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Abstract: We consider a pure two-state quantum system illuminated by two lasers. A photo-detector
captures the fluorescence of the system. We build an invariant observer which yields a (local) estimation
of the wave function (or density matrix) and the two key parameters (laser de-tuning and the atom-laser
coupling strength), parameters of the hamiltonian. The design exploits the symmetries of the system and
can be interpreted geometrically. The convergence proof isbased on averaging arguments. Simulation
with noise illustrates the robustness of the obtained estimation algorithm.
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1. INTRODUCTION

In this paper, we consider a quantum system for which we
would like to identify some parameters. This estimation prob-
lem has already been addressed with interesting theoretical con-
tributions concerning well-posedness and identifiability(see,
e.g., Claude Le Bris et al. [2007] and the reference herein) and
the development of estimation algorithms robust with respect
to the noises and the modeling errors. Here, we consider as
a simple quantum system, a two level system described by a
Schrödinger dynamics and a time-continuous population mea-
surement. We propose an algorithm based on nonlinear asymp-
totic observer techniques preserving the symmetries (Bonnabel
et al. [2006]) to estimate the system parameters. As far as we
know, such recent techniques have not been applied to tackle
this problem and this paper illustrates their potential interest.
Since the observer design exploits the physical symmetries(in-
variance with respect to the frame-change), the filter equation
admits a natural physical and geometrical interpretation that can
be extended to higher dimensions.

The physical setup consists of an ensemble of identically pre-
pared systems undergoing the same dynamics: for instance,
dilute mono-atomic gases. They are very simple systems, in
the sense their constituents (atoms), are perfectly identical and
interact very weakly with each other. Atoms in such gases can
be considered as perfect quantum systems, with a sequence of
discrete energy states labeled|i〉, for i ∈ N, with increasing
energiesEi = h̄ωa,i depending only on the atomic species con-
sidered. In order to measure the population of the ground state
(i.e, the state of the lower energy), the system is illuminated
with coherent light (a first laser) whose frequency is close
to the transition frequency corresponding to the energy gap
E j −E0 = h̄(ωa, j −ωa,0) of a very unstable excited state (i.e,
having a very short lifetime) to the ground state transition. It
generates a transition|0〉 → | j〉 for a part of the population
illuminated from the ground state to the excited state, which
spontaneously decays to the ground state emitting a photon.
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The measurement of the number of photons emitted is then
directly proportional to the population of the ground state|0〉.
Suppose there is also another laser whose frequency is close
to the transition frequency of another excited state|e〉 to the
ground state|0〉. The lifetime of the transition between the
two latter states is supposed to be much longer than the pre-
vious one. To a first approximation the dynamics of the two-
state system (ground state|0〉 and excited state|e〉 having the
longest lifetime) is described by a Schrödinger equation.We
assume that some parameters are not well known:∆ which
is the difference between the second laser frequency and the
atomic transition frequency,µ which is the atom-laser coupling
strength and characterizes the Rabi frequency. The goal is to
identify in real time∆ andµ , measuring the ground state pop-
ulation thanks to the first laser (which generates a transition
only for ground state population) and the photo-detector. The
usual modeling of these open-quantum systems via Lindbald
type terms in the density matrix dynamics (see, e.g., Haroche
and Raimond [2006]) is analyzed in Mirrahimi and Rouchon
[2006], where singular perturbation techniques are applied to
justify the adiabatic (quasi-static) approximations usually made
by physicists and leading to a dynamical model described (up
to higher order terms) by a Schrödinger equation despite a
continuous population measurement.

In this paper we build an observer which estimates the wave
function (in fact we rather use the density matrix language)and
the two parameters∆ andµ at the same time. We propose an
extension of the observer described in Mirrahimi and Rouchon
[2007], where onlyµ was estimated, and we show that symme-
tries (invariance by change of frame described by an elementof
SU(2)) play an important role. We use the standard notations
in quantum physics literature (see e.g. Cohen-Tannoudji etal.
[1977], and Haroche and Raimond [2006] for a more advanced
lesson).

