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Feedback generation of quantum Fock states by discrete QND measures

Mazyar Mirrahimi, Igor Dotsenko and Pierre Rouchon

Abstract—A feedback scheme for preparation of photon
number states in a microwave cavity is proposed. Quantum
Non Demolition (QND) measurement of the cavity field provides
information on its actual state. The control consists in injecting
into the cavity mode a microwave pulse adjusted to increase the
population of the desired target photon number. In the ideal
case (perfect cavity and measures), we present the feedback
scheme and its detailed convergence proof through stochastic
Lyapunov techniques based on super-martingales and other
probabilistic arguments. Quantum Monte-Carlo simulations
performed with experimental parameters illustrate convergence
and robustness of such feedback scheme.

I. INTRODUCTION

In [10], [5], [4] QND measures are exploited to detect
and/or produce highly non-classical states of light trapped in
a super-conducting cavity (see [6, chapter 5] for a description
of such QED systems and [1] for detailed physical models
with QND measures of light using atoms). For such experi-
mental setups, we detail and analyze here a feedback scheme
that stabilize the cavity field towards any photon-number
states (Fock states). Such states are strongly non-classical
since their photon numbers are perfectly defined. The control
corresponds to a coherent light-pulse injected inside the
cavity between atom passages. The overall structure of the
proposed feedback scheme is inspired of [3] using a quantum
adaptation of the observer/controller structure widely used
for classical systems (see, e.g., [7, chapter 4]). The observer
part of the proposed feedback scheme consists in a discrete-
time quantum filter, based on the observed detector clicks, to
estimate the quantum-state of the cavity field. This estimated
state is then used in a state-feedback based on Lyapunov
design, the controller part. In theorems 1 and 2 we prove the
convergence almost surely of the closed-loop system towards
the goal Fock-state in absence of modeling imperfections
and measurement errors. Simulations illustrate this results
and show that performance of the closed-loop system are
not dramatically changed by false detections for 10% of the
detector clicks. In [2] similar feedback schemes are also
addressed with modified quantum filters in order to take
into account additional physical effects and experimental
imperfections. [2] focuses on physics and includes extensive
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closed-loop simulations whereas here we are interested by
mathematical aspects and convergence proofs.

In section II, we describe very briefly the physical system
and its quantum Monte-Carlo model. In section III the feed-
back is designed using Lyapunov techniques. Its convergence
is proved in theorem 1. Section IV introduces a quantum
filter to estimate the cavity state necessary for the feedback:
convergence of the closed-loop system (quantum filter and
feedback based on the estimate cavity state) is proved in
theorem 2 assuming perfect model and detection.This section
ends with Theorem 3 proving a contraction property of the
quantum filter dynamics. Section V is devoted to closed-loop
simulations where measurement imperfections are introduced
for testing robustness.

The authors thank Michel Brune, Serge Haroche and Jean-
Pierre Raimond for useful discussions and advices.

II. THE PHYSICAL SYSTEM AND ITS JUMP DYNAMICS
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Fig. 1. The microwave cavity QED setup with its feedback scheme (in
green).

As illustrated by figure 1, the system consists in C a
high-Q microwave cavity, in B a box producing Rydberg
atoms, in R1 and R2 two low-Q Ramsey cavities, in D an
atom detector and in S a microwave source. The dynamics
model is discrete in time and relies on quantum Monte-Carlo
trajectories (see [6, chapter 4]). It takes into account the back-
action of the measure. It is adapted from [5] where we have
just added the control effect.

Each time-step indexed by the integer k corresponds to
atom number k coming from B, submitted then to a first
Ramsey π/2-pulse in R1, crossing the cavity C and being
entangled with it, submitted to a second π/2-pulse in R2

and finally being measured in D. The state of the cavity
is described by the density operator ρk. Here the passage
from the time step k to k + 1 corresponds to the projective
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measurement of the cavity state, by detecting the state of the
Rydberg atom number k after leaving R2. During this same
step, an appropriate coherent pulse (the control) is injected
into C. Denoting, as usual, by a the photon annihilation
operator and by N = a†a the photon number operator, the
density matrix ρk+1 is related to ρk through the following
jump-relationships: ρk+1 =

D(αk)MkρkM†
k
D(−αk)

Tr(MkρkM†
k)

where

• the measurement operator Mk = Mg (resp. Mk = Me),
when the atom k is detected in the state |g〉 (resp. |e〉)
with

Mg = cos

„

φR + φ

2
+ Nφ

«

, Me = sin

„

φR + φ

2
+ Nφ

«

.

