµk

(ρ̂k) is not defined and should be replaced by Mµk
(ξ) where ξ is any density matrix

such that Tr
(

Mµk
ξ̂Mµk

)

> 0 (take, e.g., ξ = 1
n
Id). The theorem here below is a first step

to investigate the convergence of ρ̂k towards ρk as k increases.

Theorem 1. Consider the Markov chain of state (ρk, ρ̂k) satisfying (2) and (6). Then
F 2(ρ̂k, ρk) is a super-martingale: E (F 2(ρ̂k+1, ρk+1)/(ρ̂k, ρk)) ≥ F 2(ρ̂k, ρk).

When ρ̂k or ρk are pure states, ρ̂k+1 or ρk+1 remain also a pure states. Then, F 2(ρ̂k, ρk) =
Tr (ρ̂kρk) and F 2(ρ̂k+1, ρk+1) = Tr (ρ̂k+1, ρk+1). In this case, theorem 1 has been proved
in [2] using Cauchy-Schwartz inequalities for m = 2. The proof proposed here below deals
with the general case when both ρk and ρ̂k can be mixed states. It relies on arguments
similar to those used for the proof of theorem 9.6 in [3].

Proof. ρ and ρ̂ are associated to the Hilbert space S = Cn: ρ and ρ̂ are operators from S to
S. Take a copyQ = Cn of S and consider the composite system living on S⊗Q ≡ Cn2

. Then
ρ̂ and ρ correspond to partial traces versus Q of projectors |ψ̂〉〈ψ̂| and |ψ〉〈ψ| associated
to pure states |ψ̂〉 and |ψ〉 ∈ S ⊗Q:

ρ̂ = TrQ
(

|ψ̂〉〈ψ̂|
)

, ρ = TrQ (|ψ〉〈ψ|)

|ψ̂〉 and |ψ〉 are called purifications of ρ̂ and ρ. They are not unique but one can always
choose them such that F (ρ̂, ρ) = |〈ψ̂|ψ〉| (Uhlmann’s theorem).

Denote by |ψ̂k〉 and |ψk〉 such purifications of ρ̂k and ρk satisfying F (ρ̂k, ρk) = |〈ψ̂k|ψk〉|.
We have

E
(

F 2(ρ̂k+1, ρk+1)/(ρ̂k, ρk)
)

=
m
∑

µ=1

pµ(ρk)F
2(Mµ(ρ̂k),Mµ(ρk)).

The matrices Mµ(ρ̂k) and Mµ(ρk) are also density matrices. Take the space S ⊗ Q ⊗ E
where E is the Hilbert space of the environment appearing in the system-environment
model of the Kraus map (1). This model is recalled in appendix A. It introduced an
unitary transformation U on S ⊗ E. This unitary transformation can be extended to
S ⊗Q⊗ E ≡ S ⊗ E ⊗Q by setting V = U ⊗ I (I is identity on Q). Then

Mµ(ρk) = TrQ⊗E

(

PµV (|ψk〉〈ψk|⊗ |e0〉〈e0|)V †Pµ

)

.
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Set |φk〉 = |ψk〉 ⊗ |e0〉 ∈ S ⊗Q⊗ E and |χk〉 = V |φk〉. Using P 2
µ = Pµ, we have

pµ(ρk) = Tr (Mµ(ρk)) = 〈φk|V †PµV |φk〉 = ‖Pµ|χk〉‖2

For each µ, the state |χkµ〉 = 1√
pµ(ρk)

Pµ|χk〉 is a purification of Mµ(ρk):

Mµ(ρk) = TrQ⊗E (|χkµ〉〈χkµ|) .

Similarly set |φ̂k〉 = |ψ̂k〉 ⊗ |e0〉 and |χ̂k〉 = V |φ̂k〉. For each µ, |χ̂kµ〉 = 1√
pµ(ρ̂k)

Pµ|χ̂k〉 is

also a purification of Mµ(ρ̂k). By Uhlmann’s theorem,

F 2(Mµ(ρ̂k),Mµ(ρk)) ≥ |〈χ̂kµ|χkµ〉|2.

Thus we have

E
(

F 2(ρ̂k+1, ρk+1)/(ρ̂k, ρk)
)

≥
m
∑

µ=1

pµ(ρk) |〈χ̂kµ|χkµ〉|2.

