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Qubit Hamiltonian identification:
A symmetry-preserving observer-based approach

S. Bonnabefl* M. Mirrahimi  ** P. Rouchon®

*Ecole des Mines de Paris, Centre Automatique et&byss, (e-mail:
silvere.bonnabel@ensmp.fr and pierre.rouchon@ensinp.fr
**Inria Rocquencourt (e-mail: mazyar.mirrahimi@inria.fr)

Abstract: We consider a pure two-state quantum system illuminatedvoylasers. A photo-detector
captures the fluorescence of the system. We build an intarieserver which yields a (local) estimation
of the wave function (or density matrix) and the two key pagtars (laser de-tuning and the atom-laser
coupling strength), parameters of the hamiltonian. Thétesxploits the symmetries of the system and
can be interpreted geometrically. The convergence proodsed on averaging arguments. Simulation
with noise illustrates the robustness of the obtained esitim algorithm.

Keywords: Quantum systems, symmetries, asymptotic obsgrgstimation, nonlinear systems

1. INTRODUCTION The measurement of the number of photons emitted is then
directly proportional to the population of the ground stgXe

In this paper, we consider a quantum system for which w8uppose there is also another laser whose frequency is close
would like to identify some parameters. This estimationbpro to the transition frequency of another excited staeto the

lem has already been addressed with interesting thedretica ground state{0). The lifetime of the transition between the
tributions concerning well-posedness and identifiabifige, two latter states is supposed to be much longer than the pre-
e.g., Claude Le Bris et al. [2007] and the reference hereid) aVvious one. To a first approximation the dynamics of the two-
the development of estimation algorithms robust with respestate system (ground sta® and excited statge) having the

to the noises and the modeling errors. Here, we consider i@ggest lifetime) is described by a Schrodinger equativa.

a simple quantum system, a two level system described byagsume that some parameters are not well knawmzhich
Schrédinger dynamics and a time-continuous populatioa-meis the difference between the second laser frequency and the
surement. We propose an algorithm based on nonlinear asynggomic transition frequency, which is the atom-laser coupling
totic observer techniques preserving the symmetries (Boein Strength and characterizes the Rabi frequency. The goal is t
et al. [2006]) to estimate the system parameters. As far as Wientify in real timeA and 4, measuring the ground state pop-
know, such recent techniques have not been applied to tackii@tion thanks to the first laser (which generates a tramsiti
this problem and this paper illustrates their potentiagiest. only for ground state population) and the photo-detectbe T
Since the observer design exploits the physical symmeiries usual modeling of these open-quantum systems via Lindbald
variance with respect to the frame-change), the filter eguat type terms in the density matrix dynamics (see, e.g., Haoch

admits a natural physical and geometrical interpretatiahdan and Raimond [2006]) is analyzed in Mirrahimi and Rouchon
be extended to higher dimensions. [2006], where singular perturbation techniques are agpte

. . _ ) justify the adiabatic (quasi-static) approximations llyuaade
The physical setup consists of an ensemble of identicay pryy physicists and leading to a dynamical model described (up
pared systems undergoing the same dynamics: for instang@.higher order terms) by a Schrodinger equation despite a
dilute mono-atomic gases. They are very simple systems, @yntinuous population measurement.
the sense their constituents (atoms), are perfectly ickelraind

interact very weakly with each other. Atoms in such gases cdh this paper we build an observer which estimates the wave
be considered as perfect quantum systems, with a sequencéugiction (in fact we rather use the density matrix language)
discrete energy states label@yl for i € N, with increasing the two parametera andp at the same time. We propose an
energieE; = hay depending only on the atomic species conéxtension of the observer described in Mirrahimi and Roacho
sidered. In order to measure the population of the grourtd st42007], where only was estimated, and we show that symme-
(i.e, the state of the lower energy), the system is illungdat tries (invariance by change of frame described by an eleofent
with coherent light (a first laser) whose frequency is clos®U(2)) play an important role. We use the standard notations
to the transition frequency corresponding to the energy gadip quantum physics literature (see e.g. Cohen-Tannoudji et
Ej — Eo = h(waj — wap) of a very unstable excited state (i.e,[1977], and Haroche and Raimond [2006] for a more advanced
having a very short lifetime) to the ground state transitibn lesson).