(1)

Such measurement process corresponds to an off-
resonant interaction between atom k and cavity where
φR is the direction of the second Ramsey π/2-pulse (R2

in figure 1) and φ is the de-phasing-angle per photon.
• The probability Pg,k (resp. Pe,k) of detecting the atom

k in |g〉 (resp. |e〉) is given by Tr (MgρkMg) (resp.
Tr (MeρkMe).

• D(αk) is the displacement operator describing the co-
herent pulse injection, D(αk) = exp(αk(a† − a)), and
the scalar control αk is a real parameter that can be
adjusted at each time step k.

The time evolution of the step k to k + 1, in fact, consists
of two types of evolutions: a projective measurement and
a coherent injection. For simplicity sakes, we will use
the notation of ρk+ 1

2

, to illustrate this intermediate step.
Therefore,

ρk+ 1

2

=
MkρkM†

k

Tr
“

MkρkM†
k

” , ρk+1 = D(αk)ρk+1

2

D(−αk) (2)

In the sequel, we consider the finite dimensional approx-
imation defined by a maximum of photon number, nmax. In
the truncated Fock basis (|n〉)0≤n≤nmax , N corresponds to
the diagonal matrix (diag(n))0≤n≤nmax , ρ is a (nmax + 1) ×
(nmax + 1) symmetric positive matrix with unit trace, and
the annihilation operator a is an upper-triagular matrix with
(
√

n)1≤n≤nmax as upper diagonal, the remaining elements
being 0. We restrict to real quantities since the phase of any
Fock state is arbitrary. We set it here to 0.

III. FEEDBACK SCHEME AND CONVERGENCE PROOF

We aim to stabilize the Fock state with n̄ photons char-
acterized by the density operator ρ̄ = |n̄〉 〈n̄|. To this end
we choose the coherent feedback αk such that the value of
the Lyapunov function V (ρ) = 1 − Tr (ρρ̄) decreases when
passing from ρk+ 1

2

to ρk+1. Note that, for α small enough,
the Baker-Campbell-Hausdorff formula yields the following
approximation

D(α)ρD(−α) ≈ ρ − α[ρ, a† − a] +
α2

2
[[ρ, a† − a], a† − a] (3)

up to third order terms. Therefore, for αk small enough, we
have

Tr
“

D(αk)ρk+ 1

2

D(−αk)ρ̄
”

=

Tr
“

ρk+ 1

2

ρ̄
”

− αkTr
“

[ρk+ 1

2

, a† − a]ρ̄
”

+
α2

k

2
Tr
“

[[ρk+ 1

2

, a† − a], a† − a]ρ̄
”

.

Thus the feedback

αk = c1Tr
(

[ρ̄, a† − a]ρk+ 1

2

)

(4)

with a gain c1 > 0 small enough ensures that

Tr (ρ̄ρk+1) − Tr
“

ρ̄ρk+ 1

2

”

≥ c1

2

˛

˛

˛
Tr
“

[ρ̄, a† − a]ρk+ 1

2

”
˛

˛

˛

2
, (5)

since Tr
(

[ρk+ 1

2

, a† − a]ρ̄
)

= −Tr
(

[ρ̄, a† − a]ρk+ 1

2

)

. Fur-

thermore, the conditional expectation of Tr
(

ρ̄ρk+ 1

2

)

know-
ing ρk is given by

E
“

Tr
“

ρ̄ρk+ 1

2

”

| ρk

”

= Pg,kTr

 

ρ̄MgρkM†
g

Pg,k

!

+ Pe,kTr
„

ρ̄MeρkM†
e

Pe,k

«

= Tr (ρ̄ρk)

since [ρ̄, Mg] = [ρ̄, Me] = 0 and M †
gMg + M †

eMe = 11.
Thus

E (Tr (ρ̄ρk+1) | ρk) ≥ E
(

Tr
(

ρ̄ρk+ 1

2

)

| ρk

)

= Tr (ρ̄ρk)

and consequently, the expectation value of V (ρk) decreases
at each sampling time:

E (V (ρk+1)) ≤ E (V (ρk)) . (6)