Since V is unitary,

|〈χ̂k|χk〉|2 = |〈φ̂k|φk〉|2 = |〈ψ̂k|ψk〉|2 = F 2(ρ̂k, ρk).

Let us show that
∑m

µ=1 pµ(ρk) |〈χ̂kµ|χkµ〉|2 ≥ |〈χ̂k|χk〉|2. We have

pµ(ρk) |〈χ̂kµ|χkµ〉|2 = |〈χ̂kµ|Pµχk〉|2 = |〈χ̂kµ|χk〉|2,

thus it is enough to prove that
∑m

µ=1 |〈χ̂kµ|χk〉|2 ≥ |〈χ̂k|χk〉|2. Denote by R̂ ⊂ S ⊗Q ⊗ E

the vector space spanned by the ortho-normal basis (|χ̂kµ〉)µ∈{1,...,m} and by P̂ the projector

on R̂. Since

|χ̂k〉 =
m
∑

µ=1

Pµ|χ̂k〉 =
m
∑

µ=1

√

pµ(ρ̂k)|χ̂kµ〉

|χ̂k〉 belongs to R̂ and thus |〈χ̂k|χk〉|2 = |〈χ̂k|P̂ |χk〉〉|2. We conclude by Cauchy-Schwartz
inequality

|〈χ̂k|χk〉|2 = |〈χ̂k|P̂ |χk〉〉|2 ≤ ‖χ̂k‖2‖P̂ |χk〉‖2 = ‖P̂ |χk〉‖2 =
m
∑

µ=1

|〈χ̂kµ|χk〉|2.

3 The aggregated case.

Let us consider another Markov chain attached to the same Kraus map (1) and associated
to a partition of {1, . . . , m} into p ≥ 1 sub-sets Pν (aggregation of several quantum jumps
via ”partial Kraus maps”):

ρk+1 =
1

Tr
(

∑

µ∈Pνk
MµρkM

†
µ

)





∑

µ∈Pνk

MµρkM
†
µ



 (7)
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where νk = ν with probability Tr
(

∑

µ∈Pν
MµρkM †

µ

)

. Consider the associated quantum

filter

ρ̂k+1 =
1

Tr
(

∑

µ∈Pνk
Mµρ̂kM

†
µ

)





∑

µ∈Pνk

Mµρ̂kM
†
µ



 (8)

where the jump index νk coincides with the jump index νk in (7). Then we have the
following theorem.

Theorem 2. Consider the Markov chain of state (ρk, ρ̂k) satisfying (7) and (8). Then
F 2(ρ̂k, ρk) is a super-martingale: E (F 2(ρ̂k+1, ρk+1)/(ρ̂k, ρk)) ≥ F 2(ρ̂k, ρk).

Proof. It is similar to the proof of theorem 1. We will just point out here the main changes
using the same notations. We start from

E
(

F 2(ρ̂k+1, ρk+1)/(ρ̂k, ρk)
)

=
p

∑

ν=1

p̃ν(ρk)F
2(M̃ν(ρ̂k),M̃ν(ρk)).

where we have set

p̃ν(ρ) = Tr

(

∑

µ∈Pν

MµρM
†
µ

)

, M̃ν(ρ) =
1

p̃ν(ρ)

(

∑

µ∈Pν

MµρM
†
µ

)

.

With P̃ν the orthogonal projector on S⊗Q⊗span{|µ〉, µ ∈ Pν} and M̃ν(ρ) =
∑

µ∈Pν
MµρM †

µ,
we have

M̃ν(ρk) = TrQ⊗E

(

P̃νV (|ψk〉〈ψk|⊗ |e0〉〈e0|)V †P̃ν

)

and
p̃ν(ρk) = Tr

(

M̃ν(ρk)
)

= 〈φk|V †P̃νV |φk〉 = ‖P̃ν |χk〉‖2

For each ν, the state |χ̃kν〉 = 1√
p̃ν(ρk)

P̃ν |χk〉 is a purification of M̃ν(ρk):

M̃ν(ρk) = TrQ⊗E (|χ̃kν〉〈χ̃kν|) .

Similarly | ˆ̃χkν〉 = 1√
p̃ν(ρ̂k)

P̃ν |χ̂k〉 is also a purification of M̃ν(ρ̂k). By Uhlmann’s theorem,

F 2(M̃ν(ρ̂k),M̃ν(ρk)) ≥ |〈 ˆ̃χkν|χ̃kν〉|2.