2. DYNAMICS AND INVARIANCES

2.1 Dynamics

The Schrödinger equation for the system writes:



ı
d
dt

Ψ =

(

∆
2

σz+
uµ
2

σx

)

Ψ, Ψ =

(

Ψ1
Ψ2

)

∈ C
2 (1)

where we let

σx =

(

0 1
1 0

)

, σy =

(

0 −i
i 0

)

, σz =

(

1 0
0 −1

)

denote the Pauli matrices,∆ is the difference between the
atomic frequency transition (of ground state to excited state
ωe0 = ωa,e−ωa,0) and the laser frequencyω , µ is the atom-
laser coupling constant andu(t) ∈ R is the slowly varying
amplitude of the laser. We have the useful foumlasσ2

x = 1;
σxσy = ıσz (with circular permutation), the output is

y =< σzΨ,Ψ >= |Ψ1|
2−|Ψ2|

2 = 2|Ψ1|
2−1

as the measurement is the ground state population|Ψ1|
2 and

the conservation of probability implies|Ψ1|
2 + |Ψ2|

2 = 1. For
a justification (in the frame of singular perturbation theory) of
this model (applying weak measurement) see Mirrahimi and
Rouchon [2006].

It is convenient to write the dynamics with the density matrix:
let ρ = ΨΨ† denote the complex matrix associated to the
projector on the stateΨ. Supposing that the system is pure
(meaning it is not entangled to its environment) implies both
propertiesTr(ρ)= Ψ†

1Ψ1+Ψ†
2Ψ2 = 1 andρ2 = ΨΨ†ΨΨ† = ρ .

Thus rewriting (1) the system becomes

ρ̇ = −ı

[

∆
2

σz+
uµ
2

σx,ρ
]

(2)

µ̇ = 0 (3)

∆̇ = 0 (4)
y = Tr(σzρ) (5)

where [,] is the commutator. We assume the laser amplitude
to be slowly varying compared to the Rabi frequency|uµ | :
|u̇| << |uµ ||u| (the Rabi frequency is a characteristic of the
absorption-emission cycle of photons for an illuminated atom).
We assume, moreover, that that the frequencies of the laser and
the frequencies of the atomic transition are close (i.e, smaller
than the atomic width):|∆| << |u|µ .

2.2 Invariances (symmetries)

The system is invariant under a change of basis for the wave
function Ψ 7→ UΨ where U is any unit matrix of the Lie
groupSU(2). Indeed consider the transformationϖ = UρU†,
and ζx = UσxU†, ζy = UσyU†, ζz = UσzU†. With the new
variables, the dynamics (2)-(5) writes

d
dt

ϖ = −ı[
∆
2

ζz+
uµ
2

ζx,ϖ ]

y = Tr(ζzϖ)

∆ andµ are unchanged by the transformation and we still have
∆̇ = µ̇ = 0. ζx, ζy, ζz respect the commutation relations of the
Pauli matrices. Thus the system is invariant under the action of
the transformation groupSU(2) (see definition 2 of section 7).

2.3 Invariants, Invariant output, invariant vector fields

We are going to explain the form of the (symmetry-preserving)
observer (6)-(7)-(8)-(9). For simplicity’s sake in this section we
consider the reduced system (2)-(5)

ρ̇ = −ı

[

∆
2

σz+
uµ
2

σx,ρ
]

y = Tr(σzρ)

since the group only acts onρ and not on∆ andµ . To find the
form of observers which preserve the symmetries (i.e, are in-
variant under the action ofSU(2), see section 7), we follow the
method of Mirrahimi and Rouchon [2007]. Even if the method
does not fully apply to the two-state quantum system under
study (all the results are local and the dimension of the group r
must be strictly smaller than the dimension of the state spacen),
it gives guidelines which help us build a symmetry-preserving
observer. We recall some basic definitions and results of this
latter paper in the appendix (section 7). In particular, we need
to build an invariant output error, an invariant frame, and scalar
invariants of the group action (see eq (24) of section 7).

Invariant output error: The outputy = Tr(σzρ) is a scalar. It
is invariant under the group action since for anyU ∈ SU(2) if
we let ϖ = UρU† andζz = UσzU† we havey = Tr(ζzϖ) =
Tr(UσzρU†) = Tr(σzρ). Thus an output error is (see the
definition 5 of section 7) : ˆy−y= Tr(σz(ρ̂ −ρ)).

