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Iterative calibration method for inertial and magnetic sensors

Eric Dorveaux, David Vissière, Alain-Pierre Martin, Nicolas Petit

Abstract— We address the problem of three-axis sensor cali-
bration. Our focus is on magnetometers. Usual errors (misalign-
ment, non-orthogonality, scale factors, biases) are accounted for.
We consider a method where no specific calibration hardware is
required. We solely use the fact that the norm of the sensed field
must remain constant irrespective of the sensors orientation.
The proposed algorithm is iterative. Its convergence is studied.
Experiments conducted with MEMS sensors (magnetometers)
stress the relevance of the approach.

INTRODUCTION

Numerous military and civilian control applications re-
quire high accuracy position, speed, and attitude estimations
of a solid body. Examples range from Unmanned Air Vehi-
cles (UAV), Unmanned Ground Vehicles (UGV), full-sized
submarines, civil engineering positioning devices, to name
a few. A widely considered solution is to use embedded
Inertial Measurement Units (IMU). Accelerometers, gyro-
scopes signals can be used to derive position and orientation
information through a double integration process [11], [7].
This approach requires very high precision IMUs and well
calibrated sensors. An important challenge appears when
cost, space or weight constraints become stringent.

The recent progress in very low cost (less than 300 USD),
low weight (less than 100 g) and low size (less than 3 cm2)
IMUs have spurred a broad interest in the development of
IMU-based positioning technologies. These Micro-Electro-
Mechanical Systems (MEMS) IMUs appear to have quickly
increasing capabilities. Several manufacturers are announc-
ing new models under 4,000 USD capable of less than
20 deg/hr angular errors.

Yet, there still does not exist any reported experiment
proposing to estimate the position from such a low cost
IMU. In the literature, these IMUs are only used for ori-
entation (attitude) estimation (see e.g. [4], [12] or [3] for
an application to the control of mini-UAVs in closed loop).
Some tentative work (using higher-end IMUs) address the
problem of velocities estimation. In these cases, the speed
information is obtained from a GPS receiver using the
Doppler effect (see [11] for details on the quality of the
obtained measurements information) or from odometers (in
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the case of ground vehicles). Model based approaches permit
to reduce the dependence on GPS (see [15]).

For indoor pedestrian applications, GPS is almost totally
unavailable. Recently, a new approach called distributed-
magnetic-inertial navigation has been proposed [16]. It re-
lies solely on MEMS magnetometers, accelerometers and
gyroscopes and takes advantage of the unknown magnetic
field disturbances usually observed indoors to estimate drift
in velocities. This disturbances are evaluated using a three-
dimensional array of magnetometers. In details, an exper-
imental test bed was constructed that integrates an IMU
consisting of one three-axis accelerometer, one three-axis
gyroscope and one three-axis magnetometer and a set of eight
spatially distributed three-axis magnetometers. This complex
measurement system can produce meaningful data if and
only if all the sensors are well-calibrated and all the sampling
times are precisely known and accounted for (this last point
is discussed in [6]). Calibration of such three axis sensors
measuring a constant vector field is the subject of this paper.

In classic inertial navigation, there exist various methods
for three-axis sensors calibration. Most of them have an
important drawback in common. They require expansive
tools to acquire the data and compare them against a fixed
reference, and, quite often, a high degree of expertise to
process the data. Usually (see e.g. [5]), IMUs calibration
is achieved using a well-instrumented mechanical platform
(called calibration table) whose varying orientation is pre-
cisely measured. The platform is rotated to various precisely
controlled orientations which serve as comparisons against
the orientations determined from the IMU sensors. The
rotational velocities are precisely controlled as well. Mag-
netometers calibration is usually performed using a similar
method in magnetically shielded facilities to provide a known
uniform field (see e.g. [13]). Similarly, measurements are
then performed with precise knowledge of sensors orienta-
tion.