generates a transitiof®) — |j) for a part of the population

illuminated from the ground state to the excited state, Whic 2. DYNAMICS AND INVARIANCES

spontaneously decays to the ground state emitting a photon. _
2.1 Dynamics

* This work was supported in part by the "Agence Nationale dedaherche” . . .
(ANR), Projet Blanc CQUID number 06-3-13957. The Schrodinger equation for the system writes:



d A uu Y, 2 since the group only acts gnand not oM and . To find the
'aq’ = (502"‘ 7GX> ¥, W= (qu> €C® (1)  form of observers which preserve the symmetries (i.e, are in
where we let variant under the action GU(2), see section 7), we follow the
01 0 i 10 method of Mirrahimi and Rouchon [2007]. Even if the method

Oy = (1 0) , Oy= (i O) , Op= (O _1) does not fully apply to the two-state quantum system under

study (all the results are local and the dimension of thegrou
denote the Pauli matriced) is the difference between the must be strictly smaller than the dimension of the stateespac
atomic frequency transition (of ground state to excitedestait gives guidelines which help us build a symmetry-presegvi
W = Wae — Wap) and the laser frequenay, u is the atom- observer. We recall some basic definitions and results ef thi
laser coupling constant and(t) € R is the slowly varying |atter paper in the appendix (section 7). In particular, wed
amplitude of the laser. We have the useful foumigs= 1; to build an invariant output error, an invariant frame, acalar
0y0y = 107 (with circular permutation), the output is invariants of the group action (see eq (24) of section 7).

2 2 2
y=<o¥,¥ ~= |Pal" = W2l = 2|¥ "1 Invariant output error:  The outputy = Tr(0,p) is a scalar. It

as the measurement is the ground state populaiaff and s jnvariant under the group action since for diye SU(2) if

the conservation of probability implig&; |2 + |W,|?> = 1. FOr e letm — UpUt andZ, = UoUT we havey = Tr(Z,w) =

a justification (in the frame of singular perturbation thgauf Tr(Uo,pUT) = Tr(o,p). Thus an output error is (see the

tF?(i)sug;](c))cri]e[lzg%pGp])?ying weak measurement) see Mirrahimi angufinition 5 of section NYy2y=Tr(o(p—p)).

It is convenient to write the dynamics with the density matri Invariant vector fields: The system (2) is invariant thus the

let p = WW denote the complex matrix associated to th§econd member of (2) is made of invariant vector fields (in the

projector on the stat&’. Supposing that the system is pureS€nse of the definition 3 of section 7). Inspiring from thenfor

(meaning it is not eTntangIefl to its environment) implieshbot()flfge ?énn%m'fﬁ" Ie]t lfl'shtea;/k:r?)?/iggzngg[b\;elc;ggﬁftg?zg& on

.?Loupserrg@firtirr(]g)(f)ﬁ]lgp 31;;,:2 ?nwé;cl)gggp P=WWIwwT—p. of the tangent bg?ndle of the space ok 2 projector matrices
with trace 1. Notice that, they are functionally dependant.

. A up
p=- {Eaﬁ 70"")] @) Scalar invariants: A complete set of scalar invariants is a full
=0 3) _rar_1k fur_lction([), Oy, Oy, 0z) — I([),_ox, Oy, 0z) € mef_r Whiqh
- is invariant under the group action (whares the dimension
A=0 (4)  of the state spacen is the dimension on the inputs on which
y=Tr(ozp) (5)  (Wg)gec act, andr is the dimension of the group G). Here
where [,] is the commutator. We assume the laser amplitudie= 2, m= 3 andr = 3. Locally there ara+m—r =2+ 3 —
to be slowly varying compared to the Rabi frequengy| : 3 = 2 scalar invariants (see Olver [1995]). In fact we take the

|0} << |uu||u| (the Rabi frequency is a characteristic of the3 invariantsTr(oxp), Tr(oyp), Tr(ozp). They are functionally
absorption-emission cycle of photons for an illuminateshdt  dependent sinc@r?(oxp) + Tré(oyp) + Tr3(o,p) = 1. (see
We assume, moreover, that that the frequencies of the lager aection 3.2).

