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On stability of discrete-time quantum filters

Fidelity is known to increase through a Kraus map: the fidelity between two density matrices is less than the fidelity between their images via a Kraus map. We prove here that, in average, the square of the fidelity is also increasing for a quantum filter: the square of the fidelity between the density matrix of the underlying Markov chain and the density matrix of its associated quantum filter is a super-martingale. Thus discrete-time quantum filters are stable processes and tend to forget their initial conditions.

Kraus maps and quantum Markov chains

Take the Hilbert space S = C n of dimension n > 0 and consider a quantum channel described by the Kraus map (see [START_REF] Nielsen | Quantum Computation and Quantum Information[END_REF], chapter 4)

K(ρ) = m µ=1 M µ ρM † µ (1)
where • ρ is the density matrix describing the input quantum state, K(ρ) being then the output quantum state; ρ ∈ C n×n is a density matrix, i.e., an Hermitian matrix semipositive definite and of trace one;

• for each µ ∈ {1, . . . , m}, M µ ∈ C n×n /{0}, and µ M † µ M µ = I.
To this quantum channel is associated the following discrete-time Markov chain:

ρ k+1 = M µ k (ρ k ) ( 2 ) 
where

• ρ k is the quantum state at sampling time t k and k the sampling index (t k < t k+1 ).

• µ k ∈ {1, . . . , m} is a random variable;

µ k = µ with probability p µ (ρ k ) = Tr M µ ρ k M † µ . 1 Tr(MµρM † µ) M µ ρM † µ = 1 pµ(ρ) M µ ρM † µ .
Kraus maps are contractions for the trace distance, i.e., nuclear distance (see [START_REF] Nielsen | Quantum Computation and Quantum Information[END_REF], theorem 9.2, page 406): for all density matrices σ, ρ, one has

Tr (|K(σ) -K(ρ)|) ≤ Tr (|σ -ρ|)
where, for any Hermitian matrix A with spectrum {λ l } l∈{1,...,n} , Tr (|A|) = n l=1 |λ l |. The Kraus map tends also to increase fidelity F (see [START_REF] Nielsen | Quantum Computation and Quantum Information[END_REF], theorem 9.6, page 414): for all density matrices ρ and σ, one has

Tr K(σ)K(ρ) K(σ) = F (K(σ), K(ρ)) ≥ F (σ, ρ) = Tr √ σρ √ σ (3) 
where, for any Hermitian semi-positive matrix A = UΛU † , U unitary matrix and Λ = diag{λ l } l∈{1,...,n} ,

√ A = U √ ΛU † with √ Λ = diag{ √ λ l } l∈{1,.
..,n} . The conditional expectation of ρ k+1 knowing ρ k is given by the Kraus map: , = K(ρ). In section 2, we show during the proof of theorem (1) the following inequality

E (ρ k+1 /ρ k ) = K(ρ k ).
m µ=1 Tr M µ ρM † µ F 2 MµσM † µ Tr(MµσM † µ)
,

MµρM † µ Tr(MµρM † µ) ≥ F 2 (σ, ρ) ( 4 ) 
for any density matrices ρ and σ. The left-hand side is related to a conditional expectation. Inequality (4), attached to the probabilistic mapping (2), can be seen as the stochastic counter-part of inequality (3) attached to the deterministic mapping [START_REF] Haroche | Exploring the Quantum: Atoms, Cavities and Photons[END_REF]. When for some µ, Tr M µ σM † µ = 0 with Tr M µ ρM † µ > 0, one term in the sum at the left-hand side of (4) is not defined. This is not problematic, since in this case, if we replace

MµσM † µ Tr(MµσM † µ) by MµξM † µ Tr(MµξM † µ)
where ξ is any density matrix such that Tr M µ ξM † µ > 0, this term is then well defined (in a multi-valued way) and inequality (4) remains satisfied for any such ξ.

During the proof of theorem (8), we extend this inequality to any partition of {1, . . . , m} into p ≥ 1 sub-sets P ν :

ν=p ν=1 Tr µ∈Pν M µ ρM † µ F 2 µ∈Pν MµσM † µ Tr( µ∈Pν MµσM † µ) , µ∈Pν MµρM † µ Tr( µ∈Pν MµρM † µ) ≥ F 2 (σ, ρ) (5) 
2 The standard case.