The recent development of micro-electro mechanical sys-
tems (MEMS) and other low-cost sensors has led to a
paradox. Due to their relatively low quality, these low-cost
sensors are in great need of a calibration procedure (much
more than higher-end sensors), but the cost of the traditional
calibration procedures may exceeds by many times the cost
of developing and constructing the sensors themselves, and
calibration may change over time. Moreover, as the cost of
the sensors are decreasing, their use is spreading. This yields
a great interest in developing new "simple but effective"
calibration procedures that do not require a high degree of
expertise nor an expensive hardware to be put into practice.
Lately, a new paradigm for such sensors calibration has

!"#$%&'(%)&*+++&,"$-./.$0.&"$&1.0#2#"$&3$4&,"$%/"5&3$4
6(%)&,)#$.2.&,"$%/"5&,"$-./.$0.
7)3$8)3#9&:;<;&,)#$39&1.0.=>./&?@A?(9&6BBC

!"#$%&'

CD(A?A'6''AE(D6AEFBCFG6H;BB&I6BBC&*+++ (6C@



emerged. Some procedures and algorithm have been pro-
posed (see [14], [8]) and a few for magnetometers calibration
(see [10], [9]). They all rely on the fact that the force field un-
der consideration (the gravitational field for accelerometers
and the Earth magnetic field for magnetometers) corresponds
to a sensed vector having, in theory, a constant and known
norm. The strategy is to identify and remove the measure-
ment errors. No specific calibration hardware is required.

The measurement errors are represented by constant co-
efficients of a (vector) affine transformation. The calibra-
tion problem is to find inverse affine transformations to
maximize a performance index. This index involves the
norm of the reconstructed data and a comparison against
its theoretical (scalar) constant value. In practice, the usual
algorithm (see [10], [9]) proceeds in two steps. First, an
exact linearization is performed by means of a change of
variables. Then, an inverse transformation is analytically (or
numerically) performed to obtain the desired variables. Inter-
estingly, the linearizing change of coordinates is not unique.
Several choices are possible and all yield some distorsion
in the cost function. For cases where the sensed field is
possibly substantially distorted (such as the above mentioned
indoor applications), irrelevant solutions can appear. They
may correspond to cases where the cost function is also
substantially distorted.

In this paper we propose to go back to an original
nonlinear formulation, close in spirit with those considered
in the calibration-table free methods (see [10], [9], [14],
[8]), and to treat it in an iterative way. This yields an
algorithm with interesting mathematical properties, which is
also very efficient in practice. More specifically, we address
the case of magnetometers which is of particular interest
for the distributed magnetometry applications mentioned
above, but the method has also been applied successfully
to accelerometers.

The article is organized as follows. In Section I, the
calibration problem is defined along with the mathematical
model used. The main magnetic disturbances (hard-iron,
soft-iron) are briefly recalled and modeled along with the
classic scale factors and misalignments. Notations required
for the study of the calibration algorithm are presented. We
also briefly present the distributed magnetometry test bed
experiments are conducted on. In Section II, the state-of-
the-art non-linear two-steps estimation algorithm and the
proposed method are described for sake of further compar-
isons. In Section III, properties of the proposed algorithm are
established. Experimental results are presented in Section IV.
Finally, we conclude and sketch future directions.

I. CALIBRATION PROBLEM

In this section, we expose the calibration problem for
a three-axis sensor. We present an error model and the
notations employed throughout the paper.

A. Notations

Consider a three-axis sensor. Its sampled measurements
are denoted !! (3×1 vector), where " stands for the sampling

index, whereas the actual value of the sensed field is denoted
#! (3× 1 vector). These measurements are collected in ! =
(!!)!=1,...$ , where $ is the total number of samples.