Invariant vector fields: The system (2) is invariant thus the
second member of (2) is made of invariant vector fields (in the
sense of the definition 3 of section 7). Inspiring from the form
of the dynamics, let us take as invariant vector fields−ı[σx, ·],
−ı[σy, ·] and−ı[σz, ·]. They provide a global parameterization
of the tangent bundle of the space of 2× 2 projector matrices
with trace 1. Notice that, they are functionally dependant.

Scalar invariants: A complete set of scalar invariants is a full
rank function(ρ̂ ,σx,σy,σz) 7→ I(ρ̂ ,σx,σy,σz) ∈ Rn+m−r which
is invariant under the group action (wheren is the dimension
of the state space,m is the dimension on the inputs on which
(ψg)g∈G act, andr is the dimension of the group G). Here
n = 2,m= 3 andr = 3. Locally there aren+ m− r = 2+ 3−
3 = 2 scalar invariants (see Olver [1995]). In fact we take the
3 invariants:Tr(σxρ̂),Tr(σyρ̂),Tr(σzρ̂). They are functionally
dependent sinceTr2(σxρ̂) + Tr2(σyρ̂) + Tr2(σzρ̂) = 1. (see
section 3.2).

3. A SYMMETRY-PRESERVING OBSERVER

3.1 The observer

Consider the observer
d
dt

ρ̂ = −ı

[

∆̂
2

σz+
uµ̂
2

σx, ρ̂
]

(6)

−Kρ(Tr(σzρ̂)−y) (σzρ̂ + ρ̂σz−2Tr(σzρ̂) ρ̂) (7)
d
dt

µ̂ = −uKµTr(σyρ̂) (Tr(σzρ̂)−y) (8)

d
dt

∆̂ = −uK∆Tr(σxρ̂) (Tr(σzρ̂)−y) (9)

where Kρ , Kµ and K∆ are positive scalars. It preserves the
symmetries (see eq (24) of section 7) since (7) can be written
(see section 3.2 for the proof)

d
dt

ρ̂ = −ı

[

∆̂
2

σz+
uµ̂
2

σx, ρ̂
]

+ ıKρ(Tr(σzρ̂)−y) (Tr(σyρ̂) [σx, ρ̂ ]−Tr(σxρ̂) [σy, ρ̂])

As we did for the true system, let us suppose thatu is constant,
and|∆̂| ≈ ε|uµ |. To be able to apply the standard perturbation
techniques for this type of physical system we choose the gains

Kρ = 4kρε|u|µ , Kµ = 2kµε2µ2, K∆ = 2k∆ε2|u|µ2

with ε > 0 small (ε ≪ 1), andkρ ,kµ ,k∆ ∼ 1.



3.2 Geometrical interpretation with the Bloch sphere

The Bloch sphere is a geometrical representation of the pure
state space of a two-level quantum mechanical system. An
important property is that any density matrixρ can be written

ρ =
1+Xσx+Yσy +Zσz

2
, with ζ =

(

X
Y
Z

)

∈ S
2

where 1 denotes the identity 2×2 matrix. We have Tr(σxρ) =
X,Tr(σyρ) = Y and Tr(σzρ) = Z. Note that, the coordinate
Z in this section is the outputy. The commutation opera-
tion −ı[σx,ρ ] corresponds to the wedge product(1,0,0)T with
(X,Y,Z)T (circular permutations allow to complete the corre-
spondences). The dynamics ofζ is

d
dt

ζ = (
uµ
2

,0,
∆
2

)T ∧ζ

The dynamics does not depend on the choice of the orthonormal
frame (invariance under the action ofSO(3)).

The correction term in (7) writes−Kρ(Ẑ − Z)[−X̂Ẑσx −

ŶẐσy + (1− Ẑ2)σz] and corresponds on the Bloch sphere to
−Kρ(Ẑ−Z)(Ŷ,−X̂,0)T ∧ ζ̂ , whereζ̂ = (X̂,Ŷ, Ẑ)T . It respects
the symmetries (invariance by change of orthonormal frame)
since it boundsζ to remain onS2 (meaning physically that the
system is pure).

