
HAL Id: hal-00465617
https://minesparis-psl.hal.science/hal-00465617

Submitted on 22 Mar 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analysis of the influences of uncertainties in input
variables on the outcomes of the Heliosat-2 method

Bella Espinar, Lourdes Ramirez, Jesus Polo, Luis Zarzalejo, Lucien Wald

To cite this version:
Bella Espinar, Lourdes Ramirez, Jesus Polo, Luis Zarzalejo, Lucien Wald. Analysis of the influences
of uncertainties in input variables on the outcomes of the Heliosat-2 method. Solar Energy, 2009, 83,
pp.1731-1741. �10.1016/j.solener.2009.06.010�. �hal-00465617�

https://minesparis-psl.hal.science/hal-00465617
https://hal.archives-ouvertes.fr


Espinar, B., Ramírez, L., Polo, J., Zarzalejo, L.F., Wald, L., Analysis of the influences of uncertainties in 
input variables on the outcomes of the Heliosat-2 method. Solar Energy, 83, 1731-1741, 2009. 
doi:10.1016/j.solener.2009.06.010

ANALYSIS OF THE INFLUENCES OF UNCERTAINTIES IN INPUT 

VARIABLES ON THE OUTCOMES OF THE HELIOSAT-2 METHOD

Espinar, B.1, Ramírez, L. 1, Polo, J.* 1, Zarzalejo, L.F. 1, Wald, L. 2

1 Solar Platform of Almería (Energy Department, CIEMAT), Ctra. Senés s/n, 

04200 Tabernas (Almería), Spain.
2 Centre Energétique et Procédés, Mines ParisTech, 

BP 207, 06904, Sophia Antipolis cedex, France.

Abstract

The Heliosat-2 method, which employs satellite images to assess solar irradiance at ground level, is one 

of  the most  accurate  among the available operational  methods.  Its  input variables  have uncertainties 

which impact on the final result. The General Law of Uncertainty Propagation is employed to analyze the 

impact of these uncertainties on a single pixel with Meteosat-7 inputs in various stages, beginning with 

the sensitivity coefficients  and the changes induced in the clear-sky index (KC) by each independent 

variable.  Once  these  coefficients  are  known,  the  partial  combined  standard  uncertainty  (CSU)  is 

calculated for KC from each independent variable and albedo. Finally, the total CSU of KC is calculated. 

All  of the results are in agreement  and show that  the most  influential  variables  in the uncertainty of 

estimation of cloudy skies are, in this order, the Linke turbidity factor (54% of KC value), terrain elevation 

(33%), the calibration coefficient of the satellite sensor (13%) and the ground albedo (5%). What causes 

the initial uncertainty in the ground albedo is its variation over time and the difficulty in assessing it from 

a  reflectance  time-series  for  mixed  clear  and  cloudy  skies.  The  Linke  turbidity  factor  is  the  most 

influential variable on the width of the uncertainty interval, not only because of its own uncertainty (17% 

in this study), but because it is also used in numerous intermediate calculations. For clear skies, the partial 

CSUs are considerably lower, except for ground albedo (5% also).
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NOMENCLATURE

CC Calibration coefficient of the satellite sensor (W m-2 sr-1) 
CSU Combined standard uncertainty
DC Digital count 
G Global solar irradiance on horizontal surface (W m-2)
GC Clear-sky global solar irradiance on horizontal surface (W m-2)

I 0
met Total irradiance in the visible channel of the satellite sensor (W m-2), which is the result of 

the convolution of the spectral distribution of the solar constant by the radiometer spectral 
sensitivity curve
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KC Clear-sky index (unitless)
L Radiance received by the satellite sensor (W m-2 sr-1)
n Cloud index (unitless), this quantity is specific to the Heliosat method
SSI Surface solar irradiance
T Atmospheric path transmittance from the Sun to the Earth’s surface (unitless)
Tsat Atmospheric path transmittance from the Earth’s surface to the satellite sensor (unitless)
TL Linke turbidity factor (unitless)
z Elevation of terrain above mean sea level (m)
α Solar elevation angle (rad)
α sat Satellite elevation angle (rad)
ρ * Albedo or reflectance observed by the satellite sensor (unitless) 
ρ atm Atmospheric albedo or reflectance (unitless)
ρ ef Effective cloud albedo or reflectance (unitless)
ρ g Ground albedo or reflectance (unitless)
ρ gref Reference ground albedo or reflectance (unitless)
ρ n Albedo or reflectance of very bright clouds; also called cloud albedo (unitless)
ρ α Apparent albedo or reflectance of the Earth’s surface (unitless)

1. Introduction

Solar radiation is one of the best alternative energy sources, since it is permanent, abundant and widely 

distributed  over  the  face  of  the  Earth  (Şen,  2004).  Solar  radiation  is  also  a  required  environmental 

variable  in  many  applications  (Zarzalejo,  2006),  such  as  weather  prediction,  forest  fire  prevention, 

calculation of the potential evapotranspiration (Mahmood and Hubbard, 2005; Bois et  al. 2008), crop 

performance (Reuter et al., 2005), and climate change (Speranza et al., 2003), among others.