Considering the Markov process ρk, we have therefore shown
that V (ρk) is a super-martingale bounded from below by 0.
When V reaches its minimum 0, the Markov process ρk
has converged to ρ̄. However, one can easily see that this
super-martingale has also the possibility to converge towards
other attractors, for instance other Fock states which are all
the stationary points of the closed-loop Markov process but
with V (ρ) = 1 instead of 0. Following [9], we suggest the
following modification of the feedback scheme:

αk =

8

>

<

>

:

c1Tr
“

[ρ̄, a† − a]ρk+ 1

2

”

if V (ρk) ≤ 1 − ε

argmax
α∈[−ᾱ,ᾱ]

Tr
“

ρ̄D(α)ρk+ 1

2

D(−α)
”

if V (ρk) > 1 − ε

(7)
with c1, ε, ᾱ > 0 constants.
Theorem 1: Consider (2) and assume that for all n ∈

{0, . . . , nmax} we have φR+φ
2 +nφ )= 0 mod (π/2) and that

#



cos2
„

φR + φ

2
+ nφ

«

| n ∈ {0, . . . , nmax}
ff

= nmax + 1.

Take the switching feedback scheme (7) with ᾱ > 0. For
small enough c1 > 0 and ε > 0, the trajectories of (2)
converge almost surely towards the target Fock state ρ̄.
Remark 1: The second part of the feedback (7), dealing

with states near the bad attractors, is not explicit and may
seem hard to compute. Note that, this form has been partic-
ularly chosen to simplify the proof of the Theorem 1 and



in practice, one can take it to be any constant control field
exciting the system around these bad attractors and ensuring
a fast return to the inner set.
Remark 2: The controller gain c1 can be tuned

in order to maximize at each sampling time k,
Tr

(

D(αk)ρk+ 1

2

D(−αk)ρ̄
)

for ρk+ 1

2

near ρ̄. Up to
third order term in ρk+ 1

2

− ρ̄, (3) yields to

Tr
“

D(αk)ρk+ 1

2

D(−αk)ρ̄
”

= Tr
“

ρ̄ρk+ 1

2

”

+

“

Tr
“

[ρ̄, a† − a]ρk+ 1

2

””2
„

c1 − c2
1

2
Tr
“

[ρ̄, a† − a][ρ̄, a† − a]
”

«

.

Thus c1 = 1/Tr
(

[ρ̄, a† − a][ρ̄, a† − a]
)

≈ 1/(4n̄ + 2) for
nmax + n̄ implies a maximum decrease at the sampling time,
up to third-order terms in ρk − ρ̄.
In order to prove the Theorem 1, we need some classical
tools from stochastic processes namely the Doob’s inequality
and the Kushner’s asymptotic invariance Theorem [8]. These
results are been recalled in the Appendix.
Proof of Theorem 1. It is divided in 3 steps: in a first

step, we show that for small enough ε and by applying the
second part of the feedback scheme, the trajectories starting
within the set {ρ | V (ρ) > 1 − ε} reach in one step the set
{ρ | V (ρ) ≤ 1 − 2ε} and this with probability 1; next, we
show that trajectories starting within the set {ρ | V (ρ) ≤
1 − 2ε}, will never hit the set {ρ | V (ρ) > 1 − ε} with a
uniformly non-zero probability p > 0; finally, we will show
that, the trajectories of the quantum filter converge towards ρ̄
for almost all trajectories that never hit the set {ρ | V (ρ) >
1− ε}. This is then an immediate conclusion of the Markov
property that the trajectories of the quantum filter with the
feedback scheme (7) will converge almost surely towards ρ̄.

Step 1: We start by considering the process starting on the
level set {ρ | V (ρ) = 1}. We have the following lemma:
Lemma 1: Consider ρ a well-defined density matrix such

that Tr (ρρ̄) = 0. We have

min
s∈{g,e}

max
α∈[−ᾱ,ᾱ]

Tr
`

ρ̄D(α)MsρM†
s D(−α)

´

Tr
“

MsρM†
s

” > 0.