Choice of the invariant correction termsThis paragraph ex-
plains the geometrical motivations of the choice of the gains.
More rigorous proofs are given in the next section. The correc-
tion term of (7) is such that it is a tangent vector to the sphere
(so ζ remains inS2) and its direction is such that it tends to
make output error̂Z−Z decrease. Indeed the dynamics ofζ̂ is:

d
dt

ζ̂ =
1
2





uµ̂
0
∆̂



× ζ̂ −Kρ(Ẑ−Z)
(

ζ̂ ×

(

0
0
1

)

)

× ζ̂

But

<
(

ζ̂ ×

(

0
0
1

)

)

× ζ̂ ,

(

0
0
1

)

>=< ζ̂ ×

(

0
0
1

)

, ζ̂ ×

(

0
0
1

)

> ≥ 0

is always positive (where<,> denotes the usual scalar prod-
uct). The correction term is a vector which is in fact always
pointing towards “north” (i.e,Z = 1) if Ẑ < Z and towards
“south” (i.e,Z = −1) if not.

Kρ is much bigger thanKµ and K∆, meaning that the time
scale of the convergence ofẐ towardsZ is faster. Let us thus
supposêZ−Z is close to 0. Ifuµ̂ > uµ , thenζ̂ tends to rotate
faster around theX-axis thanζ , and since d

dt Z = uµY, the
differenceẐ−Z tends to increase ifY > 0 and decrease if not.
That explains (8) which also writesddt µ̂ = −uKµŶ(Ẑ−Z). The
design (9) can be explained in the same way.

4. CONVERGENCE ISSUE

In this section we prove the existence of a Lyapunov function
for the reduced system (after having performed an averagingof
the periodic perturbations). To apply the rotating wave approx-
imation one writes the system in the interaction frame, i.e,one
makes the time dependant change of variables:

ρ = e−ı uµtσx
2 ξ eı uµtσx

2 , ρ̂ = e−ı uµtσx
2 ξ̂ eı uµtσx

2 .

We have thus
d
dt

ξ = [ı
uµσx

2
,ξ ]+eı uµtσx

2 (
d
dt

ρ)e−ı uµtσx
2

and one can derive a similar formula ford
dt ξ̂ . Thus

d
dt

ξ = −ı

[

∆
2

eıuµtσxσz,ξ
]

(10)

which shows the interest of the interaction frame. Note that
σzσ2k

x = σ2k
x σz andσzσ2k+1

x = −σ2k+1
x σz for anyk, and these

relations are also true whenσz is replaced byσy thus

σze
ı uµtσx

2 = e−ı uµtσx
2 σz , σye

ı uµtσx
2 = e−ı uµtσx

2 σy.

So the observer, in the interaction frame, reads:

d
dt

ξ̂ = −ı

[

∆̂
2

eıuµtσxσz+
u(µ̂ − µ)

2
σx, ξ̂

]

−KρTr
(

eıuµtσxσz(ξ̂ − ξ )
)

×
(

eıuµtσxσzξ̂ + ξ̂eıuµtσxσz−2Tr
(

eıuµtσxσzξ̂
)

ξ̂
)

d
dt

µ̂ = −uKµTr
(

eıuµtσxσyξ̂
)

Tr
(

eıuµtσxσz(ξ̂ − ξ )
)

d
dt

∆̂ = −uK∆Tr
(

σxξ̂
)

Tr
(

eıuµtσxσz(ξ̂ − ξ )
)

.

(11)

Secular first-order approximationAlso calledquasi-resonant,
it consists in neglecting the terms rotating with high frequencies
uµ and 2uµ , by averaging their influence on the evolution
of ρ . The true dynamics consists of small oscillations around
the solution of the averaged system. In order to compute the
averaged system we use fora > 0

eıaσxσz = σz+aσy−
a2

2
σz−·· · = cos(a)σz+sin(a)σy (12)

and similarly

eıaσxσy = cos(a)σy−sin(a)σz. (13)

We write the cosine and sine as linear combinations of expo-
nentials and we use interference formulas of the type:

Tr
(

eıuµtσxσz(ξ̂ − ξ )
)

eıuµtσxσzξ̂

=
1
4

(

2Tr
(

σz(ξ̂ − ξ )
)

σzξ̂ +0+2Tr
(

σy(ξ̂ − ξ )
)

σyξ̂ +0
)

+ oscillating terms with mean 0.