The superiority of satellite data over interpolation of radiometric network measurements for estimating 

the  surface  solar  irradiance  (SSI)  has  been  demonstrated  (Perez  et  al.,  1997;  Zelenka  et  al.,  1999). 

Evaluation of the SSI requires continuous observation due to seasonal and weather variations in radiant 

flux  intensity  received  on  the  surface.  Geostationary  meteorological  satellites,  which  record  several 

images of the same terrestrial zone per hour, provide a very good means of estimating SSI (e.g., Perez et 

al., 2002 for the GOES satellite; Beyer et al., 1996; Rigollier et al., 2004 for Meteosat). The Heliosat 

method is one of the most precise methods for estimating SSI from satellite data (Grüter et al., 1986; 

Raschke et al., 1991). The new version, Heliosat-2, among other advantages, has even higher accuracy 

(Rigollier et al., 2004), and its use is therefore widespread in the scientific community in many projects 

involving the use of satellite images to estimate solar  radiation, as  mentioned by Vera (2005) in his 

review  of  recent  scientific  literature.  The  software  is  available  on  the  Internet  since  2004 

(www.helioclim.net) and has been downloaded more than 2000 times since then.

Heliosat-2 integrates the knowledge gained from experience in using the original Heliosat method. In the 

former version, various empirical parameters were determined statistically with the aid of simultaneous 

ground measurements, (Cano et al., 1986; Diabaté et al., 1988, 1989b; Moussu et al., 1989). The current 

version  expresses  these  parameters  using  physical  laws,  making  it  applicable  anywhere  on  Earth 

http://www.helioclim.net/


(Rigollier et al., 2004). These variables are found for all of the pixels in the image and must be known 

with the least possible uncertainty, since the uncertainty in the method’s results depends on them. In this 

sense,  this uncertainty analysis finds out  which variable or variables most  influence the total  method 

uncertainty, and must therefore be known  a priori with the least uncertainty possible. It also suggests 

some improvements in the method that would achieve a more accurate assessment of the SSI. This would 

be  very  advantageous  in  solar  energy  applications  where  irradiance  estimations  are  often  critical  in 

selecting profitable sites, and guaranteeing solar energy projects. 

To perform the uncertainty analysis, standard procedure ISO 1995 is employed, tailoring it to the case of 

the Heliosat-2 method which is described along with its input variables. Once the framework for analysis 

is laid, the variables are instantiated to produce a numerical example and estimate the influences of the 

respective input variables on the Heliosat-2 method outputs.

2. Description of the Heliosat-2 method 

The Heliosat-2 method is based on the principle that attenuation of the downwelling shortwave radiation 

by the atmosphere over a pixel is determined by the magnitude of change between the reflectance that 

should be observed under a very clear sky and that currently observed (Pastre, 1981; Cano et al., 1986; 

Stuhlmann, et al., 1990). Heliosat-2 is based on the fundamentals of its predecessor, the Heliosat method 

(Cano et al., 1986; Diabaté et al., 1988, 1989b), that is, the computation of a cloud index n from apparent 

albedo (ρ α ), ground albedo (ρ g), and albedo of very bright clouds (ρ n). The current version of Heliosat 

includes such features as (Rigollier et al., 2004) image calibration for any change in the satellite sensor 

(Lefèvre et al. 2000; Rigollier et al., 2001, 2002), adoption of a clear-sky radiation model (Rigollier et al., 

2000), computation of albedo values (ρ α  , ρ g and ρ n) (Lefèvre et al., 2002), use of the clear-sky index 

(KC) (Beyer el al., 1996), and the relationship between the cloud index  n and  KC (Rigollier and Wald, 

1998).

In Heliosat-2, the global SSI, G, is estimated using KC and the global SSI under clear skies, GC, using the 

ratio:

KC=
G

GC
(1)

where  GC is calculated using the clear-sky model proposed in the most recent version of the European 

Solar Radiation Atlas (ESRA, 2000; Rigollier et al., 2000, revised in Geiger et al., 2002). The clear-sky 

index  KC is related to the cloud index,  n, by the following parametric expression (Rigollier and Wald, 

1998), shown in Figure 1:



This uncertainty study concentrates on the linear range, -0.2 ≤ n < 0.8, because it represents most of the 

cloudy conditions. For each pixel in the image,  n is estimated using the apparent  albedo  ρ α  ,  cloud 

albedo ρ n and ground albedo ρ g, expressed as: 

n=
ρα− ρg

ρn−ρg
(3)