In order to improve the accuracy of raw sensor data !,
especially when dealing with low-cost sensors, mathematical
models must be built to take into account the various sources
of errors. Some, such as scale-factors, misalignment and the
resulting cross-coupling of axes, apply to all kinds of sensors
(gyroscopes, accelerometers, ...) while some others only
apply to a particular class of sensor (see below for the case of
magnetometers). To cover most cases of interest, we might
have simply considered a zero-bias vector %, scale-factors
represented by a diagonal matrix &, and misalignments terms
(accounting for harmonization errors only) represented by a
skew-symmetric matrix '

#! = &'!! + % with % = [%1 %2 %3]
%

' =

⎡

⎣

1 ( −)
−( 1 *
) −* 1

⎤

⎦& =

⎡

⎣

&1

&2

&3

⎤

⎦

However, due to the use of low cost sensors, substantial mis-
alignments and errors must be considered, and, additionally,
significant non-orthogonality between axes may arise. There-
fore, no possibly simplifying assumption on the magnitude
of the errors is made. All these factors are gathered into
a general matrix +, and a zero-bias vector ,. With these
notations,

#! = +!! +, (1)

In the case of magnetometers which is of particular
interest here, the specific sources of errors are mainly hard
and soft iron errors (see [10], [13]). Hard iron errors are
induced by permanent unwanted fields. They are generated
by ferromagnetic materials attached to the magnetometer
frame (typically the structure or the equipment installed near
the magnetometer, or even non-varying current in close-by
wires). They result in a bias. Soft iron errors are induced
by materials that generate magnetic fields in response to
externally applied magnetic fields. The model presented in
this paper takes only into account the proportionality of
this error to the applied external field. The constant of
proportionality is referred to as the magnetic susceptibility
of the material considered. Soft iron errors generally present
a hysteresis which is often small enough to be neglected.

Without any disturbances on the sensed field, the only
information available is that the actual norm of the sensed
field is constant during all the measurement acquisition
phase. This constant may be chosen equal to 1 without
any loss of generality1. The calibration problem consists in
determining + and , from the measurements ! knowing
that the actual norm of the sensed field #! is 1 for all
samples " = 1, ..., $ .

1This standpoint is different from numerous approaches found in the
literature [2] where the norm of the sensed field is obtained from dependable
look-up tables. No such information is available indoor.
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Fig. 1. Norm of the magnetic field before calibration for two distinct
magnetometers (one HMR2300 from HoneywellⓇand one included in the
MicrostrainⓇIMU). The errors are due to the sensor ill-calibration.

B. Obtaining experimental data

Measurements are obtained while the three-axis sensor
(magnetometer) is oriented in every possible direction. The
motion is usually relatively slow, but this is not a strict
requirement. Interestingly, no accurate measurements of the
sensor orientation is made during this data acquisition. This
makes the classically considered calibration table useless
in this data collection step. The Earth magnetic field and
the hard and soft iron errors are assumed constant during
the data collection process. Similarly, for accelerometers
calibration, the gravitational field would be also considered
constant. To avoid any temperature drift, the sensors have to
be warmed up before data acquisition. This warm-up phase
last approximatively 1 min. The data acquisition phase lasts
approximatively 25 min and a typical number of $ = 105

samples are acquired.

C. Experimental testbed

The experimental testbed used here is described in [6].
In summary, nine magnetometers (e.g. HMR2300 from
HoneywellⓇ) are attached to a board which can simulta-
neously rotate and translate in 3D. A MicrostrainⓇIMU is
located in the center of the device. A power-PC microcon-
troller (MPC555 from MotorolaⓇ) is used to retrieve the
data from all sensors and associate a time-stamp to each
measurement for sake of synchronization. The measurement
from all the sensors are gathered along with their timestamps
in a single message sent through a serial port to a remote
computer for post-treatment. Before the calibration process
is achieved, the norm of the sensed magnetic fields varies
significantly (see Figure 1 where the norms of the $ samples
are plotted).