We therefore get the following autonomous system for the
averaged system/observer:
d
dt

ξ = 0 ,
d
dt

µ = 0 ,
d
dt

∆ = 0

d
dt

ξ̂ = −ı

[

u(µ̂ − µ)

2
σx, ξ̂

]

−
Kρ

2
Tr
(

σy(ξ̂ − ξ )
)(

σyξ̂ + ξ̂σy−2Tr
(

σyξ̂
)

ξ̂
)

−
Kρ

2
Tr
(

σz(ξ̂ − ξ )
)(

σzξ̂ + ξ̂σz−2Tr
(

σzξ̂
)

ξ̂
)

d
dt

µ̂ = −
uKµ

2
[Tr
(

σyξ̂
)

Tr
(

σz(ξ̂ − ξ )
)

−Tr
(

σzξ̂
)

Tr
(

σy(ξ̂ − ξ )
)

]

d
dt

∆̂ = 0

Lemma 1.For allKρ ,Kµ > 0, ξ̂ andµ̂ converge locally towards
ξ andµ (c.f. Mirrahimi and Rouchon [2007]).



Proof. We consider the Lyapunov function

V =
1
2

Tr2(σy(ξ̂ − ξ ))+
1
2

Tr2(σz(ξ̂ − ξ ))+
1

Kµ
(µ̂ − µ)2

Note that Tr
(

d
dt σy(ξ̂ − ξ )

)

= −
u(µ̂−µ)

2 Tr
(

2σzξ̂
)

+ · · · and

Tr
(

d
dt σz(ξ̂ − ξ )

)

= u(µ̂−µ)
2 Tr

(

2σyξ̂
)

+ · · · . When developing
d
dtV the terms havingu as a factor compensate each other and
there only remain the terms withKρ as a factor. Letδξ denote

ξ̂ − ξ . We have
dV
dt

=−KρTr2(σyδξ )(1−Tr2(σyξ̂ ))

−KρTr2(σzδξ )(1−Tr2(σzξ̂ ))

+2KρTr(σyδξ )Tr(σzδξ )Tr
(

σyξ̂
)

Tr
(

σzξ̂
)

≤−Kρ

(

Tr(σyδξ )Tr(σzξ̂ )−Tr(σzδξ )Tr(σyξ̂ )
)2

≤0.

Here we have used the fact that Tr2(σxξ̂ ) + Tr2(σyξ̂ ) +

Tr2(σzξ̂ ) = 1. See Mirrahimi and Rouchon [2007] for the
end of the proof which is a standard application of the Lasalle
principle.

Second order secular approximationSince the secular (non-
oscillating) first-order terms vanish when computingd

dt ξ and
d
dt ∆̂, one can not prove the convergence of the observer. One
needs to compute the second-order approximation only ford

dt ξ
and d

dt ∆̂. We apply the Kapitsa method described in e.g, Lan-
dau and Lifshitz [1982]. Supposeuµ = ν is large.ξ obeys a
differential equation with a high frequency source termd

dt ξ =
f (ξ ,νt). We proved that the mean ofξ over a period is con-
stant. Integrating high frequency terms yields high frequency
terms with same frequency and smaller amplitude: we seek a
solution of the type

ξ = ζ +
g1(ζ , t)

ν
+

g2(ζ ,t)
ν2 + · · ·

whereζ is the mean ofξ over a period (recall̇ζ = 0+O(1/ν)).
Let us compute the first-order term,g1(ζ , t), and neglect the
second-order terms. On one hand, we have:

d
dt

ξ = 0+
g′1(ζ , t)

ν
whereg′1 = ∂2g1 is the partial derivative ofg1 with respect to
its second variable. But using (10) and neglecting third order
terms:

d
dt

ξ = −ı

[

∆
2

eiνtσxσz,ζ +
g1(ζ , t)

ν

]

. (14)

Gathering the two latter equations

g′1(ζ ,t) = −ν ı[
∆
2

eiνtσxσz,ζ ]+ · · ·

where we have not written the small terms compared toν.
Integrating with respect to timet the last equation yields:

g1(ζ ,t) = ı[
∆
2

eiνtσxσy,ξ ]+
1
ν
· · · .

Thus (14) can be re-written as
d
dt

ξ = −ı[
∆
2

eıνtσxσz,ζ +g1(ζ , t)/ν]+ · · ·

= −ı[
∆
2

eıνtσxσz,ζ ]+
∆2

4ν
[eıνtσxσz, [e

iνtσxσy,ξ ]]+ · · · .