These  values  are  evaluated  by  using  radiance  received  by  the  satellite  sensor  (L)  and  additional 

information, such as the calibration  coefficient  of the sensor itself (CC), the maximum total irradiance 

I 0
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 that can be detected in the visible channel of the satellite sensor, the Linke turbidity factor (TL) and 

the geographic variables that define the pixel of interest: latitude, longitude and terrain elevation. This 

information is used to estimate the atmospheric contribution by its reflectance (ρ atm) and transmittance 

(T) from the Sun to the Earth’s surface and the transmittance (Tsat) from the Earth’s surface to the satellite 

sensor. T and Tsat are estimated using the same equations, with the solar elevation angle α  for the former 

and the satellite elevation angle α sat for the latter. So the apparent albedo of the Earth’s surface (ρ α ) is 

related to the albedo observed by the satellite sensor (ρ ∗) by:

ρα=
ρ−ρatm 

T α,T L  T sat α sat ,T L 
(4)

and the albedo of very bright clouds (ρ n) is calculated the same way, but using the effective cloud albedo 

(ρ ef):

ρn=
ρef−ρatm 

T α,T L  T sat α sat ,T L 
(5)

The ground albedo ρ g is the contribution to ρ α  that is attributed exclusively to the Earth’s surface. In 

principle, its value is the minimum in a series of  ρ α,  since a low ρ α  means absence of clouds in the 

pixel of interest. There are different possible strategies for selecting ρ g (Rigollier et al., 2004; Lefèvre et 

al., 2007), including restrictions for an acceptable threshold and for the maximum permissible change 

from one image to the next (Cano et al., 1986; Moussu et al., 1989; Lefèvre et al., 2002), which determine 

the uncertainty intrinsic to ρ g. This strategy is discussed further.

3. Methodology 

3.1 General methodology

The General Law of Uncertainty Propagation (ISO, 1995) is used to study the uncertainty in the Heliosat-

2 method. The uncertainty of an independent variable xi –also called the standard uncertainty– is denoted 

by u(xi). It can be calculated by means of the distribution function of the variable, that is, by statistical 



analysis of a series of observations, or it can be estimated by non-statistical methods, such as external 

information, for example, observer experience. The ISO standard makes a distinction between these two 

cases in the nomenclature, labeling them “Type A uncertainty” and “Type B uncertainty” respectively. In 

this  analysis,  uncertainties  of  all  independent  variables  are  Type B,  based  on  knowledge  gained  by 

previous experience. A normal distribution is assumed for all the variables under study. 

If the variable y is deduced from N input variables with a functional relationship:

y = f(x1,x2,..xN.)(6)

then the combined standard uncertainty of y (hereafter CSU) is denoted by uc(y)x1,...,xN. The CSU results 

from combining the uncertainties of these N input variables. For independent variables  xi,  uc(y)x1,...,xN  is 

calculated as the following positive square root: 

uc  y x1, . . .xN=∑i=1

N

 ∂ f
∂ x i


2

u2 x i  (7)

The partial derivative ∂f/∂xi, also called the sensitivity coefficient, describes how much estimated y varies 

with changes  in  input  xi (ISO,  1995).  Let  the  change in  a  variable  be denoted  by the  symbol Δ.  In 

particular, the change produced in y by a small change in the variable xi, is calculated as 

 Δy xi= ∂ f
∂ x i

 Δx i  (8)

Note that Equation (8) is the formulation of the former General Law of Error Propagation (ISO 1995, 

entry E.3.2) which is no longer recommended. If this Δxi is the same as its uncertainty, u(xi), then: 

 Δy xi
= ∂ f

∂ x i
 u xi  (9)

Thus (Δy)xi can be used to calculate uc(y)xi. If variables xi are independent of each other, then the changes 

in y are also independent. All partial derivatives are evaluated in the corresponding input variable value 

and the chain rule of derivatives is applied when needed.

Relative values are also commonly used. The relative change induced in the measurand can be calculated 

as Δy / y , and the relative CSU propagated by x1,..., xN, written as ucR(y)x1,...xN :

ucR  y x1 . ..xN
=

1
y ∑i=1

N

 ∂ f
∂ x i


2

u2 x i =
1
y ∑

i=1

N

 Δy  xi
2 (10)

In  the  following,  the  term  partial  CSU is  understood  as  the  uncertainty  caused  by  one  or  several 

independent variables only. If all of them enter in the calculation, then it is the total CSU. 

For the clarity of this paper, it should be noted that the term uncertainty is not related to measurement or 

estimation accuracy, but, by definition of the  International vocabulary of basic and general terms in  



metrology (ISO 1993,  entry 3.9)  is  “…a parameter  associated  with the result  of a  measurement  that 

characterizes  the  dispersion  of  the  values  that  could  reasonably  be  attributed  to  the  measurand”. 