Take a realization of the Markov chain associated to the Kraus map K. Assume that we detect, for each k, the jump µ k but that we do not know the initial state ρ 0 . The objective is to propose at sampling k, an estimation ρk of ρ k based on the past detections µ 0 , . . . , µ k-1 . The simplest method consists in starting from an initial estimation ρ0 and at each sampling step to jump according to the detection. This leads to the following estimation scheme known as a quantum filter:

ρk+1 = M µ k (ρ k ) ( 6 ) with p µ (ρ k ) = Tr (M µ ρ k M µ ) as probability of µ k = µ. Notice that when Tr (M µ k ρk M µ k ) = 0, M µ k (ρ k )
is not defined and should be replaced by M µ k (ξ) where ξ is any density matrix such that Tr M µ k ξM µ k > 0 (take, e.g., ξ = 1 n I d ). The theorem here below is a first step to investigate the convergence of ρk towards ρ k as k increases.

Theorem 1. Consider the Markov chain of state (ρ k , ρk ) satisfying (2) and (6). Then

F 2 (ρ k , ρ k ) is a super-martingale: E (F 2 (ρ k+1 , ρ k+1 )/(ρ k , ρ k )) ≥ F 2 (ρ k , ρ k ).
When ρk or ρ k are pure states, ρk+1 or ρ k+1 remain also a pure states. Then, F 2 (ρ k , ρ k ) = Tr (ρ k ρ k ) and F 2 (ρ k+1 , ρ k+1 ) = Tr (ρ k+1 , ρ k+1 ). In this case, theorem 1 has been proved in [START_REF] Mirrahimi | Feedback generation of quantum Fock states by discrete QND measures[END_REF] using Cauchy-Schwartz inequalities for m = 2. The proof proposed here below deals with the general case when both ρ k and ρk can be mixed states. It relies on arguments similar to those used for the proof of theorem 9.6 in [START_REF] Nielsen | Quantum Computation and Quantum Information[END_REF].

Proof. ρ and ρ are associated to the Hilbert space S = C n : ρ and ρ are operators from S to S. Take a copy Q = C n of S and consider the composite system living on S⊗Q ≡ C n 

F (ρ k , ρ k ) = | ψk |ψ k |. We have E F 2 (ρ k+1 , ρ k+1 )/(ρ k , ρ k ) = m µ=1 p µ (ρ k )F 2 (M µ (ρ k ), M µ (ρ k )).
The matrices M µ (ρ k ) and M µ (ρ k ) are also density matrices. Take the space S ⊗ Q ⊗ E where E is the Hilbert space of the environment appearing in the system-environment model of the Kraus map (1). This model is recalled in appendix A. It introduced an unitary transformation U on S ⊗ E. This unitary transformation can be extended to

S ⊗ Q ⊗ E ≡ S ⊗ E ⊗ Q by setting V = U ⊗ I (I is identity on Q). Then M µ (ρ k ) = Tr Q⊗E P µ V (|ψ k ψ k | ⊗ |e 0 e 0 |) V † P µ . Set |φ k = |ψ k ⊗ |e 0 ∈ S ⊗ Q ⊗ E and |χ k = V |φ k . Using P 2 µ = P µ , we have p µ (ρ k ) = Tr (M µ (ρ k )) = φ k |V † P µ V |φ k = P µ |χ k 2 For each µ, the state |χ kµ = 1 √ pµ(ρ k ) P µ |χ k is a purification of M µ (ρ k ): M µ (ρ k ) = Tr Q⊗E (|χ kµ χ kµ |) . Similarly set | φk = | ψk ⊗ |e 0 and | χk = V | φk . For each µ, | χkµ = 1 √ pµ(ρ k ) P µ | χk is also a purification of M µ (ρ k ). By Uhlmann's theorem, F 2 (M µ (ρ k ), M µ (ρ k )) ≥ | χkµ |χ kµ | 2 .
Thus we have 

E F 2 (ρ k+1 , ρ k+1 )/(ρ k , ρ k ) ≥ m µ=1 p µ (ρ k ) | χkµ |χ kµ | 2 . Since V is unitary, | χk |χ k | 2 = | φk |φ k | 2 = | ψk |ψ k | 2 = F 2 (ρ k , ρ k ). Let us show that m µ=1 p µ (ρ k ) | χkµ |χ kµ | 2 ≥ | χk |χ k | 2 . We have p µ (ρ k ) | χkµ |χ kµ | 2 = | χkµ |P µ χ k | 2 = | χkµ |χ k | 2 ,
| χk |χ k | 2 = | χk | P |χ k | 2 ≤ χk 2 P |χ k 2 = P |χ k 2 = m µ=1 | χkµ |χ k | 2 .
3 The aggregated case.

Let us consider another Markov chain attached to the same Kraus map (1) and associated to a partition of {1, . . . , m} into p ≥ 1 sub-sets P ν (aggregation of several quantum jumps via "partial Kraus maps"):

ρ k+1 = 1 Tr µ∈Pν k Mµρ k M † µ   µ∈Pν k M µ ρ k M † µ   (7) 
where ν k = ν with probability Tr

µ∈Pν M µ ρ k M † µ . Consider the associated quantum filter ρk+1 = 1 Tr µ∈Pν k Mµ ρk M † µ   µ∈Pν k M µ ρk M † µ   (8) 
where the jump index ν k coincides with the jump index ν k in (7). Then we have the following theorem.