Now let us compute the temporal mean (over a period) and only
keep the secular terms. We apply (12) and (13). Applying the
Jacobi identity

d
dt

ξ = −ı
∆2

2uµ
[σx,ξ ]+ · · ·

where we have not written the oscillating terms of 0 mean nor
the terms of orderO( 1

ν2 ). Note that, here, we find the term∆
2

2uµ
corresponding to the standard Bloch-Siegert shift.

We also need to develop̂∆ up to second order terms (coef-
ficients of 1

ν ) since it has constant mean. Its time derivative
verifies

d
dt

∆̂ = −uK∆Tr
(

σxξ̂
)

Tr
(

eıuµtσxσz(ξ̂ − ξ )
)

(15)

Note that,ξ and ξ̂ are themselves solutions of differential
equations depending ont via oscillating terms of frequency
ν. they have an oscillating part of frequencyν and another
one of frequency 2ν, since their time derivatives are sum and
products of at most two oscillating terms of frequencyν. When
considering up to the second order, only the terms of frequency
ν in ξ and ξ̂ can have a secular effect, as they multiply the
ν-frequency termeıuµtσxσz. Thus in this second order secular
approximation the oscillating terms of frequency 2ν can be
neglected.

But, the ν-frequency part ofξ̂ is due to the integration of

−ı
[

∆̂
2eıuµtσxσz, ξ̂

]

and so is forξ . Thus

ξ̂ = ζ̂ +
ı∆̂

2uµ

[

eıuµtσxσy, ξ̂
]

+ · · ·

ξ = ζ +
ı∆

2uµ
[

eıuµtσxσy,ξ
]

+ · · ·

(16)

where ζ̂ (resp ζ ) is a solution of the averaged equation for
ξ̂ (respξ̂ ) and the non-written terms are either 2ν-frequency
terms or are of orderO( 1

ν2 ). Up to the second order, the secular
terms of (15) can be calculated as the sum of two parts: 1.
replacingξ̂ − ξ by its ν-frequency part in order to compute

the secular terms of Tr
(

eıuµtσxσz(ξ̂ − ξ )
)

; this will be then

multiplied by−uK∆Tr
(

σxξ̂
)

; 2. replacingξ̂ in Tr
(

σxξ̂
)

by

its ν-frequency terms, leavinĝξ − ξ as it is and calculating the

secular terms of Tr
(

σxξ̂
)

Tr
(

eıuµtσxσz(ξ̂ − ξ )
)

.

On one hand, we have

Tr
(

eıνtσxσz(ξ̂ − ξ )
)

=
1
ν
(

∆̂Tr
(

σxξ̂
)

−∆Tr(σxξ )
)

+ · · ·

where we have not written the oscillating terms of 0 mean.
Here, we have applied (16) and the following relation:

ı
∆̂
2ν

eıνtσxσz[e
ıνtσxσy, ξ̂ ] = ı

∆̂
2ν
(

σz[σy, ξ̂ ]− ıσy[σy, ξ̂ ]
)

+ · · · .

On the other hand, for theν-frequency part of Tr
(

σxξ̂
)

, using

(16), we have:

Tr
(

σx[e
ıνtσxσy, ξ̂ ]

)

= Tr
(

cosνt σx[σy, ξ̂ ]−sinνt σx[σz, ξ̂ ]
)

= 2ıTr
(

cosνt σzξ̂ +sinνt σyξ̂
)

.

Therefore, up to the second order, we have



d
dt

∆̂ = −
K∆
µ

(

Tr
(

σxξ̂
)2

∆̂−Tr
(

σxξ̂
)

Tr(σxξ )∆
)

+
K∆∆̂
2µ

[Tr
(

σyξ̂
)

Tr
(

σy(ξ̂ − ξ )
)

−Tr
(

σzξ̂
)

Tr
(

σz(ξ̂ − ξ )
)

].