Therefore,  the  uncertainty  of  a  variable  is  not  necessarily  an  indication  of  the  likelihood  that  the 

measurement is near the value of the measurand. It is simply an estimate of the likelihood of nearness to 

the best value that is consistent with presently available knowledge (ISO 1995). This study only explains 

the uncertainty of the clear-sky index, KC, calculation method. Some characteristics of satellite-retrieved 

data, such as different temporal and spatial scales, have to be considered when used instead of ground 

measurements. In fact, satellite data are instantaneous measurements over a small solid viewing angle, 

while ground measurements are integrated over time and the solid angle of 2π  (Noia et al., 1993). So, the 

model has an intrinsic uncertainty due to this kind of consideration, which is, however, out of the scope of 

this study.

In the following sections, the changes induced in  KC are calculated using Equation (9), one by one for 

each input variable. Since the chain rule of derivatives is applied, it is possible to separate this calculation 

for each albedo in Equation 3, keeping in mind that ∆ (y)xi is the sum of two contributions, by ρ α  and 

ρ n in this case. If G and G* respectively, denote the actual and estimated SSI, KC and KC  denote the 

actual and the estimated value of the clear-sky index, respectively, and ∆ KC is the change induced in KC 

when the input variables have changed, then:

G =GC KC =GC  KC +ΔK C =G+GC ΔK C (11)

 taking into account that this paper focuses only on ∆ KC, as KC is the parameter provided by Heliosat-2. 

Though GC is necessary to calculate G from KC, this study does not deal with ∆ GC as GC is calculated by 

a clear-sky model not included to Heliosat-2. Then the change induced in  G is deduced from Equation 

(11) as:

ΔG=GC ΔKC (12)

and the percentage relative change is calculated as:

ΔG
G

100=
GC ΔKC

G
100=

ΔKC

KC

100 (13)

3.2 Analysis of the uncertainties of Heliosat-2

The independent input variables in the Heliosat-2 are the image digital count (DC), the satellite sensor 

calibration coefficient  (CC) because it  changes over time, the solar elevation angle (α ),  the satellite 

elevation angle (α sat), the Linke turbidity factor (TL), the terrain elevation (z) and the ground albedo (ρ g). 

From these input variables, Heliosat-2 computes ρ α  for each pixel, ρ n, and then estimates n, KC and G. 

The aim is to find out the total CSU induced in the estimation of KC and G with this method and which 

independent variable most contributes to it. This is found by computing the changes induced in n by the 

uncertainties in each of the input variables. From Equation (2), 

 ΔKC xi=− Δn xi (14)and 



uc K C xi =uc n xi

(15) where the negative sign disappears because CSU is always defined as positive, as mentioned above. 

Change induced in KC by the uncertainty in apparent albedo ρ α

The apparent albedo is determined as a function of the following variables (Rigollier et al., 2004):

ρ =ρ CC,DC,α 

ρatm =ρatm α,α sat ,T L 

T=T α,T L ,z 

T sat =T sat α sat ,T L ,z  (16)

Therefore, the change induced in KC  (or n) by ρ α  due to the sum of all its input variables, expressed 

as  ΔKC 
ρα
= ΔKC CC,DC,α,αsat,TL,z , is calculated by adding the changes induced by the uncertainty 

of each of these variables. That is,

 ΔKC 
ρ α=− Δn

ρ α
=

=− ∂ n
∂ ρα

{ ∂ ρα

∂CC  u CC  ∂ ρα

∂ DC  u  DC ∂ ρα

∂ α  u  α }

 ∂ ρα

∂α sat
 u α sat  ∂ ρα

∂T L
 u T L  ∂ ρα

∂ z  u  z  (17)

Change induced in KC by the uncertainty in ground albedo ρ g

Under clear skies, ρ g is the same as ρ α  because there are no clouds. Then, ρ g can be selected a priori 

as the minimum value in a series of  ρ α  over a given time period. This selection is not as direct, and 

several strategies have been developed to avoid such shortcomings as having to place a value on defects 

not  detected in the original  image or cloud shadows, which create artificially low ground reflectance 

(Lefèvre et al., 2002; Rigollier et al., 2004;  Lefèvre et al., 2007). This study of the Heliosat-2 method 

selects ρ g as proposed by Lefèvre et al. (2007). As the period covered is limited to one month, there is no 

guarantee that this minimum corresponds to a clear-sky situation, but only the clearest  sky condition. 