We denote any argument of the above min-max problem by
ᾱ(ρ) ∈ [−ᾱ, ᾱ].
Proof of Lemma 1: Define ρs = MsρM†

s

Tr(MsρM†
s )

, s ∈ {g, e}.
The matrices Mg and Me being diagonal, we trivially have
Tr (ρsρ̄) = 0. Let us fix s and assume that for all α ∈
[−ᾱ, ᾱ],

Tr (ρ̄D(α)ρsD(−α)) = 0. (8)
Decomposing ρs as a sum of projectors we have ρs =
∑m

k=1 λk,s |ψk,s〉 〈ψk,s| , where λk,s are strictly positive
eigenvalues and ψk,s are the associated normalized eigen-
states of ρs (m = 1 corresponds to the case where ρs is a
projector). The equation (8), clearly, implies
〈ψk,s | D(−α)n̄〉 = 0, ∀k ∈ {1, · · · , m},∀α ∈ [−ᾱ, ᾱ]. (9)

Fixing one k ∈ {1, · · · , m} and taking ψ = ψk,s, noting
that D(−α) = exp(−α(a†−a)) and deriving j times versus
α around 0 we get

〈

ψ | (a† − a)j n̄
〉

= 0, ∀j = 0, . . . , nmax. (10)

But the family
(

(a† − a)j n̄
)

0≤j≤nmax is full rank. This is a
direct consequence of [11, Theorem 4]. It is proved there that
the truncated harmonic oscillator d

dt
|φ〉t = −(ıN+v(t)(a†−

a)) |φ〉t , is completely controllable with the single scalar
control v(t). If the rank r of

(

(a† − a)p |n̄〉
)

0≤p≤nmax is
strictly less that nmax +1, then according to Cayley-Hamilton
Theorem the rank of the infinite family

(

(a† − a)p |n̄〉
)

p≥0
is also r. Take |ξ〉, a state orthogonal to this family. For
any control v(t), the state |φ〉t starting from |n̄〉 remains
orthogonal to |ξ〉. Thus it will be impossible to find a control
v(t) steering |φ〉t from |n̄〉 to |ξ〉.

Since the rank of
(

(a† − a)p |n̄〉
)

0≤p≤nmax is maximum,
(10) implies |ψk〉 = 0 and leads to a contradiction. !

Applying the compactness of the space of density matri-
ces, we directly have the following corollary:
Corollary 1: There exists an ε > 0 such that

inf
ρ∈{Tr(ρρ̄)<ε}

Tr
`

ρ̄D(ᾱ(ρ))MsρM†
s D(−ᾱ(ρ))

´

Tr
“

MsρM†
s

” > 2ε (11)

for s = g, e and where ᾱ(ρ) is defined in Lemma 1.
Proof of Corollary 1: We take

δ = inf
ρ∈{Tr(ρρ̄)=0}

min
s∈{g,e}

Tr
`

ρ̄D(ᾱ(ρ))MsρM†
s D(−ᾱ(ρ))

´

Tr
“

MsρM†
s

” .

By Lemma 1 and the compactness of the set {ρ | Tr (ρρ̄) =
0}, we know that δ > 0. By continuity of Tr (ρρ̄) with respect
to ρ and by compactness of the space of density matrices,
there exists γ > 0 such that

inf
ρ∈{Tr(ρρ̄)<γ}

min
s∈{g,e}

Tr
`

ρ̄D(ᾱ(ρ))MsρM†
s D(−ᾱ(ρ))

´

Tr
“

MsρM†
s

” >
δ

2
.

Therefore, by taking ε = min(γ, δ/4), clearly, (11) holds
true. !

Through this corollary, we have shown that whenever the
Markov process hits the set {Tr (ρρ̄) < ε}, it is immediately
rebounded to the set {Tr (ρρ̄) > 2ε} and this with probabil-
ity 1.
Step 2: Let us assume that the process starts within the

set {Tr (ρρ̄) > 2ε}.
Lemma 2: Initializing the Markov process within the set

{ρ | V (ρ) ≤ 1 − 2ε}, ρk will never hit the set {ρ | V (ρ) >
1 − ε} with a probability p > ε

1−ε > 0.
Proof of Lemma 2: By (6), the process V (ρk) is, clearly, a
supermartingale. One only needs to use the Doobs inequality
(cf. Appendix, Theorem 4) and we have

P ( sup
0≤k<∞

V (ρk) > 1 − ε) <
V (ρ0)
1 − ε

≤ 1 − 2ε

1 − ε
,

and thus p > 1 − (1 − 2ε)/(1 − ε) = ε/(1 − ε). !

We have shown that starting within the inner set
{Tr (ρρ̄) ≥ 2ε} there is a uniform non-zero probability
of ε/(1 − ε) for the process, to never hit the outer set
{Tr (ρρ̄) < ε}.
Step 3:
Lemma 3: The sample paths ρk remaining into the set

{Tr (ρρ̄) > ε} converge in probability to ρ̄ as k → ∞.