We have obtained the following, locally convergent, triangular
system:

d
dt

ξ order 2
= −ı

∆2

2uµ
[σx,ξ ] (17)

d
dt

ξ̂ order 1
= −ı

[

u(µ̂ − µ)

2
σx, ξ̂

]

−
Kρ

2
Tr
(

σy(ξ̂ − ξ )
)(

σyξ̂ + ξ̂σy−2Tr
(

σyξ̂
)

ξ̂
)

−
Kρ

2
Tr
(

σz(ξ̂ − ξ )
)(

σzξ̂ + ξ̂σz−2Tr
(

σzξ̂
)

ξ̂
)

d
dt

µ̂ order 1
= −

uKµ

2
[Tr
(

σyξ̂
)

Tr
(

σz(ξ̂ − ξ )
)

−Tr
(

σzξ̂
)

Tr
(

σy(ξ̂ − ξ )
)

]

d
dt

∆̂ order 2
= −

K∆
µ

(

Tr
(

σxξ̂
)2

∆̂−Tr
(

σxξ̂
)

Tr(σxξ )∆
)

+
K∆∆̂
2µ

[Tr
(

σyξ̂
)

Tr
(

σy(ξ̂ − ξ )
)

−Tr
(

σzξ̂
)

Tr
(

σz(ξ̂ − ξ )
)

].

Tuning the gains for the linearized systemThe lemma 1
proves (after using averaging arguments) thatµ̂ − µ andξ̂ − ξ
converge (locally) to 0 for anyKρ ,Kµ > 0. The last equation of

(17) shows that oncêξ −ξ has converged to 0,∆̂−∆ converges
to 0 for K∆ > 0. Nevertheless in order to get a robust observer
the tuning of the gains must respect the time scales. To choose
appropriate gains, we consider the first order approximation of
(17) around particular equilibrium points which are such that
the linearized system writes simply around these points.

Consider the linearized error variables

ξ̂ − ξ =
1+ X̃σx + Ỹσy + Z̃σz

2
, µ̃ = µ̂ − µ , ∆̃ = ∆̂−∆

where we have Tr(σxξ ) = X, Tr
(

σxξ̂
)

= X̂ and the similar

formulas forY,Z,Ŷ, Ẑ. Consider the linearized system around
ξ = 1−σz

2 (i.e,Z = −1). Up to second order terms, we have
d
dt

(ξ̂ − ξ ) = (−uµ̃ −KρỸ)σy.

This can be written as
d
dt

X̃ = 0

d
dt

Ỹ = −uµ̃ −KρỸ

d
dt

Z̃ = 0

(18)

We also have
d
dt

µ̃ = −uKµ(0− Ỹ)/2 = uKµỸ/2 (19)

and
d
dt

∆̃ =
K∆
2µ

∆̂Z̃
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Fig. 1. Measured output, output error, estimations of the param-
etersµ and∆ without noise.

Let us now write the linearized system around the other equi-
librium pointρ = 1−σx

2 (i.e,X = −1)

d
dt

(ξ̂ − ξ ) = −
Kρ

2
(Ỹσy + Z̃σz),

d
dt

µ̃ = 0

and
d
dt

∆̃ = −
K∆
µ

∆̃ (20)

The interesting equations for the tuning are (18), (19) and (20).
To respect the time scales, set 0< ε ≪ 1 and choose the gain
Kρ ≈ ε|uµ |. In this case the observer filters the high frequencies

and the average of‖ξ̂ − ξ‖ tends to decrease. Choose a slower
characteristic time of convergence for the parametersµ̂ and∆̂
with respect to the characteristic time of convergence ofξ̂

Kρ = 2kρε|u|µ , Kµ = 2ε2µ2, K∆ = k∆ε2|u|µ2

wherekρ ,k∆ > 0 are any scalar of order 1. The tuning of the
gains is only made for the linearized system around partic-
ular equilibrium points. Nevertheless we think the nonlinear
structure of the observer, based on the symmetries (and thus
very close to the structure of the system), allows a good global
behavior, as the simulations show.

5. SIMULATIONS

We take for the initial conditions:

ρ0 =
1+cos

(π
5

)

σx +sin
(π

5

)

cos
( π

1.4

)

σy +sin
(π

5

)

sin
( π

1.4

)

σz

2

µ = 1 , ∆ =
1
5

, ρ̂0 = σxρ0σx

We choose for the controlu and the gains:u = 1, Kρ = 2ε|u|µ ,
Kµ = 2ε2µ2 etK∆ = 2ε2|u|µ2 with ε = 1

5. The results are given
by fig 1. In fig 2, The measured signals were added a white
gaussian noise of amplitude 20% .

6. CONCLUSION

One could have written directly the system on the Bloch sphere
with the variables(X,Y,Z). But the averaging computations in
the interaction frame are easier to write with Pauli matrices.
Moreover, as it is proved in Mirrahimi and Rouchon [2007]
when ∆ = 0, our method can be extended to more general
systems for which the interpretation on the Bloch sphere is not
possible anymore.
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Fig. 2. Measured output, output error, estimations of the param-
etersµ and∆ with noisy measurement.