Once this minimum is found, it is compared to a reference ground albedo,  ρ gref taking into account an 

interval of maximum acceptable change in ρ g. If the difference between this reference and the candidate 

ρ g is larger than this maximum acceptable change interval, then the end of the interval is proposed as the 

updated value of ρ g. That is, ρ g is related to ρ α , but is not systematically selected from a ρ α  series, 

which is why ρ g is considered one of the Helisoat-2 independent input variables. As noted above,  the 

selected strategy for determining ρ g also determines its uncertainty. The change induced in KC by ρ g can 

be computed as follows:



 ΔKC ρg=− Δn ρg=− ∂ n
∂ ρg

u ρg  (18)

Change induced in KC by the uncertainty in cloud albedo ρ n

The cloud albedo is a function of the following variables (Rigollier et al., 2004):

ρef =ρef α 

ρatm =ρatm α,α sat ,T L 

T=T α,T L ,z 

T sat =T sat α sat ,T L ,z  (19)

Following the procedure described above, the change   ΔKC 
ρn

 induced in  KC (or  n) through  ρ n,  is 

calculated by the addition of changes induced by the uncertainty in each of the variables, α , α sat, T L , 

and z:

 ΔKC 
ρ n=− Δn

ρ n
=

=− ∂n
∂ ρn {

∂ ρn

∂α  u  α } ∂ ρn

∂α sat
 u α sat  ∂ ρn

∂T L
 u T L  ∂ ρn

∂ z  u  z   (20)

4. Allocation of values to input variables

Once the framework for the uncertainty analysis is laid, variables must be instantiated. Two types of input 

variables can be distinguished, on the one hand, the inputs which are inherent in the geographical location 

of site, either because of the time or the image in hand. In this group are site latitude and longitude, α , 

α sat and z. On the other hand, are the random variables, such as the description of the atmosphere through 

the digital count, DC, and the Linke turbidity factor,  TL; the condition of the satellite sensor through its 

updated calibration  coefficient,  CC;  and the reflectance  of  the Earth’s  surface,  ρ g.  In  an attempt  to 

systematize the estimation method, TL is modeled by adopting a monthly value and interpolating the daily 

values (Remund et al., 2003), and then a periodic annual series is used. There is no such possibility of 

modeling for ρ g. EUMETSAT suggests a CC calibration function based on the linear behavior observed 

since June 1998 (EUMETSAT; Grau et al., 2002), using sets of four to eight CCs per year found using the 

Govaerts et al. (2001) method. This method is applied if satellite sensors are not changed frequently. 

Otherwise, the Lefèvre et al. (2000) method can be used to calculate the daily CC. Cros (2004) concludes 

that the two methods yield equivalent results. Figures 2a and 2b show the variable DC for the location of 

Plataforma Solar  de Almería (PSA,  www.psa.es)  in 2004 and 2005 along with its  relative frequency 

histogram. Figure 2c shows the periodic annual TL. Figure 2d shows ρ g in 2004 and 2005. ρ g is lower in 

summer than in winter.  

http://www.psa.es/


The specific time for the evaluation of CSUs by each variable is solar noon of day 97 in 2005 for which 

the eccentricity of the Earth’s orbit is the unity. Table 1 shows the satellite variables determined for this 

time, taken from the web site of EUMETSAT on November 14, 2006. Note that the digital count, DC, is 

left as a “free” variable. In fact, to find out the influence of each of the variables in KC, its whole linear 

range must be covered. This is accomplished by covering  DC up to 114. This maximum was selected 

because a higher DC leads to n greater than 0.8, i.e., outside of the linear range of this study, however, 

most of the  DC is within this range. Though the satellite elevation  α sat is fixed for a given pixel, it is 

variable  for  a  complete  image  and  its  influence  should  be  considered.  Even  though  the  maximum 

difference between two values of TL on consecutive days is less than 0.05, it can vary during the day for a 

given site. Its uncertainty has been determined as the estimated difference between the real value deduced 

from beam irradiance data recorded at the PSA station and the daily TL adopted. Similarly, the uncertainty 

in z is due to the differences in terrain elevation within the pixel. The pixel including the position of the 

PSA is a mixed zone, flat over almost all of the area and steeper on the northern edge. The uncertainty in 

z is a representative amount of the change in z over the pixel. TL and z are a particular case, because even 

if it were possible to determine them exactly for a certain location, they are still variable over the area of 

the pixel. Then even if both variables are correctly  assigned in the algorithm, they can lead to wide 

uncertainty in the result. The rest of the uncertainties were taken from previous experience in method 

evaluation (EUMETSAT; ESRA, 2000; Lefèvre et al., 2007).

5. Results and discussion

Accepting the values shown in Table 1 as the starting point,  ρ α  ,  n,  KC and G are computed, as DC is 

varied in the interval indicated. As they do not depend on DC, ρ n and GC remain the same in all cases of 

the numerical  example,  as shown in Table 2.  Following the uncertainty study outline in Section 3.1, 

Figure 3 shows the relative changes induced in KC by the input variables that influence it through ρ α  , 

ρ g,  ρ n, respectively. Figure 3 exhibits negative values because the signs of the sensitivity coefficients 

have  been  retained  for  better  understanding.  It  may be  observed  that  the  changes  induced  by every 

variable through both ρ α  and ρ n (Figures 3a and 3c) tend to diminish with rising KC, while the change 

induced by ρ g stays almost constant at around 5% throughout the interval (Figure 3b). The most relevant 

changes induced in KC by ρ α  are due to TL, z and CC, and amount to 29%, 18% and 14%, respectively. 