the frequencies of the atomic transition are close (i.e llsma

than the atomic width)A| << |u|pu. 3. ASYMMETRY-PRESERVING OBSERVER

2.2 Invariances (symmetries) 3.1 The observer

The system is invariant under a change of basis for the waye, \«iqer the observer
function W — UW whereU is any unit matrix of the Lie

groupSU(2). Indeed consider the transformatian= U pUT, Ef) —— [é o, + %Umﬁ] (6)
and & = UoUT, §, =UqUT, Z; = UoUT. With the new Ot 2 2 o .
variables, the dynamics (2)-(5) writes —Ko(Tr(ozp) —y) (020 + po;—2Tr(0zp)p) (7)
d A u d. R A
Gi?= 54t 5 ol gl = ~uKuTr(oyp) (Tr(0zp) ) 8)
=T d. R R
v e S A= —uKsTr(0f) (Tr (o) ~y) ©)

A andu are unchanged by the transformation and we still have dt

A= [1=0., {y, {; respect the commutation relations of thewhere Ky, K, and Ka are positive scalars. It preserves the
Pauli matrices. Thus the system is invariant under the mctio symmetries (see eq (24) of section 7) since (7) can be written
the transformation groupU(2) (see definition 2 of section 7). (see section 3.2 for the proof)

2.3 Invariants, Invariant output, invariant vector fields %ﬁ =1 {%0‘24— %ax,ﬁ}
We are going to explain the form of the (symmetry-preserying +1Ko (Tr(0z0) —y) (Tr(oyp) [ox, p] — Tr(oxp) [0y, P])
observer (6)-(7)-(8)-(9). For simplicity’s sake in thistenwe  As we did for the true system, let us suppose thistconstant,
consider the reduced system (2)-(5) and|A| ~ |uu|. To be able to apply the standard perturbation
s A ug techniques for this type of physical system we choose thesgai
p=-I EO-Z‘F?O-va 2 2 2 2
Ko = 4koeluju, Ky =2kueu®, Ka=2kae“|ulu

y=Tr(ozp) with £ > 0 small € < 1), andkp, ky, ka ~ 1.



3.2 Geometrical interpretation with the Bloch sphere We have thus

Ul Oy | utox d - utox
The Bloch sphere is a geometrical representation of the pure _E [ 2 £lte (ap)e
state space of a two-level quantum mechanical system.

important property is that any density matgxcan be written Aérﬁd one can derive a similar formula férf. Thus

d A
X —& = |z, 10
_ 1+x0-x+2YO—y+20—27 with ¢ — <Y> cs? th [2 2, & (10)
z which shows the interest of the interaction frame. Note that
where 1 denotes the identityx22 matrix. We have Tfoyp) = ©: ,02¢ = 020, and 0,02 = —a7 g, for anyk, and these
X, Tr(g,p) =Y and Tr(o,p) = Z. Note that, the coordinate relations are also true Wh&]} is replaced byoy thus
Z in this section is the outpuy. The commutation opera- Uze%;ﬂ e '%EQGZ, Uye%;ﬂ pe M;ﬂay

tion —|[0X,p] corresponds to the wedge prod(zt0,0)" with
(X,Y,2)" (circular permutations allow to complete the corre50 the observer, in the interaction frame, reads:

spondences). The dynamics ofs A A

P )- y Z dg_ | [Baumog,  UB—1) ¢

2 2
_Z ( ) 7 ) /\Z ~
2 2 KTr(IU[JtGXO.(E_E))X

The dynamics does not depend on the choice of the orthonormal ' * z
frame (invariance under the action®€(3)). (eluutaxazg 4 Egumtoxg, _ 2Tr( UKty 5) ) (11)
The correction term in (7) writes-K,(Z — Z)[-XZox — d.