7. APPENDIX : SYMMETRY-PRESERVING OBSERVERS

In this section we recall the basic definitions and results of
Bonnabel et al. [2006]. Consider the smooth system

d
dt

x = f (x,u) (21)

y = h(x,u) (22)

wherex belongs to an open subsetX ⊂R
n, u to an open subset

U ⊂ Rm andy to an open subsetY ⊂ Rp, p≤ n. We assume
the signalsu(t),y(t) known. In section 2.3 we took

x = ρ , u = (σx,σy,σz), y = Tr(σzρ)

Consider also the local group of transformations onX ×U

defined by

(X,U) =
(

ϕg(x),ψg(u)
)

, (23)

whereϕg and ψg are local diffeomorphisms depending on a
parameterg which is an element of a Lie groupG such that

• ϕe(ξ ) = ξ for all ξ ∈ X

• ϕg2

(

φg1(ξ )
)

= ϕg2g1(ξ ) for all g1,g2 ∈ G,ξ ∈ X .

andψg verifies similar conditions. In section 2.3 we haveG =
SU(2) and for anyU ∈ G

ϕU = ψU : M ∈ C
2×2 7→UMU†

Definition 2. The systemd
dt x = f (x,u) is G-invariant

if f
(

ϕg(x),ψg(u)
)

= Dϕg(x) · f (x,u) for all g,x,u.

The property also readsddt X = f (X,U), i.e., the system remains
unchanged under the transformation (23).

Definition 3. A vector fieldw on X is said to be G-invariant
if the systemd

dt x = w(x) is invariant. This meansw(ϕg(x)) =
Dϕg(x) ·w(x) for all g, x.

Definition 4. An invariant frame(w1, ...,wn) on X is a set of
n linearly point-wise independent G-invariant vector fields, i.e
(w1(x), ...,wn(x)) is a basis of the tangent space toX at x.

Definition 5. The smooth map(x̂,u,y) 7→ E(x̂,u,y) ∈ Rp is an
invariant output errorif

• the mapy 7→ E(x̂,u,y) is invertible for allx̂,u
• E

(

x̂,u,h(x̂,u)
)

= 0 for all x̂,u
• E

(

ϕg(x̂),ψg(u),h(ϕg(x),ψg(u))
)

= E(x̂,u,y) for all x̂,u,y

Definition 6.(pre-observer). The systemddt x̂ = F(x̂,u,y) is a
pre-observerof (21)-(22) if for allx,u F

(

x,u,h(x,u)
)

= f (x,u).

The definition does not deal with convergence; if moreover
x̂(t) → x(t) ast → +∞ for every (close) initial conditions, the
pre-observer is an (asymptotic)observer.

Definition 7. The pre-observerddt x̂ = F(x̂,u,y) is G-invariant
if for all g, x̂,u,y,

F
(

ϕg(x̂),ψg(u),h(ϕg(x),ψg(u))
)

= Dϕg(x̂) ·F(x̂,u,y).

The property also readsddt X̂ = F(X̂,U,h(X,U)), with X =
ϕg(x), U = ψg(u). Assume that the output map isG-equivariant
(see?]), which is the case for the quantum mechanical system
considered in this paper since the outputy is a scalar invariant.
Then a sufficient condition for the systemddt x̂ = F(x̂,u,y) to
be a G-invariant pre-observer for theG-invariant systemd

dt x =
f (x,u) is:

F(x̂,u,y) = f (x̂,u)+
n

∑
i=1

Li
(

I(x̂,u),E(x̂,u,y)
)

wi(x̂) (24)

whereE is an invariant output error,(x̂,u) 7→ I(x̂,u) ∈ Rn+m−r

is a full-rank invariant function, theLi ’s are smooth functions
such that for all ˆx, Li

(

I(x̂,u),0
)

= 0, and(w1, ...,wn) is an
invariant frame. This result is a consequence of the theorem
2 of Bonnabel et al. [2006].I is called a complete set of scalar
invariants and verifiesI(ϕg(x̂),ψg(u)) = I(x̂,u) for anyg∈ G.
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