II. CALIBRATION METHODS

A. Non-linear, two-step estimation algorithm

Here, we briefly recall the two-step calibration algorithm
originally proposed in [10], [9]. As the norm of the sensed

field is assumed constant ∥#!∥2 = 1, for all " = 1, ..., $ ,
the sensed field vectors !! should all be located on the
unit sphere. Due to errors, this is not the case, as already
discussed. It is desired to find + and , such that the
values + (!! −,) are as close as possible to this sphere.
In details, + and , have to yield a fair approximation of
∥+ (!! −,)∥2 = 1 for every sample " = 1, ..., $ . To this
end, + and , are defined as the minimizers of the following
cost function (2)

/ (+,,, !) =
$
∑

!=1

(

∥+ (!! −,)∥2 − 1
)2

(2)

Once expanded, it becomes

/ (+,,, !) =
$
∑

!=1

(

!%! +
%+!! − 2,%+%+!! + (,%+%+, − 1)

)2

Here, + is sought after under the form of an upper triangular
matrix, implicitly leaving out any rotation matrix which
leaves the cost g invariant. The parameters to be determined
through the minimization procedure are the components of
+ and ,, i.e. 9 parameters. The cost function (2) is quartic
in these parameters. Yet, as proposed in [10], [9], a two-step
estimation using a least squares method can be performed.
Note

+ =

⎛

⎝

011 012 013
0 022 023
0 0 033

⎞

⎠ , , =

⎛

⎝

11
12
13

⎞

⎠

First, the following change of variables is performed
⎧
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0 =0211
1 =0212 + 0222
2 =0213 + 0223 + 0233
3 =2011012

4 =2012013 + 2022023

5 =2011013

/ =− 2 (011 + 312 + 513)

ℎ =− 2 (311 + 112 + 413)

" =− 2 (511 + 412 + 213)

7 =0121 + 1122 + 2123 + 231112

+ 241213 + 251113 − 1

These last 10 variables are normalized to 9 variables
by considering the 9-dimensional vector of ratios 8 =
(0/1, 2/1, 3/1, 4/1, 5/1, //1, ℎ/1, "/1, 7/1). Then, a new op-
timization problem (3) is formulated. This new (quadratic)
problem is solved by a least-squares method. Finally, inverse
algebraic transformations permit to recover the 9 coefficients
of + and , from the 9 ratios. The optimization problem (3)
is not equivalent to the minimization of the original cost
function / in (2). The reason why is that, as appeared in
the introduction of the vector or ratios 8, the (not unique)
normalization of the variables yielding the reduction to a
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∑

!=1

∥

∥

∥

∥

!2!1
!2!2

⋅
0

1
+
!2!3
!2!2

⋅
2

1
+
!!1 ⋅ !!2
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1
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4

1
+
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5

1
+
!!1
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⋅
/

1
+
!!2
!2!2

⋅
ℎ

1
+
!!3
!2!2

⋅
"

1
+

1

!2!2
⋅
7

1
− 1

∥

∥

∥

∥

2

(3)
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Fig. 2. Norm of the magnetic field calibrated by the non-linear, two-step
algorithm presented in Section II-A.

Magneto IMU Raw data Calibrated data

Mean 5.0993274− 1 5.1399274− 1
Deviation 1.0770454− 2 1.2239694− 3
Samples 120000 120000
Time - 0::8;<.1.2 =
HMR2300 Raw data Calibrated data

Mean 5.0905924− 1 5.1399774− 1
Deviation 9.8460394− 3 6.8788124− 4
Samples 120000 120000
Time - 0::8;<.1.2 =

Fig. 3. Raw data and calibrated data (through the 2-step algorithm) for
two magnetometers.

classic least-squares problem, has introduced a non uniform
weighting of the various measurements (see Equation 3).
In theory, it would have been possible to consider any
of the 9 variables 0, 1, ..., 7 to normalize the problem.
Similarly, this would have led to nonequivalent optimization
problems though. The original optimization problem with
cost function (2) has thus been “distorted”. In some cases
this can be a problem. This point is illustrated later in this
paper (see Section IV).