Proof of Lemma 3: Consider the function W(ρ) = 1 −
Tr (ρρ̄)2 . For s = g, e, set ρs = MsρM†

s

Tr(MsρM†
s )

. We have

W(ρg) = 1 −
Tr
`

ρM†
g ρ̄Mg

´2

Tr
“

MgρM†
g

”2 ,

= 1 −

˛

˛

˛ cos
“

φR+φ
2 + n̄φ

” ˛

˛

˛

4

Tr
“

MgρM†
g

”2 Tr (ρρ̄)2 , (12)

and similarly

W(ρe) = 1 −

˛

˛

˛
sin
“

φR+φ
2 + n̄φ

”
˛

˛

˛

4

Tr
“

MeρM†
e

”2 Tr (ρρ̄)2 . (13)

Furthermore, whenever α is given by the first part of the
feedback law, we have

W(D(α)ρD(−α)) −W(ρ) ≤ −2εc1

˛

˛

˛Tr
“

[ρ̄, a† − a]ρ
” ˛

˛

˛

2
, (14)

where we have applied (5) together with the fact that

|Tr (D(α)ρD(−α)ρ̄) | + |Tr (ρρ̄) | ≥ 2ε

since ρ is inside the set {Tr (ρρ̄) > ε}. Apply-
ing (2), (12), (13) and (14) for the paths never leaving the
set {Tr (ρρ̄) > ε}, we have

E (W(ρk+1) | ρk) −W(ρk) ≤ −2εc1
˛

˛

˛Tr
“

[ρ̄, a† − a]ρ
k+ 1

2

” ˛

˛

˛

2

−

0

@

˛

˛

˛ cos
“

φR+φ
2 + n̄φ

”

|4

Tr
“

MgρkM†
g

” +

˛

˛

˛ sin
“

φR+φ
2 + n̄φ

”

|4

Tr
“

MeρkM†
e

” − 1

1

ATr (ρkρ̄)2 .

Noting thatTr
(

MgρkM †
g

)

≥ 0, Tr
(

MeρkM †
e

)

≥ 0,
Tr

(

MgρkM †
g

)

+ Tr
(

MeρkM †
e

)

= 1 and by Cauchy-
Schwartz inequality, we have
˛

˛

˛
cos
“

φR+φ
2 + n̄φ

” ˛

˛

˛

4

Tr
“

MgρkM†
g

” +

˛

˛

˛
sin
“

φR+φ
2 + n̄φ

” ˛

˛

˛

4

Tr
“

MeρkM†
e

” =

0

B

@

˛

˛

˛
cos
“

φR+φ
2 + n̄φ

”
˛

˛

˛

4

Tr
“

MgρkM†
g

” +

˛

˛

˛
sin
“

φR+φ
2 + n̄φ

”
˛

˛

˛

4

Tr
“

MeρkM†
e

”

1

C

A

(Tr
“

MgρkM†
g

”

+ Tr
“

MeρkM†
e

”

) ≥
„

cos2
„

φR + φ

2
+ n̄φ

«

+ sin2

„

φR + φ

2
+ n̄φ

««2

= 1,

with equality if and only if Tr
(

MgρkM †
g

)

=

cos2
(

φR+φ
2 + n̄φ

)

. We apply, now, the Kushner’s invari-
ance Theorem (cf. Appendix, Theorem 5) to the Markov
process ρk with the Lyapunov function W(ρk). The process
ρk converges in probability to the largest invariant set in-
cluded in

{

ρ | Tr
(

MgρM
†
g

)

= cos2
(

φR + φ

2
+ n̄φ

)

}

⋂

{

ρ | Tr
(

[ρ̄, a† − a]MsρM
†
s

)

= 0, s = g, e
}

.

In particular, by invariance, ρ belonging to this limit set
implies Tr

(

MgρM †
g

)

=
Tr(MgMsρM†

s M†
g )

Tr(MsρM†
s )

for s = g, e.