In the worst case, the changes induced by the uncertainty in DC,  α  and α sat do not exceed 1.5%. The 

same behavior is observed in changes induced by variables through ρ n, reproducing similar figures. They 

are the results of the former general  law of error  propagation. In the next section, uncertainties  –not 

errors– are calculated as actually defined by ISO 1995.

Combined standard uncertainty of Heliosat-2 



In this section, every partial and total CSU (Equation 7) is computed. The contribution of each individual 

input variable to partial CSU in KC and G is found by calculating their contributions through ρ α  and ρ n. 

Note that CC and DC contribute to the CSU through ρ α  only. According to Equations (7) and (9), this 

contribution to CSU by CC, and also DC, is equal to its induced change, except that it is positive. Table 3 

and Figure 4a show the relative partial CSU in KC from each input variable, while Table 4 and Figure 4b 

show the corresponding partial CSU of G. Partial CSU due to each albedo, ρ α  , ρ g and ρ n, as variables 

themselves (ucR(KC) ρ i, ρ i = ρ α  , ρ g, ρ n ), and the relative total CSU, ucR(KC), are shown in Table 5 and 

plotted in Figure 5a. The partial CSU of G due to each albedo, uc(G)ρ i , and the total CSU of G, uc(G) are 

given in Table 6 and plotted in Figure 5b.

Figures 4a and 4b offer similar tendencies. It may be observed that the most important influences occur at 

low KC, and therefore also low G, that is, under very cloudy skies. Every partial CSU tends to decrease 

with rising  KC,  and so also  G,  except  for  ρ g which remains constant  throughout the interval  for  KC 

(Figure 4a) and increases linearly with G (Figure 4b). The partial CSU due to  DC or  α  or  α sat is less 

than 3% (Figure 4a),  or 5 W m-2 (Figure 4b) in the least favorable case.  α  and  α sat are well-known 

variables  evaluated  by  many  authors  (Walraven,  1978;  Wilkinson,  1983;  Holland  and  Mayer,  1988; 

Blanco-Muriel et al., 2001). The models proposed by these authors are very accurate for those angles 

dealt with by the Heliosat-2 method, i.e., greater than 15º (Rigollier et al., 2004; Lefèvre et al., 2007), and 

this explains the small partial CSU. More attention should be given to the partial CSU due to CC at low 

KC (15% in Figure 4a) and low G (26 W m-2 in Figure 4b), or z (35%, 60 W m-2, respectively), or ρ g (5%, 

10 W m-2 respectively)  and  TL (55%, 100 W m-2,  respectively),  which are high due to the uncertainty 

associated with each variable. The uncertainty in z is already 20% of the variable itself (Table 1) and this 

is  reflected  in  its  total  influence.  The uncertainty  in  z is  particularly  easy  to  reduce  with the  aid of 

geographic information systems, which are increasingly accurate  and compatible with all  information 

systems. The uncertainty in ρ g comes from the difficulty in assessing it from a time-series of reflectances 

for mixed cases of clear and cloudy skies (Cano et al., 1986; Diabaté et al., 1988; Stuhlmann et al. 1990; 

Perez  et  al.,  2002;  Rigollier  et  al.,  2004).  In  addition,  the  assessment  strategy  plays  a  role  in  the 

uncertainty, as discussed by Lefèvre et al. (2007), who select only one ρ g per month, although this can 

vary more rapidly (Diabaté et al.,  1989a).  Making a more dynamic selection of  ρ g would reduce its 

uncertainty  and  thereby  narrow  the  uncertainty  interval  in  KC due  to  this  variable.  The  calibration 

coefficient, CC, is very important, as it occurs in all procedures involving measurement. The authors of 

the Heliosat-2 method and EUMETSAT have given well-deserved attention to this variable (Lefèvre et 

al., 2000; Govaerts et al., 2001; Grau et al., 2002; Rigollier et al., 2002). Both methods for estimating CC 

are dynamic and describe its variations in high time resolution, resulting in a  CC estimation with an 

acceptable relative partial CSU (less than 15% of KC). The most significant partial CSU for low KC and 

low G is the one due to  TL: 55% of  KC and 100 W m-2. This factor is in the clear-sky model used and 

therefore has a share in calculation of the atmospheric reflectance, terrestrial reference albedo and global 

irradiance incident on the surface (after calculating KC), through the atmospheric transmittance, for both 



the direct and diffuse components. Its many interventions, along with its own uncertainty, make its partial 

CSU significant. Therefore, it is essential to the Heliosat-2 method that TL be more accurate.