Results: Figure 2 presents results obtained with this
algorithm applied on the raw data shown in Figure 1.
The statistics of both raw and calibrated data sets of a
magnetometer HMR2300 and of the magnetometer of the
IMU are presented in Figure 3. The reported time is the
time elapsed during the computation of the algorithm on a
Intel Core 2 Duo 2.6GHz.

B. Proposed algorithm

Instead of considering linearizing changes of variables,
we propose to solve an optimization problem by means of
iterations of least square problems and successive partial
calibration of data.

Consider a step in the iterations, say the >'ℎ. Following
the idea of [10], [9], we wish to account for the fact that
the sensed field is constant. Consider the $ data !!,),
" = 1, ..., $ , which are initialized at step > = 0 with the
measurements !!. First, we formulate the following cost to
be minimized

ℎ(+,,, >) =
$
∑

!=1

∥

∥

∥

∥

(+!!,) +,)−
!!,)
∥!!,)∥

∥

∥

∥

∥

2

(4)

This function is quadratic with respect to the coefficients
of + and ,. In view of algorithmic minimization, this is an
advantage over the cost in (2) which is quartic with respect to
these same variables. We note the uniquely defined solution

(+)+1, ,)+1) = argmin
*,+

ℎ(+,,, >)

which can be obtained by a classic least-squares approach.
Then, we use these matrices to update the data as follows

!!,)+1 = +)+1!!,) +,)+1 (5)

After > such iterations, a matrix +̃) and a vector ,̃) are
obtained recursively by

+̃) = +)+̃)−1

,̃) = +),̃)−1 +,)

They relate !!,) to the raw measurements !!. In details,

!!,) = +̃)!! + ,̃) (6)

We can now summarize the method
Algorithm 1 (Proposed algorithm):

1) Initialize > = 0, !!,0 = !! for all " = 1, ..., $
2) Compute (+)+1, ,)+1) = argmin*,+ ℎ(+,,, >) by a

least-squares method (where h is given in Equation 4)
3) Update the data !!,)+1 = +)+1!!,) +,)+1

4) Increase > by 1 and return to step 2

A limited number ? of iterations is usually considered. Then
the data !!,, , " = 1, ..., $ are the "calibrated data".

In words, this algorithm solves a sequence of least square
problems in which the input data are iteratively calibrated
using the successively determined calibration matrices and
vectors.

In this method, a very natural cost function (4) is formu-
lated. It is close in spirit to (2), but can be handled differ-
ently. As will now appear, this also brings some interesting
properties.
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III. PROPERTIES OF THE PROPOSED ALGORITHM

A. Calibration improvement and alignment

We now prove two properties of the proposed algorithm 1.
For sake of conciseness, we note !) = (!!,))!=1,...,$ .

Proposition 1 (calibration improvement): The data gener-
ated by the Algorithm 1 satisfy the following decreasingness
property:

5(!)+1) ≤ 5(!))

where

5(!)) =
$
∑

!=1

(1− ∥!!,)∥)2

Further, (5(!))))∈ℕ decreases and is positive, so it converges
to a limit ℓ ≥ 0.

This property shows that, in the sense detailed by the
function 5 , the data are better and better calibrated as the
iterations are pursued.

Proof: By construction, +) and ,) are such that
ℎ(+), ,), >) is minimal. In particular, one can compare them
against the identity matrix and the zero vector

ℎ(+)+1, ,)+1, >) ≤ ℎ(A3, 0, >)

Replacing +)+1!!,) +,)+1 by !!,)+1 yields

$
∑

!=1

∥

∥

∥

∥

!!,) −
!!,)

∥!!,)∥

∥

∥

∥

∥

2

≥
$
∑

!=1

∥

∥

∥

∥

!!,)+1 −
!!,)
∥!!,)∥

∥

∥

∥

∥

2

(7)

$
∑

!=1

(

!!,) ⋅
(

1−
1

∥!!,)∥

))2

≥
$
∑

!=1

∥

∥

∥

∥

!!,)+1 −
!!,)
∥!!,)∥

∥

∥

∥

∥

2

which gives, by triangle inequality on the right term,

$
∑

!=1

(1− ∥!!,)∥)2 ≥
$
∑

!=1

(

∥!!,)+1∥ −
∥

∥

∥

∥

!!,)
∥!!,)∥

∥

∥

∥

∥

)2

(8)

Finally,

5(!)) ≥ 5(!)+1)

which concludes the proof.