Taking s = g, and noting that Mg = M †
g , this leads to

Tr
(

M4
g ρ

)

= Tr
(

M2
gρ

)2
. However, by Cauchy-Schwartz

inequality, and applying the fact that ρ is a positive matrix,
we have Tr

(

M4
g ρ

)

= Tr
(

M4
g ρ

)

Tr (ρ) ≥ Tr
(

M2
g ρ

)2
, with

equality if and only if M4
g ρ and ρ are co-linear. Since M4

g has
a non degenerate spectrum, ρ is necessarily a projector over
one of the eigen-state of M4

g , i.e., a Fock state |n〉, for some
n ∈ {0, . . . , nmax}. Finally, as we have restricted ourselves to
the paths never leaving the set {ρ | Tr (ρρ̄) > ε}, the only
possibility for the invariant set is the isolated point {ρ̄}. !

Lemma 4: ρk converges to ρ̄ for almost all paths remain-
ing in the set {Tr (ρρ̄) > ε}.
Proof of Lemma 4: Define the event P>ε =
{ω ∈ Ω | ρk never leaves the set {Tr (ρρ̄) >
ε}}. Through Lemma 3, we have shown that
limk→∞ P (‖ρk − ρ̄‖ > δ | P>ε) = 0, ∀δ > 0. By
continuity of V (ρ) = 1 − Tr (ρρ̄), this also implies that
limk→∞ P (V (ρk) > δ | P>ε) = 0, ∀δ > 0. As V (ρ) ≤ 1,
we have

E (V (ρk) | P>ε) ≤ P (V (ρk) > δ | P>ε)

+ δ(1 − P (V (ρk) > δ | P>ε)).

Thus lim supk→∞ E (V (ρk) | P>ε) ≤ δ, ∀δ > 0, and
so limk→∞ E (V (ρk) | P>ε) = 0. By Theorem 4, we
know that V (ρk) converges almost surely and therefore,
as V is bounded, by dominated convergence, we obtain
E (limk→∞ V (ρk) | P>ε) = 0.!

Now, we have all the elements to finish the proof of the
Theorem 1. From Steps 1 and 2 and the Markov property, one
deduces that for almost all paths ρk, there exists a K̄ such
that ρk for k ≥ K̄ never leaves the set {Tr (ρρ̄) > ε}. This
together with the step 3 finishes the proof of the Theorem.!

IV. QUANTUM FILTERING FOR STATE ESTIMATION

The feedback law (7) requires the knowledge of ρk+ 1

2

.
When the measurement process is fully efficient and the jump
model (2) admits no error, it actually represents a natural
choice for quantum filter to estimate the value of ρ by ρest

satisfying

ρest
k+1 = D(αk)ρest

k+ 1

2

D(−αk)

ρest
k+ 1

2

=
Msk

ρest
k M †

sk

Tr
(

Msk
ρest

k M †
sk

) . (15)

where sk = g or e, depending on measure outcome k and
on the control αk.

Before passing to the parametric robustness of the feed-
back scheme, let us discuss the robustness with respect
to the choice of the initial state for the filter equation
when we replace ρk+ 1

2

by ρest
k+ 1

2

in the feedback (7). Note
that, Theorem 1 shows that whenever the filter equation is
initialized at the same state as the one which the physical
system is prepared initially, the feedback law ensures the
stabilization of the target state. The next theorem shows that
as soon as the quantum filter is initialized at any arbitrary
fully mixed initial state (not necessarily the same as the initial



state of the physical system (2)) and whenever the feedback
scheme (7) is applied on the system, the state of the physical
system will converge almost surely to the desired Fock state.

Theorem 2: Assume that the quantum filter (15) is initial-
ized at a full-rank matrix ρest

0 and that the feedback scheme (7)
is applied to the physical system. The trajectories of the
system (2), will then converge almost surely to the target
Fock state ρ̄.
Proof of Theorem 2: The initial state ρest

0 being full-rank,
there exists a γ > 0 such that ρest

0 = γρ0 + (1− γ)ρc
0, where

ρ0 is the initial state of (2) at which the physical system
is initially prepared and ρc

0 is a well-defined density matrix.
Indeed, ρest being positive and full-rank, for a small enough
γ, (ρest

0 − γρ0)/(1− γ) remains non-negative, Hermitian and
of unit trace.

Assume that, we prepare the initial state of another identi-
cal physical system as follows: we generate a random number
r in the interval (0, 1); if r < γ we prepare the system in
the state ρ0 and otherwise we prepare it at ρc

0. Applying
our quantum filter (15) (initialized at ρest

0 ) and the associated
feedback scheme, almost all trajectories of this physical
system converge to the Fock state ρ̄. In particular, almost
all trajectories that were initialized at the state ρ0 converge
to ρ̄. This finishes the proof of the theorem. !