tox 4 2 tOx v (£
YZoy+ (1- Zz)oz] and corresponds on the Bloch sphere to dtu = —uKyTr (eluu 7 ny) Tr (eluu G _5))
—Ko(2—2)(¥,—X,0T A, wherel = (X,Y,2)T. Itrespects  d A : oy~ (5
the symmetries (mvanance by change of orthonormal frame) dt uKaTr (UXE) T (e (& E)) '

since it boundg to remain orS? (meaning physically that the ] o )
system is pure). Secular first-order approximation Also calledquasi-resonant

it consists in neglecting the terms rotating with high freqaies
Choice of the invariant correction termsThis paragraph ex- up and iy, by averaging their influence on the evolution
plains the geometrical motivations of the choice of the gainof p. The true dynamics consists of small oscillations around
More rigorous proofs are given in the next section. The aerrethe solution of the averaged system. In order to compute the
tion term of (7) is such that it is a tangent vector to the sphe@veraged system we use #or- 0

(so ¢ remains inS?) and its direction is such that it tends to a2
make output erro — Z decrease. Indeed the dynamics/ds: %% 0, = 0+ a0y — 5027 = coga)oz+sin(a)oy (12)
d- 1 uu 0 R and similarly
7°=3 A x{ —Kp(2-2)({ % <1>) X4 €3%gy, = coga) oy — sin(a) ;. (13)
We write the cosine and sine as linear combinations of expo-
But nentials and we use interference formulas of the type:

0 0 0 0 ) -
<({x <O>) x{, <0> >=<{ x <O> % (O) > >0 Ir (e'““wxaz(f —E)) UM% g, &

1 1 1 1 1 ) 3 3 )
is always positive (where:, > denotes the usual scalar prod- — Z(ZTr(GZ(E - E)) 02§ +0+2Tr(0y(f - f)) 0y +0)

uct). The correction term is a vector which is in fact always + oscillating terms with mean 0.

EJointin”g _towards “n(_)rth” (leZ=1)if Z <Z and towards We therefore get the following autonomous system for the
south” (i.e,Z = —1) if not.

averaged system/observer:

Ko is much bigger tharKu and K, meaning that the time d d d

scale of the convergence @ftowardsZ is faster. Let us thus tE =0, a“ =0, th 0

suppos€ — Z is close to 0. fuft > up, thenZ tends to rotate d 3 B (u u) 5

faster around théX-axis than, and since$Z = upY, the dt° - — 32 %

differenceZ — Z tends to increase ¥ > 0 and decrease if not. _Kp A\ 2

That explains (8) which also writes 1 = —uK,¥(Z — Z). The > Tr (Uy (&-4) ) (ny +&0y— 2Tf(0y5 ) 3 )

design (9) can be explained in the same way. K A\ A
~ 2106 - 6)) (0 +E0r—2Tr (02 ) §)

4. CONVERGENCE ISSUE d. uky 2
qi == (o) Tr (0 - )
In this section we prove the existence of a Lyapunov function : z
for the reduced system (after having performed an averagfing - (UZE) T (GV(E n E))]
the periodic perturbations). To apply the rotating waverapp d -
imation one writes the system in the interaction frame are aA =0

makes the time dependant change of variables: : N
Mxp o 9 Utox & uiitox Lemma 1.ForallK,,K, > 0, & andp converge locally towards

p=e'"Tr g™, p=e'"z iz . & andy (c.f. Mirrahimi and Rouchon [2007]).



Proof. We consider the Lyapunov function Now let us compute the temporal mean (over a period) and only
1 - 1 N 1 . keep the secular terms. We apply (12) and (13). Applying the
V= 3Tr(0y(& - &)+ 5Tr(0(¢ - ) + K, (A H)?  Jacobiidentity
4o (F_g)) = _ui-n AP de_ A%
Note that T $ay(§ —&)) = —B2Tr(20,¢ ) + - and i€ = 1o €l

Tr (%@(f - 5)) = YT (Zny) +---. When developing where we have not written the oscillating terms of 0 mean nor

%V the terms havingl as a factor compensate each other anthe terms of orde@(v—lz). Note that, here, we find the terﬁzﬁ
there only remain the terms witky, as a factor. Led& denote corresponding to the standard Bloch-Siegert shift.