As for the influence of each albedo (Figure 5a), the partial CSU from ρ α  is slightly wider than from ρ n 

because two more variables,  CC and  DC,  enter in its calculation. The uncertainty of the first is very 

influential, as already observed. ρ g is included in this figure so its influence on the albedoes above can be 

compared. As already seen from the independent input variables, at low KC, relative total CSU is wide, 

nearly 50%, while at high  KC it drops to around 5%. The close agreement between the relative partial 

CSU calculated in this section and the changes induced as shown in the section above may be explained 

by the mathematical relationship existing between these parameters (see Section 3). The results calculated 

in this uncertainty study are in agreement with those found by Lefèvre et al. (2007) for ρ g and ρ n. In 

absolute terms (Figure 4b), the partial CSU from ρ g behaves differently from the rest of the independent 

variables, because, contrary to the others, it continues growing over the entire interval. The total CSU in 

the estimation of G (Figure 5b) reaches its maximum with low irradiance, i.e., with cloudy skies, mostly 

because of the contributions of  TL,  z and  CC. Then total CSU decreases with increasing  G down to its 

minimum, and increases with higher irradiance due to the growing contribution of ρ g as the sky becomes 

clearer.

6. Conclusions

This article deals with the uncertainties in the Heliosat-2 method for estimating the SSI. The ISO 1995 

standard procedure was used in four steps. Firstly, the changes induced by the input variables, formerly 

called  the  general  law  of  error  propagation, were  calculated  by  studying  each  albedo  separately. 

Secondly, the partial CSU from each variable was calculated, combining its effect through any albedo. 

Thirdly, the partial CSU of KC from each albedo is calculated, and fourthly, the total CSU of KC and G 

was calculated. With both the partial and total analysis of CSU from the input variables, it was found that, 

at low KC, i.e., for cloudy skies, TL, z, CC and ρ g are the most influential agents in the final uncertainty, 

while the influence of the other variables,  DC,  α  and  α sat, are negligible. The  total CSU amounts to 

90 W m-2 for low KC, i.e., 50% of  KC.  It decreases with growing  KC, down to a minimum of 45 W m-2 

when skies are clear (KC = 0.88). However, since the contribution of ρ g increases linearly (Figure 5b), 

total CSU increases again, reaching a second maximum of 60 W m-2, i.e., approximately 5% of KC. These 

results agree with those found by Lefèvre et al. (2007).

This study shows some areas in which Heliosat-2 could be improved. Among the variables found to be 

most important, the intrinsic uncertainty of z and ρ g shows some potential for reduction. The database 

TerrainBase (1995) used by Rigollier et al. (2004) offers global coverage with a cell size of 5’ of arc 

angle (approximately 10 km at mid latitude). More accurate terrain elevation models, such as SRTM (Van 

Zyl, 2001) are now available. Using such advanced models will reduce the intrinsic uncertainty of z at a 

given site. The strategy for determining  ρ g is rather important to the CSU. A better description of its 



behavior over time as proposed by Hammer (2000), Perez et al. (2002), Zelenka (2003) should reduce the 

intrinsic uncertainty of ρ g, thus improving the assessment of KC over the whole range. Uncertainty of TL 

affects the CSU more than any other variable, not only because of its own wide uncertainty, but also 

because it enters in numerous intermediate calculations as well. Therefore, accurate knowledge of TL is 

fundamental to decreasing the CSU. It should be kept in mind that the estimated KC found is neither over 

nor underestimated in these proportions, which are the intervals of uncertainty in which it is found. 
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Table 1. Conditions used in this paper for the numerical example.
Location: Latitude: 37.0929 º

Longitude: -2.3624 º
Altitude: 493 m (a.s.l.)

Date in the year: Day in the year: 97
Year: 2005
Time: solar noon

Input variables and their 
standard uncertainties

CC = 1.07 W m-2 sr-1 
DC = 10, 20, 30, …, 110
α  = 1.0451 rad
α sat = 0.8188 rad
TL = 2.9
z = 500 m
ρ g = 0.13

u(CC) = 0.05 W m-2 sr-1

u(DC) = 0.4
u(α ) = 0.0001 rad
u(α sat) = 0.0001 rad
u(TL) = 0.5
u(z) = 100 m
u(ρ g) = 0.05

1



Table 2. ρ α  , n, KC and G for the DC  tested and fixed ρ n and GC.
DC ρ α n KC G (W m-2)
10 -0.0360 -0.1646 1.1646 1112
20 0.0576 -0.0722 1.0722 1024
30 0.1512 0.0201 0.9799 936
40 0.2448 0.1125 0.8875 847
50 0.3384 0.2048 0.7952 759
60 0.4320 0.2972 0.7028 671
70 0.5256 0.3895 0.6105 583
80 0.6192 0.4819 0.5181 495
90 0.7128 0.5742 0.4258 406
100 0.8064 0.6666 0.3334 318
110 0.9000 0.7589 0.2411 230

ρ n = 1.1443 GC
  = 955 W m-2

1



Table 3. Relative partial CSU of KC from each input variable.