Proposition 2 (alignment): The data generated by Algo-
rithm 1 satisfy the following alignment property

lim
)→+∞

(

!!,)+1

∥!!,)+1∥
−

!!,)
∥!!,)∥

)

= 0

This property shows that, as the iterations are pursued, the
calibrated data make little progress in orientation.

Proof: First, we perform a preliminary decomposition
of the objective function ℎ

ℎ(>) ≜ℎ(+)+1, ,)+1, >)

=
$
∑

!=1

(

∥!!,)+1∥2 + 1− 2
⟨!!,)+1∣!!,)⟩

∥!!,)∥

)

which can also be written under the form

ℎ(>) = 5(!)+1) +
$
∑

!=1

(

2 ∥!!,)+1∥ − 2
⟨!!,)+1∣!!,)⟩

∥!!,)∥

)

(9)

= 5(!)+1) + 2
$
∑

!=1

∥!!,)+1∥
(

1−
〈

!!,)+1

∥!!,)+1∥
∣
!!,)
∥!!,)∥

〉)

(10)

Consider again (7) and (8), one obtains

5(!)) ≥ ℎ(>) ≥ 5(!)+1)

From Proposition 1, we know that 5(!)) converges to a
limit ℓ as > → +∞. Therefore, from the preceding inequal-
ities, we conclude that ℎ(>) converges to the same limit.
Then, from Equation 9, we deduce

lim
)→+∞

(

$
∑

!=1

∥!!,)+1∥
(

1−
〈

!!,)+1

∥!!,)+1∥
∣
!!,)
∥!!,)∥

〉)

)

= 0

(11)
All the terms under the

∑

sign are positive or zero, therefore
we conclude that, ∀" = 1, ..., $ ,

lim
)→+∞

(

∥!!,)+1∥
(

1−
〈

!!,)+1

∥!!,)+1∥
∣
!!,)

∥!!,)∥

〉))

= 0

(12)

lim
)→+∞

(

∥!!,)+1∥
〈

!!,)+1

∥!!,)+1∥
∣
(

!!,)+1

∥!!,)+1∥
−

!!,)
∥!!,)∥

)〉)

= 0

(13)

Now, to conclude, note

B!,) =
!!,)+1

∥!!,)+1∥
−

!!,)
∥!!,)∥

and decompose it under the form

B!,) = (1− &!,))
!!,)+1

∥!!,)+1∥
− %!,)

!⊥!,)+1
∥

∥

∥
!⊥!,)+1

∥

∥

∥

where !⊥!,)+1 is directly orthogonal to !!,)+1, and with

&2
!,) + %2

!,) = 1

We deduce from (13) that

lim
)→+∞

&!,) = 1, lim
)→+∞

%!,) = 0

Finally, this gives

lim
)→+∞

(

B!,) =
!!,)+1

∥!!,)+1∥
−

!!,)
∥!!,)∥

)

= 0

which concludes the proof.

B. Illustrative example

To illustrate the presented algorithm, we use it on a
very small set of 12 planar data. Initially, they are all
lying on a sharp ellipse (plotted in red in Figure 4). This
scenario corresponds to strong scale factors, moderate bias,
and misalignment. The algorithm is run over 4 iterations.
Results are reported on top of each other in Figure 4. As
can be observed, the data are quickly calibrated, i. e. they
all get close to the unit circle within this small number of
iterations.
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Fig. 4. Evolution of the calibration over 4 iterations of the proposed
algorithm. Measurements are in red and the unit circle in blue. The four
iterations of the calibration algorithm are represented by black crosses.

