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Data fusion is a formal framework 
in which are expressed the means 

and tools for the alliance of data origi-
nating from different sources. It means 
an approach to information extrac-
tion spontaneously adopted in several 
domains before this was expressed 
as “data fusion”. This approach is 
based upon the synergy offered by 
the various sources. Applications are 
numerous, from biology to civil avia-
tion.
This book clearly establishes the fun-
damentals (particularly definitions 
and architectures) in data fusion. It 
can be read with profit by anyone 
interested in data fusion, whatever 
his domain of expertise, and should 
be valuable to engineers, scientists 
and practitioners.
The second part of the book is devoted 
to methods for the fusion of images. 
It offers an in-depth presentation of 
standard and advanced methods for 
the fusion of multi-modality images. 
The emphasis is put on images 
having different spatial resolutions, 
but the book is not limited to this 
case. Given several sets of images 
acquired by disparate sensors, the 

problems treated are to create new 
sets of images of reduced dimensio-
nality, in order to either better visua-
lize the original sets of images as a 
comprehensive ensemble of informa-
tion, or to synthesize images with a 
better spatial resolution.
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FOREWORD – AVANT-PROPOS 

 

 

 

The first objective of this book is to clarify the concept of data fusion, or 
information fusion. By this document, the author hopes that data fusion will 
be better understood, accepted and used more efficiently. Presently, for 
most of its users, conscious or not, data fusion is more an ensemble of 
techniques and methods than a formal framework. 

The second and last objective of the book is the detailed description of 
techniques in image fusion, without pretending to completeness. The 
techniques are dealing mostly with the fusion of measurements with the 
pixel as a support of information. The synthesis of images of various 
modalities at the best spatial resolution available in the original sets of 
images is of major concern in this second part of the book. The assessment 
of the quality of the fused product is also an important topic. 

 

- o0o - 

 

Ce livre a pour premier objet de clarifier le concept de la fusion de 
données, ou fusion d'informations, et, par conséquent, de mieux le faire 
comprendre et accepter. Actuellement, pour la plupart de ses utilisateurs, 
conscients ou non, la fusion de données représente plus un ensemble de 
techniques et méthodes qu'un cadre formel. 

Le deuxième objet du livre est la présentation détaillée et pratique des 
techniques de fusion d'images, sans pour autant prétendre à l'exhaustivité. 
Les techniques présentées sont essentiellement limitées à la fusion de 
mesures, en utilisant le pixel comme support d'information. La synthèse 
d’images multi-modales à la meilleure résolution spatiale disponible dans 
le jeu d’images originales, ainsi que l’évaluation de la qualité des produits 
de fusion occupent une part très importante de cette deuxième partie. 





1. INTRODUCTION 

Data fusion is a recent term. It means an approach to information extraction 
spontaneously adopted in several domains before this was expressed as 
"data fusion". This approach is based upon the exploitation of the synergy 
offered by the information originating from various sources. Here, data is a 
generic term and is equivalent to information. Combination of additional 
independent and/or redundant data usually results into an improvement of 
the results. The example of human vision is often given to illustrate the 
advantages and benefits of data fusion. The two eyes of a man have slightly 
different viewing angle, making possible stereo vision and depth perception. 
Hence having two eyes extends the capability of a single eye. Another 
advantage of having two eyes is redundancy; if one is disabled, vision is 
still possible, though in a degraded mode. 

Data fusion research and development was conducted under a wide variety 
of systems, methods and names. Using recent words such as "data fusion", 
or "information fusion" translates the recent understanding that whatever 
the application domain, these synergistic approaches share common 
problems and common properties. Let take a very simple example. 
Actually, an addition is a fusion process. It may appear curious to claim that 
a formal framework is really needed for such a simple operation. However 
those who have taken high-level classes in mathematics know how much 
theory is behind the addition of two numbers. The others know quite well 
that addition can only be performed on quantities that belong to the same 
space. We all know that we cannot add US dollars and euros without 
converting them to a common currency. Physicists know that they cannot 
add temperatures of objects, but they can do with heat quantities. 
Statisticians know that the standard deviations do not add, while variances 
do. These are simple examples, which, though not illustrating the 
complexity of data fusion, show that these problems share similar concerns, 
which are named under a single name in data fusion: the alignment. This 
property is part of the data fusion framework, together with many other 
elements dealing with methods, architectures, system design, etc. 

These common problems and common properties form a paradigm. 
Research in data fusion aims at exploring this paradigm. It expresses and 
clarifies the concept of data fusion and its properties. Definitions and terms 
of reference can be established that permits better co-operation between 
various domains because they share a common language. Research reveals 
the fundamentals in data fusion with respect to the fundamentals of the 
related sciences, e.g., physics, mathematics... It also expresses the properties 
of the data / information to be fused, of the methods for fusion, of the 
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architectures, thus permitting better design, implementation and analysis of 
fusion processes. It is then easier to develop the most appropriate methods 
and algorithms, to monitor the quality throughout a process etc. 