§—¢&. We have We also need to develop up to second order terms (coef-

av = — K, Tr?(0,0& ) (1— Tr?(o; 3)) ficients of%) since it has constant mean. Its time derivative
dt P , Y , " verifies
KpTr (0-265)(1 Tr (O-ZE)) A . EA: —UKATr (O-XE) Tr (eluutdxo.z(f _ E)) (15)
+ 2K, Tr (0y0é&) Tr (0,08) Tr UyE)Tr(ozE) dt R
R 2 Note that,é and ¢ are themselves solutions of differential
<—Kp (Tr(ayéf)Tr(azf) _Tr(azéf)Tr(ayf)) equations depending anvia oscillating terms of frequency
<0 v. they have an oscillating part of frequeneyand another

. A one of frequency 2, since their time derivatives are sum and
Here we have used the fact that?{@,é) + Trz(ayf) + prodl_Jcts_of at most two oscillating terms of frequemcyVhen
Trz(azf) — 1. See Mirrahimi and Rouchon [2007] for theconS|der|ngAupto the second order, only the terms of frequen

end of the proof which is a standard application of the LasallV in & and¢ can have a secular effect, as they multiply the
principle. v-frequency terme"'%g,. Thus in this second order secular

approximation the oscillating terms of frequency 2an be
Second order secular approximatiorSince the secular (non- neglected.

%SPI”B.'[II’]Q) first-order terms vanish when computlﬁg and But, the v-frequency part off is due to the integration of
giA, one can not prove the convergence of the observer. One

=1 [3euto0,, ¢ | and so s fok. Th
N 1 |5¢€ o, and sois fo. Thus
needs to compute the second-order approximation onlgtﬁ)r [2 28 4

and $A. We apply the Kapitsa method described in e.g, Lan- : s, B [ e :

dau and Lifshitz [1982]. Supposg: = Vv is large.£ obeys a =0+ 2uu [e GV’E} T
differential equation with a high frequency source teé’{ﬁ = A o

f(&,vt). We proved that the mean ¢f over a period is con- =0+ 2uu [ %0y, &)+
stant. Integrating high frequency terms yields high freye A

terms with same frequency and smaller amplitude: we seek\ere{ (resp{) is a solution of the averaged equation for

(16)

solution of the type ¢ (respé) and the non-written terms are eithev-Bequency
01(¢,t)  g2(¢,1) terms or are of orddb(vlz). Up to the second order, the secular
=0+ v + V2 T terms of (15) can be calculated as the sum of two parts: 1.

where is the mean of over a period (recalf = 0+0(1/v)). replacing — & by its v-frequency part in order to compute

Let us compute the first-order termx(,t), and neglect the the secular terms of (@uwffxaz(é - 5)); this will be then
second-order terms. On one hand, we have:

d 0 g,(Z,1) multiplied by—uKATr(axf); 2. replacing.,f in Tr(axf) by
&E =0 1% its v-frequency terms, Ieaviné— ¢ as itis and calculating the
whereg) = d»0 is the partial derivative ofj; with respect to lar t f £\ Tr(eumtoxg, (& —
its second variable. But using (10) and neglecting thirdeord secularterms o T(GXE) r( o E))'
terms: q A G(Z.0 On one hand, we have
x| 2dvtox AR ~ 1 .- "
th I 2eI 0z7,{ + ” . (14) Tr (e'vmxdz(f _ E)) = (ATr (Uxf) —ATr(0x&)) + -+

Gathering the two latter equations where we have not written the oscillating terms of 0 mean.