Theorem 2. Consider the Markov chain of state (ρ k , ρk ) satisfying (7) and (8). Then

F 2 (ρ k , ρ k ) is a super-martingale: E (F 2 (ρ k+1 , ρ k+1 )/(ρ k , ρ k )) ≥ F 2 (ρ k , ρ k ).
Proof. It is similar to the proof of theorem 1. We will just point out here the main changes using the same notations. We start from

E F 2 (ρ k+1 , ρ k+1 )/(ρ k , ρ k ) = p ν=1 pν (ρ k )F 2 ( Mν (ρ k ), Mν (ρ k )).
where we have set

pν (ρ) = Tr µ∈Pν M µ ρM † µ , Mν (ρ) = 1 pν (ρ) µ∈Pν M µ ρM † µ .
With Pν the orthogonal projector on S⊗Q⊗span{|µ , µ ∈ P 

  This result from the trivial identity m µ=1 Tr M µ ρM †

  2 . Then ρ and ρ correspond to partial traces versus Q of projectors | ψ ψ| and |ψ ψ| associated to pure states | ψ and |ψ ∈ S ⊗ Q: ρ = Tr Q | ψ ψ| , ρ = Tr Q (|ψ ψ|) | ψ and |ψ are called purifications of ρ and ρ. They are not unique but one can always choose them such that F (ρ, ρ) = | ψ|ψ | (Uhlmann's theorem). Denote by | ψk and |ψ k such purifications of ρk and ρ k satisfying

  thus it is enough to prove that m µ=1 | χkµ |χ k | 2 ≥ | χk |χ k | 2 . Denote by R ⊂ S ⊗ Q ⊗ E the vector space spanned by the ortho-normal basis (| χkµ ) µ∈{1,...,m} and by P the projector on R. Since | χk = m µ=1 P µ | χk = m µ=1 p µ (ρ k )| χkµ | χk belongs to R and thus | χk |χ k | 2 = | χk | P |χ k | 2 . We conclude by Cauchy-Schwartz inequality

2 For 1 √Similarly | χkν = 1 √F 2 ( 2 . 2 .

 211222 ν } and Mν (ρ) = µ∈Pν M µ ρM † µ , we haveMν (ρ k ) = Tr Q⊗E Pν V (|ψ k ψ k | ⊗ |e 0 e 0 |) V † Pν and pν (ρ k ) = Tr Mν (ρ k ) = φ k |V † Pν V |φ k = Pν |χ k each ν, the state | χkν = pν (ρ k ) Pν |χ k is a purification of Mν (ρ k ): Mν (ρ k ) = Tr Q⊗E (| χkν χkν |) . pν (ρ k ) Pν | χk is also a purification of Mν (ρ k ). By Uhlmann's theorem, Mν (ρ k ), Mν (ρ k )) ≥ | χkν | χkν | Thus we have E F 2 (ρ k+1 , ρ k+1 )/(ρ k , ρ k ) ≥ p ν=1 pν (ρ k ) | χkµ | χkµ | Let us show that p ν=1 pν (ρ k ) | χkν | χkν | 2 ≥ | χk |χ k | 2 = F 2 (ρ k , ρ k ). We have pν (ρ k ) | χkν | χkν | 2 = | χkν | Pν χ k | 2 = | χkν |χ k | 2 ,

Concluding remarks

Theorems 1 and 2 are still valid if the Kraus operators M µ depend on k. In particular, F ( ρk , ρ k ) remains a super-martingale even if the Kraus operators depend on ρk , i.e., in case of feedback. When σ and ρ are pure states (projectors of rank one), D(σ, ρ) = 1 -F 2 (σ, ρ). Consequently inequality (4) yields to

for any pure states σ and ρ (use the fact that [0, x] x → √ 1 -x is decreasing and concave). We conjecture that such inequality hold also true for any mixed states and that

A System-environment model

The quantum channel associated to the Kraus map (1) or the Markov chain (2) admits a system-environment model (see [START_REF] Haroche | Exploring the Quantum: Atoms, Cavities and Photons[END_REF], chapter 4 entitled "The environment is watching"). Take the Hilbert space E = C m associated to the environment and the composite system living on S ⊗ E. Take a pure state |φ k ∈ S and its density matrix ρ k = |φ k φ k |. Assume that before detection µ k at step k, the composite system admits the pure state |φ k ⊗ |e 0 where |e 0 is an environment pure state. Take m states |µ forming an orthogonal base of E. Then exists a unitary transformation U (not unique) of S ⊗E such that, for all |φ ∈ S,