DC
ucR(KC)xi from each variable xi (%)

CC DC α α sat TL z ρ g

10 0.1096 0.1803 0.0397 0.0572 1.9737 0.6990 4.9332
20 0.3498 0.1959 0.0040 0.0072 0.9503 0.0849 4.9332
30 0.6353 0.2143 0.0383 0.0522 0.2660 0.6449 4.9332
40 0.9802 0.2366 0.0895 0.1239 1.7354 1.5266 4.9332
50 1.4052 0.2641 0.1526 0.2124 3.5462 2.6131 4.9332
60 1.9420 0.2988 0.2323 0.3240 5.8328 3.9852 4.9332
70 2.6410 0.3440 0.3361 0.4695 8.8114 5.7723 4.9332
80 3.5895 0.4053 0.4769 0.6668 12.8518 8.1967 4.9332
90 4.9492 0.4932 0.6787 0.9497 18.6450 11.6725 4.9332
100 7.0623 0.6298 0.9924 1.3893 27.6468 17.0740 4.9331
110 10.7940 0.8711 1.5463 2.1658 43.5463 26.6138 4.9330

1



Table 4. Partial CSU of G from each input variable.

 DC
uc(G)xi from each variable xi (W m-2)

CC DC α α sat TL z ρ g

10 1.2 2.0 0.4 0.6 21.9 7.8 54.8
20 3.6 2.0 0.0 0.1 9.7 0.9 50.5
30 5.9 2.0 0.4 0.5 2.5 6.0 46.2
40 8.3 2.0 0.8 1.1 14.7 12.9 41.8
50 10.7 2.0 1.2 1.6 26.9 19.8 37.5
60 13.0 2.0 1.6 2.2 39.1 26.7 33.1
70 15.4 2.0 2.0 2.7 51.4 33.6 28.8
80 17.8 2.0 2.4 3.3 63.6 40.5 24.4
90 20.1 2.0 2.8 3.9 75.8 47.4 20.1
100 22.5 2.0 3.2 4.4 88.0 54.3 15.7
110 24.8 2.0 3.6 5.0 100.2 61.3 11.4

1



Table 5. Relative partial CSU of KC from each albedo, and relative total CSU of KC. 

DC
ucR(KC) ρ i  from each albedo (%) ucR(KC) 

(%)ρ  α ρ  g ρ  n

10 1.0242 4.9332 1.1419 5.1662
20 0.6584 4.9332 0.5443 5.0066
30 0.8840 4.9332 0.1658 5.0145
40 1.6629 4.9332 1.0238 5.3056
50 2.7502 4.9332 2.0810 6.0192
60 4.1636 4.9332 3.4162 7.3036
70 6.0232 4.9332 5.1552 9.3376
80 8.5564 4.9332 7.5143 12.4102
90 12.1957 4.9332 10.8968 17.0825
100 17.8569 4.9331 16.1526 24.5787
110 27.8610 4.9330 25.4357 38.0466

1



Table 6. Partial CSU of G from each albedo, and total CSU of G.

DC
(uc(G)ρ i) induced by each albedo (W m-2) uc(G) 

(W m-2)ρ  α ρ  g ρ  n

10 11.4 54.8 12.7 57.4
20 6.7 50.5 5.6 51.3
30 8.3 46.2 1.6 46.9
40 14.1 41.8 8.7 45.0
50 20.9 37.5 15.8 45.7
60 27.9 33.1 22.9 49.0
70 35.1 28.8 30.0 54.4
80 42.3 24.4 37.2 61.4
90 49.6 20.1 44.3 69.4
100 56.8 15.7 51.4 78.2
110 64.1 11.4 58.5 87.6

2



Figure 1. Relationship between the clear-sky index KC and cloud index n (Equation 2).

Figure 2. (a) Values for  DC in 2004 and 2005; (b) Relative frequency histogram for  DC in the same 

period. In this numerical example, DC greater than 114 leads to n over 0.8 (cloudy skies), i.e., outside of 

the range of this study; (c) Periodic annual series for TL; (d) Values for ρ g in 2004 and 2005.

Figure 3. (a) Relative change in KC, by the variables influencing it through ρ α . (b) As a), but for ρ g. (c) 

As a), but for variables influencing the relative change in KC through ρ n.

Figure 4. (a) Relative partial CSU of KC and (b) partial CSU of G, from each independent variable.

Figure 5. (a) The relative partial CSU of KC by ρ α  ,  ρ g and ρ n and relative total CSU of KC. (b) The 

partial CSU of G due to each albedo, and the total CSU of G.
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