Thus we have

E
(

F 2(ρ̂k+1, ρk+1)/(ρ̂k, ρk)
)

≥
p

∑

ν=1

p̃ν(ρk) |〈 ˆ̃χkµ|χ̃kµ〉|2.

Let us show that
∑p

ν=1 p̃ν(ρk) |〈 ˆ̃χkν|χ̃kν〉|2 ≥ |〈χ̂k|χk〉|2 = F 2(ρ̂k, ρk). We have

p̃ν(ρk) |〈 ˆ̃χkν|χ̃kν〉|2 = |〈 ˆ̃χkν|P̃νχk〉|2 = |〈 ˆ̃χkν|χk〉|2,
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thus it is enough to prove that
∑p

ν=1 |〈 ˆ̃χkν|χk〉|2 ≥ |〈χ̂k|χk〉|2. Denote by ˆ̃R ⊂ S ⊗ Q⊗ E

the vector space spanned by the ortho-normal basis
(

| ˆ̃χkν〉
)

ν∈{1,...,p}
and by ˆ̃P the projector

on ˆ̃R. Since

|χ̂k〉 =
p

∑

ν=1

P̃ν |χ̂k〉 =
p

∑

ν=1

√

p̃ν(ρ̂k)| ˆ̃χkν〉

|χ̂k〉 belongs to ˆ̃R and thus |〈χ̂k|χk〉|2 = |〈χ̂k| ˆ̃P |χk〉〉|2. We conclude by Cauchy-Schwartz
inequality

|〈χ̂k|χk〉|2 = |〈χ̂k| ˆ̃P |χk〉〉|2 ≤ ‖χ̂k‖2‖ ˆ̃P |χk〉‖2 = ‖ ˆ̃P |χk〉‖2 =
p

∑

ν=1

|〈 ˆ̃χkν|χk〉|2.

4 Concluding remarks

Theorems 1 and 2 are still valid if the Kraus operators Mµ depend on k. In particular,
F (ρ̂k, ρk) remains a super-martingale even if the Kraus operators depend on ρ̂k, i.e., in case
of feedback.

When σ and ρ are pure states (projectors of rank one), D(σ, ρ) =
√

1− F 2(σ, ρ).
Consequently inequality (4) yields to

m
∑

µ=1

Tr
(

MµρM
†
µ

)

D

(

MµσM
†
µ

Tr(MµσM
†
µ)
, MµρM

†
µ

Tr(MµρM
†
µ)

)

≤ D(σ, ρ)

for any pure states σ and ρ (use the fact that [0, x] - x .→
√
1− x is decreasing and

concave). We conjecture that such inequality hold also true for any mixed states and that
D(ρ̂k, ρk) = Tr (|ρ̂k − ρk|) is a sub-martingale.
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A System-environment model

The quantum channel associated to the Kraus map (1) or the Markov chain (2) admits
a system-environment model (see [1], chapter 4 entitled ”The environment is watching”).
Take the Hilbert space E = Cm associated to the environment and the composite system
living on S ⊗E. Take a pure state |φk〉 ∈ S and its density matrix ρk = |φk〉〈φk|. Assume
that before detection µk at step k, the composite system admits the pure state |φk〉 ⊗ |e0〉
where |e0〉 is an environment pure state. Take m states |µ〉 forming an orthogonal base of
E. Then exists a unitary transformation U (not unique) of S⊗E such that, for all |φ〉 ∈ S,

U (|φ〉 ⊗ |e0〉) =
m
∑

µ=1

(Mµ|φ〉)⊗ |µ〉.

This is a direct consequence of
∑n

µ=1M
†
µMµ = I. For each µ, denote by Pµ the orthogonal

projector onto the subspace S ⊗ (C|µ〉). Then PµU (|φ〉 ⊗ |e0〉) = (Mµ|φ〉) ⊗ |µ〉 and
∑

µ Pµ = I. We can then verify that for any density matrix ρ associated to a state in R,

PµU (ρ⊗ |e0〉〈e0|)U †Pµ = MµρM
†
µ ⊗ |µ〉〈µ|

and thus
TrE

(

PµU (ρ⊗ |e0〉〈e0|)U †Pµ

)

= MµρM
†
µ.
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