g1 ({,t)=-v l[%eivwx 07,0+ Here, we have applied (16) and the following relation:

where we have not written the small terms compared to IAewwxG eV E1— IA olov. 1 —10ulc.. £
Integrating with respect to timethe last equation yields: 2v d v <] (020, £] ~ 1030y, &]) -
qu(Z.t) = I[%eivtaxo-y’f] + 1. _ On the other hand, for the-frequency part of T(oxé), using
v (16), we have:

Thus (14) can be re-written as R R R
Tr (ox[e"’t“xgy,é]) =Tr (cosvt ox[ay, &] — sinvt UX[UZ,E])

d A
aE:_I[EeIVtO'xO-Z’Z_’_gl(z’t)/v]_i_... A A
=2ITr (cosvt 07¢ + sinvt ayE) .

A 1Vt o, AZ 1Vt o, jvto,
= —I[=€eV'%g; — [eV1%g,, [éV1%g,
[2 2 ¢+ 4y [ el v &ll+ Therefore, up to the second order, we have



d - ~ Ka A\ 2~ 2 ' ! —
aA = —7A<Tr (GXE) A-Tr (JXE) Tr(GXE)A> g 05 ”””” u:
Kol : - HE
—i—ﬁ[Tr(ayE)Tr(ay(E—E)) |
- Tr (O-Zé) Tr (O—Z(é - E))] ‘o 10 »  w 4 50 %o 10 N 4 50
We have obtained the following, locally convergent, trialag
system: h o
d order 2 AZ ‘
aié " gplon] an .
dgowers  [U—p) & . =
as a _I [ 2 O—X7E 0 10 20 30 40 50
Kp A~ N A~ A A time
——=Tr(oy(&—¢&)) (oyé+Eoy—2Tr(oyé ) &
K2 ( o )) ( Y Y ( Y ) ) Fig. 1. Measured output, output error, estimations of thrama
_ 710-” (Oz(f _5)) (sz +50z—2Tr(0z5) 5) etersu andA without noise.
d . ogers UK R - Let us now write the linearized system around the other equi-
P —TH[TV (ny) Tr (Uz(f - 5)) librium pointp = 1% (i.e,X = —1)
— z A_ d oy Kp ~ ~ d ~
Tr(GZE)Tr(ay(E f))] a(5_5):_7(Ycry—i-202), a;1:0
and
d"or@rz Ka £\2 A z d -~ Ka ~
Gl = —7<Tr(axf) A—Tr(GXE)Tr(axE)A) EA:_IAA (20)
Kad z 3 The interesting equati for the tuni 18), (19
Pa2 T _ g equations for the tuning are (18), (19) &, (
+ 2u [ r(UyE) r(ay(E 5)) To respect the time scales, setE < 1 and choose the gain

_Tr (023) Tr (oz(f _ 5))]_ Kp ~ €|up|. Inthis case the observer filters the high frequencies
and the average 9f¢ — || tends to decrease. Choose a slower

Tuning the gains for the linearized systerfihe lemma 1 characteristic time of convergence for the paramefieesd A
proves (after using averaging arguments) v‘hat“ andf — f with respect to the characteristic time of Convergené of
converge (locally) to O for ani{,, K, > 0. The last equation of Kp = 2koelulu, Ky= 2621%,  Kp = kp2|u|u?
(17) shows that oncg — ¢ has converged to @ — A converges wherek,,ky > 0 are any scalar of order 1. The tuning of the
to0 for-KA > 0. NeV.ertheleSS in order to get a robust Observgains is 0n|y made for the linearized System around partic-
the tuning of the gains must respect the time scales. To €0Q§ar equilibrium points. Nevertheless we think the nordine
appropriate gains, we consider the first order approximaifo structure of the observer, based on the symmetries (and thus

(17) around particular equilibrium points which are suchtth very close to the structure of the system), allows a goodaglob
the linearized system writes simply around these points. behavior, as the simulations show.