C. A special case: 2 dimensional unbiased calibration prob-

lem

The previously presented propositions provide theoretical
insight into the progression of the algorithm along the itera-
tions: the data are better and better calibrated (Proposition 1),
and make few progress in rotation (Proposition 2). It is in
fact possible to go a little bit further in the analysis. Let
us now focus on a specific 2 dimensional case (i. e. where
the measurements are done in 2D), and further, let us make
the following simplifying assumptions. We consider that the
measurements constitute a closed and centered ellipse (i.e.
that there is a continuum of data, and that a preliminary
debiasing has been performed). The measurements are noted
!()), ) ∈ [0, 2C[, and the iteratively calibrated data are !)()),
) ∈ [0, 2C[. Then, we assume that no misalignment is present
and consider only scale factors. Therefore, the measurements
satisfy

# ()) = +!())

where + is an unknown diagonal matrix. By analogy to
equation (4), the cost to be minimized at iteration > is

ℎ(+, >) =

∫ 2-

0

∥

∥

∥

∥

+!)())−
!)())

∥!)())∥

∥

∥

∥

∥

3)

Note +)+1 the solution of this minimization problem, i.e.

+)+1 = arg min
* diagonal

ℎ(+, >)

Iteratively, the data are calibrated using !)+1()) =
+)+1!)()). At step >, let us note the inverse calibration
equation

!)()) =

(

&) 0
0 %)

)

# ())

With the notation

5(!)) =

∫ 2-

0

∣

∣

∣
1− ∥!)())∥2

∣

∣

∣
3)

a reasoning similar to the one in the proof of Proposition 2
directly yields

5(!)) ≥ ℎ(+)+1, >) ≥ 5(!)+1)

Further,

5(!)) = 2C

(

1 +
&2
)

2
+
%2
)

2

)

− 2

∫ 2-

0

∥!())∥ 3)

= 2C

(

1 +
&2
)

2
+
%2
)

2

)

− 2D (&, %)

(14)

where D (&, %) is the perimeter of an ellipse having 1/&)

and 1/%) as semi-axis. We wish to show that the inverse

calibration matrix

(

&) 0
0 %)

)

tends to the identity as k

tends to infinity, i.e. that the proposed algorithm converges
to exact calibration of the data. Similarly to Proposition 1,
one can readily show that 5 decreases along the iterations
and goes to a limit ℓ ≥ 0. Using an estimate for (14), it is
possible to deduce convergence information on &) and %).
To simplify the exposition, let us first consider that this limit
is ℓ = 0.

Consider in equation (14), 5 as a function of (&), %)). It
can be proved that 5 has (1, 1) as unique local minimum (in
a rather large neighborhood) and that its value there is 0. To
prove that, one can simply use Peano’s approximation of the
perimeter of an ellipse [1] reproduced in (17). Accounting for
the approximation implied by this formula, one can compute
the following exact decomposition of 5 under the form

5(&), %)) = 51(&), %)) + 52(&), %))

where 52(&), %)) is strictly positive away from &) = %)
and zero there, while 51, given in (18), is convex on the
considered domain [3/4 4/3]2 (its Hessian is given in (19)),
strictly positive away from (1, 1) and zero there. Therefore,
(1, 1) is the only zeroing point of 5 , and one can conclude
that (&), %)) converges to (1, 1). This estimate reveals handy
in experimental results where ℓ can be evaluated numerically.