There are many advantages in using data fusion1: 
• robustness and reliability. The system is operational even if one or 

several sources of information are missing or malfunctioning, 
• extended coverage in space and time, 
• increased dimensionality of the data space. It increase the quality of the 

deduced information; it also reduces the vulnerability of the system, 
• reduced ambiguity. More complete information provides better 

discrimination between available hypotheses, 
• providing a solution to the explosion of the information that is available 

today. 

Data fusion is exploited by a large number of biological systems. An 
illustration is given by the human system, which calls upon its different 
senses to perceive its environment (Fig. 1.1). 

 

Deduction
Action

BRAIN
Memory
A priori knowledge
Rules
Reasoning capabilities

 

Figure 1.1. The human brain and perception system as an example of fusion 
process 

 

                                                           
1 E. Waltz and J. Llinas. Multisensor data fusion. Artech House, 1990. 
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Human sensors acquire information on sight, smell, touch, hearing, and 
taste. The acquired data are processed within the brain. To do so, the brain 
will use other sources of information: its memory, its experience and its a 
priori knowledge. Calling upon its reasoning capabilities, the brain "fuses" 
all this available information to perform deductions, to produce a 
representation of the environment and to order action. 

This example also illustrates how much data fusion is at the crossings of 
several scientific domains. Here neuroscience, sciences of cognition, and 
medicine are at stake. 

Data fusion is not limited to biology. It originates in Defense activities, and 
such applications are still very vivid. Almost half of the scientific literature 
is devoted to defense systems2. Nevertheless, fusion applies to many other 
domains. Examples are numerous in transportation, and especially in civil 
aviation (aids in aircraft, air traffic control, landing aids) and motorways 
management. Large research efforts are devoted to intelligent car traffic, 
where each car embark a set of sensors and fusion capabilities, in order to 
best co-operate with other vehicles and the environment itself. Navigation / 
positioning is a service routinely offered today. An efficient service calls 
upon the fusion (often called hybridization in this domain) of several 
sources: fleets of orbiting satellites and ground systems. Telephone is 
another example, where several resources must be used through complex 
fusion systems to make a phone call: transponders aboard geostationnary or 
low Earth orbiting satellites and terrestrial networks. Robotics calls upon 
data fusion for 3-D vision and displacement in hostile environment, 
monitoring, inspection and maintenance of pieces of equipment. 

The exploitation of satellite images and more generally of observations of 
the Earth and our environment is presently one of the most productive in 
data fusion. Observation of the Earth is performed by means of satellites, 
planes, ships, and ground-based instruments. It results into a great variety of 
measurements, partly redundant, partly complementary. There are very few 
domains, where such a diversity is present and this makes Earth observation 
so fascinating. The availability of so many types of information constitutes 
a tremendous field of investigation for mathematicians. This interest is 
enhanced by the challenge of correctly modeling natural landscapes and 
outdoor scenes, which are usually more difficult than indoor scenes. The 
research in this field is backed up by the present political interest in 
environment and global changes. 

                                                           
2 L. Valet, G. Mauris and Ph. Bolon. A statistical overview of recent literature in 
information fusion. In Proceedings 3rd International Conference Fusion 2000, Paris, 
July 2000, pp. MOC3-22-29, IEEE catalog 00EX438, ISBN-2-7257-00001-9, 2000. 
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These measurements in Earth observation may be punctual and time-
integrated, bi-dimensional and instantaneous (images), vertical profiles with 
time-integration or not, three-dimensional information (oceanic / 
atmospheric profiler / sounder at ground level, or satellite-borne, or ship-
borne). Adding the large amount of archives and numerical models 
representing the geophysical / biological processes, one should conclude 
that the quantity of information available to describe and model the Earth 
and our environment increases rapidly. Data fusion is a subject becoming 
increasingly relevant because it efficiently helps scientists to extract 
increasingly precise and relevant knowledge from the available information. 

The set of sensors for Earth observation is extremely various. The spectrum 
of their characteristics is very large, with respect to spatial and temporal 
scales, spatial and temporal sampling and means of acquisition. Such 
diversity is a tremendous source of practical problems, whose resolutions lie 
upon a good understanding and modeling of more fundamental questions. 
For example, what are the links between temperature measurements made at 
ground level using a thermometer and integrated over an hour, and the 
instantaneous measurements of the same temperature but made using a 
satellite-borne radiometer sensing the radiation emitted by a surface of 
several square kilometers? Data fusion is here at the crossings of the physics 
of the measurements, Earth sciences and sciences of information and 
communication. These crossings offer many opportunities and benefits to 
the progresses in data fusion. 