Consider the IiNneariz~ed error variables
1+Xox+Yoy+Z20, . . 5. SIMULATIONS

E-&= 5 , B=f-up, B=A-n
- - o We take for the initial conditions:
where we have 'I}roﬁ) =X, Tr(axé) = X and the similar - 1+ cos(Z) g+ sin(Z) cos() g, + sin(Z) sin (&) o
formulas forY,Z,Y,Z. Consider the linearized system around® = 2
1-0; ¢
= =% (i.e,Z = —1). Up to second order terms, we have 1
E 2 ( ) p u:]-vA:_va:aXpoo-X
d : - ~ 5
a(é = &) = (~ull = KoY)ay. We choose for the controland the gainsu = 1, K, = 2¢|u|p,
This can be written as Ky = 2622 etKp = 262|u|u? with € = 1. The results are given
E)N( —0 by fig 1. In fig 2, The measured signals were added a white
dat’ gaussian noise of amplitude 20% .
d -~ . ~
gt~ UKoY (18) 6. CONCLUSION
d -
az =0 One could have written directly the system on the Bloch spher
We also have with the variablegX,Y,Z). But the averaging computations in
d. ~ ~ the interaction frame are easier to write with Pauli matrice
at = —UKyu(0-Y)/2=uK,Y/2 (19)  Moreover, as it is proved in Mirrahimi and Rouchon [2007]
and when A = 0, our method can be extended to more general
d~ Kazrs systems for which the interpretation on the Bloch spher@is n

dt 2u possible anymore.



The definition does not deal with convergence; if moreover
X(t) — X(t) ast — 4o for every (close) initial conditions, the
pre-observer is an (asymptotimhserver

Definition 7. The pre—observe%f( =F (X uy) is G-invariant

if for all g,X,u,y,

F (6g(%), Wg(u),h(dg(x), Yg(u))) = Deg(X) - F (X, u,y).

i = The property also read§X = F(X,U.h(X,U)), with X =
‘ - Pg(x), U = (g(u). Assume that the output mapGEequivariant
(see?]), which is the case for the quantum mechanical system

fo —F i — considered in this paper since the outpig a scalar invariant.
—_—F 005 — 2 . . oy ~ ~
o : , Then a sufficient condition for the systeﬁbx =FXuy) to
S R w——w = s & = beaG-invariant pre-observer for tleinvariant systen’gtx =
f(x,u) is:

Fig. 2. Measured output, output error, estimations of thama . . n . . .
etersu andA with noisy measurement. Fxuy) = f(Xu)+ Zlfi(l (X u),ERuy)wi(®)  (24)
i=
7. APPENDIX : SYMMETRY-PRESERVING OBSERVERS \yhereE is an invariant output errofg, u) — (%, u) € RMm-r

_ _ . o is a full-rank invariant function, the#;'s are smooth functions
In this section we recall the basic definitions and results &fuch that for allx] % (I(%,u),0) = 0, and (wy,...,wy) is an

Bonnabel et al. [2006]. Consider the smooth system invariant frame. This result is a consequence of the theorem
d 2 of Bonnabel et al. [2006].is called a complete set of scalar
at = fou) (21)  invariants and verifiek(@q(R), Y (u)) = | (%, u) for anyg € G.
=h(x,u 22
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Definition 3. A vector fieldw on 2" is said to be G-invariant
if the system%x = W(X) is invariant. This meana/(¢y(x)) =
Dggy(x) - w(x) for all g, x.

Definition 4. An invariant frame(ws, ...,wn) on 2" is a set of
n linearly point-wise independent G-invariant vector feiglde
(Wi (X),...,Wn(X)) is a basis of the tangent spaceZ06 at x.
Definition 5. The smooth mayg, u,y) — E(X,u,y) € RP is an
invariant output errorif

e the mapy — E(X,u,y) is invertible for allxX(u

e E(X,u,h(%,u)) =0forallX,u

o E(@g(R), Yg(u),h(dg(X), Yg(u))) = E( u,y) forall R u,y
Definition 6.(pre-observer). The systelﬁf( =F(Xuy) is a
pre-observeof (21)-(22) if for allx,u F(x,u,h(x,u)) = f(x,u).