The quantum filter (15) admits also some contraction
properties confirming its robustness to experimental errors
as shown by simulations of figures 3 and 4 where detection
errors are introduced. We just provide here a first interesting
inequality that will be used in future developments.
Theorem 3: Consider the process (2) and the associated

filter (15) for any arbitrary control input (αk)∞k=1. We have
E (Tr (ρkρest

k )) ≤ E
(

Tr
(

ρk+1ρest
k+1

))

, ∀k.
Proof Before anything, note that the coherent part of the
evolution leaves the value of Tr (ρkρest

k ) unchanged:

Tr (ρk+1ρ
est
k+1) = Tr

“

D(αk)ρk+ 1

2

ρest
k+ 1

2

D(−αk)
”

= Tr
“

ρk+ 1

2

ρest
k+ 1

2

”

.

Concerning the projective part of the dynamics, we have

E
“

Tr
“

ρk+ 1

2

ρest
k+ 1

2

”

| ρk, ρest
k

”

=

X

s=g,e

Tr
`

MsρkM†
s Msρ

est
k M†

s

´

Tr
“

Msρest
k M†

s

” . (16)

Applying a Cauchy-Schwarz inequality as well as the
identity M †

gMg + M †
eMe = 11, we have

X

s=g,e

Tr
`

M†
s MsρkM†

s Msρ
est
k

´

Tr
“

Msρest
k M†

s

” =

X

s=g,e

Tr
“

Msρ
est
k M†

s

”

X

s=g,e

Tr
`

M†
s MsρkM†

s Msρ
est
k

´

Tr
“

Msρest
k M†

s

” ≥

 

X

s=g,e

r

Tr
“

M†
s MsρkM†

s Msρest
k

”

!2

(17)

Applying (16) and (17), we only need to show that
 

X

s=g,e

r

Tr
“

M†
s MsρkM†

s Msρest
k

”

!2

≥ Tr (ρkρest
k ) . (18)

Noting, once again, that M †
gMg+M †

eMe = 11, we can write:

Tr (ρkρ
est
k ) =

∑

s=g,e

∑

r=g,e

Tr
(

M †
sMsρkM †

r Mrρ
est
k

)

, (19)

and therefore (18) is equivalent to
X

s=g,e

r

Tr
“

MsρkM†
s Msρest

k M†
s

”

X

r=g,e

r

Tr
“

MrρkM†
r Mrρest

k M†
r

”

≥
X

s=g,e

X

r=g,e

Tr
“

M†
s MsρkM†

r Mrρ
est
k

”

. (20)

Note that as ρk and ρest
k are positive Hermitian matrices, their

square roots, √ρk and
√

ρest
k , are well-defined. Once again

by Cauchy-Schwarz inequality, we have

Tr
“

M†
s MsρkM†

r Mrρ
est
k

”

= Tr
“

p

ρest
k M†

s Ms
√

ρk
√

ρkM†
r Mr

p

ρest
k

”

≤
r

Tr
“

p

ρest
k M†

s Ms
√

ρk
√

ρkM†
s Ms

p

ρest
k

”

r

Tr
“

p

ρest
k M†

r Mr
√

ρk
√

ρkM†
r Mr

p

ρest
k

”

=

r

Tr
“

MsρkM†
s Msρest

k M†
s

”

r

Tr
“

MrρkM†
r Mrρest

k M†
r

”

.

Summing over s, r ∈ {g, e}, we obtain the inequality (20)
and therefore we finish the proof of the Theorem 3. !

V. MONTE-CARLO SIMULATIONS

Figure (2) corresponds to a closed-loop simulation with
a goal Fock state n̄ = 3 and a Hilbert space limited to
nmax = 15 photons. ρ0 and ρest

0 are initialized at the same
state, the coherent state exp(

√
n̄(a†−a)) |0〉 of mean photon

number n̄. The number of iteration steps is fixed to 100. The
dephasing per photon is φ = 3

10 . The Ramsey phase φR is
fixed to the mid-fringe setting, i.e. φR+φ

2 + n̄φ = π
4 . The

feedback parameter ((7) with ρest
k+ 1

2

instead of ρk+ 1

2

) are as
follows: c1 = 1

4n̄+1 , ε = 1
10 and ᾱ = 1

10 .
Any real experimental setup includes imperfection and

error. To test the robustness of the feedback scheme, a false
detection probability ηf = 1