Weather forecasting fully illustrates data fusion in environment (Fig. 1.2). It 
is one of the most sophisticated fusion systems nowadays and is performed 
several times a day for the whole planet. It calls upon sensors, signal 
processing, artificial intelligence and complex modeling of physics and 
chemistry and the atmosphere, oceans and land. There are processing issues, 
topological issues (the distribution of sensors in 3-D space and time) and 
communication challenges. 

Meteorological satellites are orbiting the Earth, in a geostationnary orbit or 
in a near-polar one. They are equipped with sensors providing sets of 
measurements on the 3-D properties of the atmosphere and on the 
characteristics of the surface of the ground and the ocean. Balloons and 
planes operate at lower altitudes. Tens of thousands of ground stations are 
distributed in the world. They measure the basic weather parameters, such 
as air temperature and pressure, wind, cloudiness, rainfall, and more for 
some of them. Ground radars follow storms and rain cells. At sea, ships and 
automated buoys provide weather parameters and measurements of the sea 
surface, such as temperature and waves. 

All these measurements are processed to extract geophysical parameters of 
interest, and transmitted by means of specialized communication networks. 



Introduction 15 

Then in numerical weather prediction centers, numerical models through 
data assimilation techniques ingest this wealth of information, together with 
weather prediction of the previous instants. They produce weather forecast 
that are used by professionals and are also presented on TV news and other 
media. 

Prediction
instant t-1

Prediction
instant t

Numerical Weather
Prediction

Center

 
Figure 1.2. Weather forecasting is an excellent example of a fusion system 
in environment 

The operation of data fusion by itself is not new in environment or in any 
domain of application. For example, meteorologists predict weather for 
several tens of years. In remote sensing (i.e. Earth observation from 
spacecraft or aircraft), classification procedures are performed since long 
and are obviously relevant to data fusion. 

Data fusion allows formalizing the combination of these measurements, as 
well as to monitor the quality of information in the course of the fusion 
process. The formal framework for data fusion provides a better 
understanding of data fusion fundamentals and of its properties. Once 
established, such a framework permits a better description and formalization 
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of the potentials of synergy between the available sources of information, 
and accordingly, a better exploitation of the data. 

This book intends to foster the understanding of data fusion by a wider 
community, for which data fusion denotes presently more a set of 
techniques than a framework for these techniques and more. Its content 
originates from lectures given to students of master degree level or higher, 
engineers and researchers in information, or computer sciences or 
environment sciences. This book should be valuable to any engineer, 
scientist and practitioner interested in fundamentals in data fusion. 

It does not reproduce or mimic the well-known books written on data fusion 
several years ago. These books are full of methods and other technological 
considerations on systems, architectures, communications etc. Though some 
of the latter are obsolete nowadays, these books are a good baseline to 
apprehend more sophisticated methods and technologies. However, they 
offer little space to the formal framework of data fusion and to the specifics 
of fusion of images. One of the scopes of the present book is to fill the gap 
in both aspects, though not pretending to be exhaustive. 

The first part of this book presents the concept of data fusion. Several 
definitions and terms of reference are analyzed in Chapter 3. The properties 
of the data to be fused are presented. A typology of the class of problems in 
data fusion is discussed. This book seeks to clearly establish the 
fundamentals and help setting the foundations for subsequent growth. Such 
a discussion on fundamentals is seldom found in the literature. This part of 
the book should fill the gap, especially with regards to education and 
training. This part is fully general and applies to all fields. It can be read 
with profit by anybody interested in data fusion, whatever his domain of 
expertise. Chapter 4 comprises a discussion on the representation of a fusion 
process and on architectures. 

The second part of the book is devoted to techniques and procedures for the 
fusion of images and assessment of the quality of the resulting products. It 
intends to be problem solving. It offers an in-depth presentation of standard 
and advanced methods for the fusion of multi-modality images, which is of 
interest to the full spectrum of the community dealing with imagery. The 
emphasis is on images having different spatial resolutions, though the book 
is not limited to this case. Given several sets of images acquired by 
disparate sensors, the problems treated in this book are to create new sets of 
images of reduced dimensionality, in order to either better visualize the 
original sets of images as a comprehensive ensemble of information, or to 
synthesize images with a better spatial resolution. 

Imaging sensors are more and more present today: medicine, industrial 
processes, traffic management, verification of treaties, crisis management, 
... Even geographical data may be considered to a certain extent as acquired 
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by a sensor when they are digitized (rasterized maps). In some way, they 
may be assimilated to images. This is the case of many digitized maps, 
available on the Worl Wide Web, and asembled for the studies and analyses 
of global change. These maps are made of measurements, e.g., air 
temperature, or categorical data, e.g., type of vegetation. 

Plenty of techniques for data fusion already exist; Hall3 described many of 
them. A few of them apply to images and imaging sensors. