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ABSTRACT  

 

Maps of pollutants concentration are usually generated by means of interpolation and 

extrapolation methods. The quality of the results depends mainly of the number of permanent or 

temporary measuring stations. This paper deals with a method for the virtual densification of the 

network of stations. The method creates “virtual measuring stations”. It aims at improving the 

quality of interpolation by increasing the number of data on pollutant concentration. The virtual 

stations are determined by the means of a classification method applied to each pixel of the area 

under concern. Discriminating elements are pollutants emission classes, land cover types, urban 

morphological indicators created to this purpose and distance to major roads. A first 

implementation was made for particulate matter (PM) for the city of Strasbourg (France) using 

thin-plates spline interpolation method in Arcview 9 GIS. The relative Root Mean Square Error 

decreases from 49% for five input stations down to 11% for the virtual stations. 

  

Key Words: pollution map, virtual measuring station, morphological indicators, thin plates 
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1. INTRODUCTION  
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Many large cities in Europe have acquired a measuring network operated by ad hoc 

agencies in order to monitor and analyze air quality. Air quality agencies inform local 

authorities, which rely on these studies to take decisions and to inform the population in 

order to reduce health impact caused by air pollution. European policies in this domain 

request accurate space-time knowledge of individual or collective exposure to 

pollutants. Therefore, it is becoming more and more essential to know or model the 

spatial distribution of pollutants concentration at any time and any place in the city in 

order to map pollution at very local scale. 

To answer this need, agencies in charge of studying air pollution are using two different 

types of  methods, with possible combination of both types. Either they map pollutants 

concentration with numerical models, either they interpolate concentrations values 

issued from permanent or temporary measuring ground network. The combination of 

the two methods is a methodology, which have been already tested in the frame of the 

AirProche project, giving encouraging results. Modeling pollution variability at local 

scale involves to solve very complex phenomena and needs many inputs such as 

meteorological parameters, emissions parameters, boundary conditions. Several models 

are used to map pollutants concentrations at large scale, i.e.100-1000 km (Schmidt et al. 

2001, Vautard et al. 2003, Monteiro et al. 2005). Others such as STREET and ADMS 

model pollution at very local scale, i.e. street  and are usually of limited geographical 

areas (McHug et al. 1997a, b). Models require many input parameters to provide 

accurate results and these parameters are seldom available. For these reasons, 

practitioners presently generate maps of concentrations by means of interpolation and 

extrapolation methods. Among those, the most used are the kriging method (Carletti et 
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al. 2000) or co-kriging and kriging with trend method using explained co-factors (ex. : 

emissions, land use) and by the “thin plates spline” method (Ionescu et al. 1996, 2000). 

 

The accuracy of the results of the interpolation depends mainly on the number of known 

measurements input to the method. Majority of cities have a monitoring network 

composed by a small number of measuring stations. According to Stalker & Dickerson 

(1962), a network of conventional ground measurements requires at least one sampling 

station of PM per surface of 2.5 km² to estimate the actual concentration at ± 20%. For 

our study area, the city of Strasbourg, whose surface is 306 km², a network of 

approximately 122 stations dedicated to PM would be needed instead of the 5 current 

ones. But, increasing the number of ground measuring stations requires important 

material means and is extremely expensive. Furthermore, maintenance has a 

considerable cost. 

To overcome this problem, we propose a method for increasing the number of 

measurements input to the interpolator. It consists in a virtual densification of the 

network. Our study is based on the work of Ung et al. (2001, 2002), who introduced the 

concept of “virtual stations”. The first part of this paper presents the method. Then, we 

apply the method to the city of Strasbourg and discuss the results. Finally, future work 

is sketched. 

 

2. METHOD  

The starting point of the concept of “virtual station” comes from observations made by 

agencies in charge of air quality monitoring. These agencies (such as ASPA in 

Strasbourg) observed that there are places in the city, which present properties similar to 
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those of the measuring stations (Weber et al. 2002). We made the assumption that a 

place having the same aeraulic features than an actual measuring station, belonging to 

the same emission class than this station and with similar surroundings, will have the 

same behavior regarding pollutants circulation and therefore, the same concentration. 

Such a place is a virtual station. 

The major attributes, or features, of a station are annual emission of pollutants, land 

cover, distance to major roads and morphological characteristics of the surrounding 

buildings that affect the aeraulic flow.  

The emission cadaster informs about the quantity of pollutants (in weight unit) emitted 

per year per squared kilometer. In spite of inherent uncertainties, emissions inventories 

are often used as major input in atmospheric numerical models for prediction of 

pollution levels (Choi et al., 2006). The land cover plays an important role in the 

pollutants dispersion. Changes in land cover (e.g., buildings compared to trees) imply 

changes in aerodynamic roughness length, which in turn modify air flow by creating 

turbulences (Tennekes & Lumley 1972). It is a key parameter to assess air pollution at 

small scale (Briggs et al. 2000) and as input in dispersion model (Hasager and Thykier-

Nielsen 2001). The distance to major roads allows us to take traffic pollution into 

account in the classification. It is often used as exposure indicator to traffic intensity 

(Hoek et al. 2002a, b). 

Morphological indicators describe the shape of the space surrounding the station. 

Individual buildings, their height, orientation and their arrangement influence wind 

flows and thus spatial distribution of the pollutants (Turbelin and Gibert 2000). For 

example, in a very large avenue, air flows disperse pollutants, which decreases 
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pollutants concentrations. Inversely, in a very confined space, pollutants accumulate. 

We have selected two indicators to characterize the space surrounding the station. 

The Miller indicator IM characterizes the circularity of this space. It varies from 0 for a 

linear shape to 1 for a perfectly circular shape (eq. 1): 
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where S is the visibility surface of the area and P its perimeter. 

The Gravelius indicator IG is an indicator of compacity. It compares the perimeter of the 

visibility surface to a perimeter of a disk having the same area (eq. 2): 
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The visibility surface S characterizes the open space around the station. It is computed 

by a rays throw technique by taking into account the buildings position around the 

station. It is expressed as follows (eq. 3):  
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with Dangle(i), the visibility distance computed in the direction i, and Nray is the number 

of thrown rays. Here, Nray is set to 360. 

Prior to the determination of virtual stations and their localization, the urban area is 

divided into cells by a regular grid. The cell size defines the spatial resolution .In our 

application, the cell size is set to 10 m. For each cell, the Miller and the Gravelius 

indicators, the emission class, the land cover type and the distance to major roads are 
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computed or already known. Each cell containing a measuring station is compared to all 

others. Only are kept those cells whose features are similar to those of the station; they 

are “virtual stations” for this measuring station and they are precisely localized in the 

city. In other words, a classification is performed : each pixel is allotted to a measuring 

station if similar, or rejected. The method uses spectral analysis tools, namely 

hashcoding tools (Albuisson 1995).  

 

3. APPLICATION TO THE CITY OF STRASBOURG 

3.1 Study area  

The city of Strasbourg is located in Eastern France, separated from Germany by the 

Rhine River. Geographical coordinates are: 48.33° and 7.38°. The number of inhabitants 

is around 273,000. ASPA is the local agency in charge of the air quality measuring 

network in the city of Strasbourg and vicinity. Fig. 1 displays a map of the measuring 

network in the city of Strasbourg and vicinity. ASPA operates 11 stations; 5 of them 

measure (PM10, 13, 2.5). Atmospheric pollution in Strasbourg is mostly due to motor 

vehicles since there is no heavily polluting industries in this area except a refinery 

located in Reichstett in the North. Wind is blowing mostly from South-West or North-

East because it is channeled in the Rhin valley (REKLIP 1995). It can bring significant 

pollution clouds from the industrial region of  Rhur in Germany.  

 

3.2 Data used 

The morphological indicators Miller and Gravelius were computed for the whole city of 

Strasbourg (fig. 2). We developed  scripts in Arcview 3.2, Geographical Information 

System (GIS) software to that aim and run them on the geographical database BD 
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TOPO - © IGN of the French Institute of Geography. The database is georeferenced 

and contains a volumetric 3D description of the city for buildings. Each building is 

described by a polygon and each polygon has attributes such as height (minimum, 

maximum, mean), area and perimeter… The computation provides two images of 

Strasbourg whose pixels contain the values of the Miller and Gravelius indicators. The 

computing time requested was very large (several days). All data used are stored into a 

GIS. The computation provides two images of Strasbourg whose pixels contain the 

values of the Miller and Gravelius indicators (Fig. 2). On these images, the black color 

stands for the zero value and indicates a building (for a building S=0) or a non-circular 

space for the Miller index or a non-compact space for the Gravelius indicator. 

Conversely the white color stands for the maximum value of Miller (1) or Gravelius and 

indicates a circular space or a very compact space. Table 1 gives the indicators values 

for each five measuring stations. 

The land cover map is the CORINE Land Cover (2000) with an initial resolution of 100 

m. It contains 44 different types of land cover. It was oversampled to a grid cell of 10 m 

using a nearest neighbor technique (Fig.3, left).  

The emission cadaster is a map in a vector format; each polygon represents 1 km² area. 

The map was oversampled to 10 m using a bilinear technique. The quantity of pollutants 

was recoded into a limited number of classes (9). The number of classes is determined 

so that real stations belong to different classes as possible. A polluting source has an 

influence till 100 m over a surrounding area (Hewitt and Jackson 2003). A spatial filter 

of Gaussian type was applied to take this influence into account. The resulting image is 

no longer the emission register but more a map of annual background pollution (Fig. 3, 

right).  
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Distance to major roads is computed for both virtual and real stations thanks to a 

Arcview 9 GIS tool. The distance to traffic pollution is no more than 50 m for real 

stations. As Hewitt & Jackson (2003) indicate that a polluting source at ground level has 

an influence till 100 m, we used this 100 m limit to discriminate virtual stations. All 

cells whose distance to roads exceeds 100 m are rejected. On the figure 4, black 

triangles are cells that will be removed. 

 

4. RESULTS AND DISCUSSION 

Table 2 reports on the number of virtual stations found for each of the five stations 

measuring PM.  

The total number of virtual stations is 635. They are scattered all over the city, which is 

a true advantage for interpolation method. Compared to the initial 5 stations, one may 

easily understand the benefit of the virtual densification. 

However, we are puzzled in this very first application of the method by the large 

number of virtual stations for the station STG Nord. Conversely, the number of virtual 

stations is quite low for two others: STG Clemenceau and STG Est. It means that the 

selected features are sufficiently discriminating in the last case and maybe not in the 

first one. More examples are necessary to better understand the creation of the virtual 

stations. 

Mapping the PM concentration from this set of virtual stations has been performed 

using Arcview 9 GIS tools. Two maps of PM10 concentration were obtained by 

performing the “thin plates spline” method of the Arcview GIS (Fig. 5). The area is 

approximately 18 x 28 km² with a spatial resolution of 10 m. Buildings and roads of 

Strasbourg were laid in the background for better readability. Fig. 5 (left) exhibits the 
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concentration obtained from the five actual measuring stations (black dots). The low 

number of measuring points yields to a very uniform pollution map, which is not 

realistic. The spatial variation of the pollution is closer to mathematical functions used 

in this method than to reality. Figure 5 (right) is a pollution map obtained from the 

virtual stations for the same date. Compared to the figure on the left, the map based on 

virtual stations shows a more realistic pollution distribution. Into the area delimited by 

measurements, the representation is very realistic: local variations are visible. However, 

outside this area, the pollution distribution is less realistic: pollution is uniform, 

concentrations values are identical over the area. This map has not been validated; but a 

measuring campaign made in June 2003 indicates that virtual stations preliminary 

spotted by Ung et al. (2001, 2002) were actually behaving like the real stations as 

expected. Nevertheless the results of this campaign must be interpreted with care since 

very few virtual stations could be validated by this way. In fact, a limited number of 

pollution sensor was available. The measurements were made by truck mounted 

sensors, which limited considerably the places to be monitored. 

A quantitative assessment was made as follows. When the pollution map is obtained 

with the measuring stations exclusively, only four stations over five were used for 

interpolation. The fifth station is the reference and its concentration is estimated by the 

interpolation method. The estimated concentration is compared to the actual value. By 

repeating this procedure (five times, each real stations becoming a reference station), we 

obtain five errors and compute a root mean square error (RMSE). Finally we take the 

average RMSE. When the pollution map is obtained adding the virtual stations, only 

four groups of virtual stations (less than 635 virtual stations) plus their associated real 

stations are used. By the same way than previously, the real station of the missing group 
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is the reference, its concentration is estimated and compared to the observed 

concentration. The process is reiterated five times with virtual stations' groups. Five 

RMSE are computed and finally, the average is taken. A Fractional Bias is also 

computed. The general expression for the fractional bias (FB) is given by: 

)(

)(
2

OBPR

OBPR
FB

+
−=     (5) 

where OB and PR refer to the averages of the observed (OB) and predicted (PR) values. 

It indicates if the results are under or over-predicted. 

Table 3 reports on the relative RMSE and the Fractional Bias. It shows that using virtual 

stations for the mapping improves mapping quality: the relative RMSE decreases from 

around 49% down to 15%. In other words, the improvement of the quality of the 

interpolation is around 70% when using the “thin plates spline” method. Fairly similar 

results are obtained with other interpolation methods (ordinary kriging, Inverse Distance 

Weighted). Those results confirm the benefit of adding virtual stations and are in 

agreement with those obtained by Wald et al. (1999). Using a similar approach, in a 

study on the city of Nantes (France), Wald et al. found that the relative RMSE 

decreased from 70% (only real stations) to 50% (virtual stations), for the case of black 

smokes. Moreover values of the Fractional Bias show that the prediction of the 

concentrations is better when using virtual stations for the interpolation. In this case 

concentrations are underpredicted with a very small bias whereas they are overpredicted 

with a larger bias when the mapping is done using exclusively the real stations. 

However, this method has a limitation. Each real station has a different number of 

virtual station. The higher the number is, the more it will influence the mapping. Indeed, 
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many places will have the same concentrations. The number of virtual stations acts as a 

weight for the interpolation, which tends to smooth very local structures. 

 

3. CONCLUSION  

In this paper, we present a method to make denser the network measuring pollution and 

thus to increase the concentration measurements in order to improve the pollution 

mapping by interpolation. Making denser consists in virtually adding new measuring 

stations. Virtual stations are places of a city exhibiting features similar to those of 

measuring stations. Features are linked to pollution sources (emission register, traffic) 

and aerodynamical properties of the considered place (morphological indicators, land 

cover). The approach is not new by itself; this paper offers a strong basis for selecting 

discriminating features with strong relevance to pollutants circulation. Previous studies 

by Wald et al. (1999) or Ung et al. (2002) exploited series of satellite data as 

discriminating features and proved to be sensitive to selected images and to the 

characteristics of spaceborne sensor. 

 

The first implementation of the method was done for particulates (PM) and for the case 

study of the city of Strasbourg. From the 5 PM measuring stations initially, we obtained 

635 virtual stations homogeneously spread over the area. The benefit of virtual stations 

to the interpolation is proved in a qualitative way by the pollution map and in a 

quantitative way by the reduction of the RMSE. Though previous studies support these 

findings, more cases should be analyzed. Efforts are underway to better analyze the 

created virtual stations and to validate them. The latter point is not obvious and requests 

expensive fields campaigns. Moreover it takes several months to carry out a campaign. 
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Nevertheless this work offers an innovative and strong basis for the development of 

methods to densify the air quality monitoring network. Technically, the method is easily 

feasible by practitioners since it involves well-known tools and it uses data they already 

have. It offers promises to map pollution with high accuracy and thus to represent the 

pollution distribution variability. This method also appears as complementary to those 

already existing as virtual stations can constrain air pollution model.  
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Fig. 1: Stations of the network measuring air quality in the city of Strasbourg. Squares 
denote stations measuring PM. The width of the map is approximately 20 km. 
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Fig. 2: Images of the Gravelius (left) and Miller (right) indicators for the city of 
Strasbourg. Images at bottom display zooms of the city center for each indicator. The 
brighter the gray is, the more compact or circular is the space. The image in the middle 
is an overview of Strasbourg city (studied area) with buildings in black and roads in 
black lines. 
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Fig. 3: Images of the land cover map (left) and the emission register for PM for 2004 
(right). On the land cover map, the 44 different types of land cover are in different gray 
levels. For example, urbanized lands are in black. 
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Fig 4 : Virtual stations in Strasbourg. Triangles will be rejected. 
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Fig. 5: PM10 concentration maps over Strasbourg obtained by interpolation of real 
measuring stations only (left, black dots) and of both real and virtual measuring stations 
(right). 
 
 
Table 1: Values of Miller and Gravelius for each real measuring station 
 

Real station name Miller Gravelius 
STG Illkirch 0.07 3.68 
STG Centre 0.16 2.54 
STG Nord 0.06 4.26 
STG Clemenceau 0.07 3.73 
STG Est 0.05 4.39 

 
 
Table 2: Number of virtual stations for each real measuring station 
 

Real station name Number of virtual stations 
STG Illkirch 71 
STG Centre 104 
STG Nord 450 
STG Clemenceau 6 
STG Est 4 
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Table 3: Relative RMSE values and Fractional Bias values for an interpolation with and 
without virtual measuring stations 
 

“Thin plates spline” 
method  

5 real measuring 
stations 

Real + virtual 
measuring stations 

Relative RMSE  49% 15% 
Fractional bias 0.11 -0.07 

 