10 is introduced. In case of false
detection at step k, the atom is detected in g (resp. e) whereas
it collapses effectively in e (resp. g). This means that in (15),
sk = g (resp. sk = e), whereas in (2), it is the converse
Mk = Me (resp. Mk = Mg). Simulations of figure 3 differ
from those of figure 2 by only ηf = 1

10 : we observe for
this sample trajectory a longer convergence time. A much
more significative impact of ηf is given by ensemble average.
Figure 4 presents ensemble averages corresponding to the
third sub-plot of figures 2 and 3. For ηf = 0 (left plot), we
observe an average fidelity Tr (ρkρ̄) converging to 100%:
it exceeds 90% after k = 40 steps. For ηf = 1/10, the
asymptotic fidelity remains under 80% and reaches 70% after
30 iteration. The performance are reduced but not changed
dramatically. The proposed feedback scheme appears to be
robust to such experimental errors.
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Fig. 2. A single closed-loop quantum trajectory in the ideal case (n̄ = 3).
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Fig. 3. A single closed-loop quantum trajectory with a false detection
probability of 1/10.
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Fig. 4. Averages of 104 closed-loop quantum trajectories similar to the
one of figure 2 (left, ηf = 0) and 3 (right, ηf = 1

10 ).

VI. CONCLUSION

In [2] more realistic simulations are reported. They include
nonlinear shift per photon (Nφ replaced by a non linear
function Φ(N) in (1)) and additional experimental errors
such as detector efficiency and delays. These simulations
confirm the robustness of the feedback scheme, robustness
that needs to be understood in a more theoretical way. In
particular, it seems that the quantum filter (15) forgets its
initial condition ρest

0 almost surely and thus admits some
strong contraction properties as indicated by Theorem 3.

With the truncation to nmax photons, convergence is proved
only in the finite dimensional case. But feedback (7) and
quantum filter (15) are still valid for nmax = +∞. We
conjecture that Theorems 1 and 2 remain valid in this case.

In the experimental results reported in [10], [5], [4] the
time-interval corresponding to a sampling step is around
100µs. Thus it is possible to implement, on a digital com-
puter and in real-time, the Lyapunov feedback-law (7) where
ρ is given by the quantum filter (15).

VII. APPENDIX: STABILITY THEORY FOR STOCHASTIC
PROCESSES

We recall here Doob’s inequality and Kushner’s invariance
theorem. For detailed discussions and proofs we refer to [8]
(Sections 8.4 and 8.5).
Theorem 4 (Doob’s Inequality): Let {Xn} be a Markov

chain on state space S. Suppose that there is a non-negative
function V (x) satisfying E (V (X1) | X0 = x) − V (x) =
−k(x), where k(x) ≥ 0 on the set {s : V (x) < λ} ≡ Qλ.

Then P

(

sup
∞>n≥0

V (Xn) ≥ λ | X0 = x

)

≤ V (x)
λ . Further-

more, there is some random v ≥ 0, so that for paths never
leaving Qλ, V (Xn) → v ≥ 0 almost surely.
For the statement of the second Theorem, we need to use
the language of probability measures rather than the random
process. Therefore, we deal with the space M of probability
measures on the state space S. Let µ0 = ϕ be the initial
probability distribution (everywhere through this paper we
have dealt with the case where µ0 is a dirac on a state ρ0 of
the state space of density matrices). Then, the probability
distribution of Xn, given initial distribution ϕ, is to be
denoted by µn(ϕ). Note that for m ≥ 0, the Markov property
implies: µn+m(ϕ) = µn(µm(ϕ)).

Theorem 5 (Kushner’s invariance Theorem): Consider
the same assumptions as that of the Theorem 4. Let µ0 = ϕ
be concentrated on a state x0 ∈ Qλ (Qλ being defined as in
Theorem 4), i.e. ϕ(x0) = 1. Assume that 0 ≤ k(Xn) → 0
in Qλ implies that Xn → {x | k(x) = 0} ∩ Qλ ≡ Kλ.
Under the conditions of Theorem 4, for trajectories never
leaving Qλ, Xn converges to Kλ almost surely. Also, the
associated conditioned probability measures µ̃n tend to the
largest invariant set of measures M whose support set is
in Kλ. Finally, for the trajectories never leaving Qλ, Xn

converges, in probability, to the support set of M .
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