Now, let us extend the analysis to the case ℓ > 0. A local
expansion of 5 for (&, %) about (1, 1) yields the following
inequalities

(

&− 1 % − 1
)

⎛

⎝

3 1
1 3

⎞

⎠

⎛

⎝

&− 1
% − 1

⎞

⎠

16
≤ ℓ

ℓ ≤

(

&− 1 % − 1
)

⎛

⎝

3 1
1 3

⎞

⎠

⎛

⎝

&− 1
% − 1

⎞

⎠

4

and we deduce the estimation, where 3 is the distance of
(&, %) to (1, 1),

√
2

4
3 ≤

√
ℓ ≤ 3 (15)

meaning that both &) and %) approach 1 as the square root
of ℓ approaches 0.
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Distortion matrices: Y = Ay+ B
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Fig. 6. Evolution of the standard error S over a few iterations of the
iterative algorithm proposed and comparison with the results obtained with
the 2-step algorithm

IV. EXPERIMENTAL RESULTS

Several experiments have been conducted using the hard-
ware presented in Section I-C. To evaluate the performance
of the algorithms, the standard error S is used.

F(!) =
1

$ − 1
⋅

$
∑

!=1

(∥!!∥ − 1)2 (16)

Table 5 shows some results obtained with simulated data
and with less disturbed real data from a magnetometer
(HMR2300 from HoneywellⓇ). It appears that the calibra-
tion process allows significant improvement compared to
the raw data. The standard error S used to evaluate the
various algorithms is better for the proposed iterative one.
When cross-coupling terms are small, on the one hand,
improvement brought by this algorithm get smaller, but, on
the other hand, fewer iterations are needed and computation
time is faster.

To underline the possibly erratic behavior of the 2-step
algorithm in extreme cases (see Section II-A ), we consider a
set of 1700 perfectly scaled unbiased 3D data, and introduce
a strong misalignment which is varied from 0 to 40. As can
be seen in Figure 7, when the misalignment term (one of
the upper triangular part of matrix A) reaches the values
of 20 (approximately), the 2-step algorithm ends up with
ill-calibrated data. Both the standard error and the mean
value are inconsistent with reality. Interestingly, the proposed
algorithm keeps working properly.

Finally, accuracy of the proposed method can be investi-
gated. By increasing the number of iterations, the accuracy
is enhanced. This point is visible in Figure 6. In this plot,
the log of the standard error is plotted for various numbers
of iterations, giving an idea of the rate of convergence. It
appears in the considered scenario (1700 simulated data with
matrix and bias reported in the figure), that the proposed
algorithm outperforms the 2-step method as soon as the
number of iterations is larger than 10.
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-5

0

Standard error S

L
o
g
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)
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0

5

10

15

Mean Interative algorithm
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Fig. 7. Erratic behavior. A set of 1700 perfectly scaled unbiased 3D
data is considered, and a strong misalignment which is varies from 0 to
40 is introduced. Mean and standard error S are given for both the 2-step
algorithm (in red) and the proposed one (in blue).

V. CONCLUSION

In this paper, we have introduced a new algorithm for
calibrating three-axis sensors. This iterative method makes
a repeating use of least-squares algorithm. As has been
demonstrated, it proves very effective when treating large
sets of uncalibrated data. Certainly, the numerical efficiency
of the method can be improved upon, by reusing key
information from one iteration to the next for example. We
also believe that more theoretical results can be obtained.
Several points remains to be explored, in particular the
magnitude of the residual error seems to be possible to
estimate. Finally, an extension of the proposed algorithm is
currently considered. It aims at calibrating at once an array of
sensors by including corrections of the misalignment between

the sensors measuring the same force field. These are current
directions of future work.
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APPENDIX

Peano’s approximation of the perimeter of the ellipse is
always over-estimating the true value. Here is the approxi-
mation:

D (&, %) ≈ C

(

3

2
(&+ %)−

√

&%

)

(17)

which yields to

51(&, %) = 2C

(

1 +
&2

2
+
%2

2

)

− 2C

(

3

2
(&+ %)−

√

&%

)

(18)
The hessian of 51 is the following one

∇251(&, %)

2C
=

(

1− .

4/
√
/.

1

4
√
/.

1

4
√
/.

1− /
4.

√
/.

)

(19)
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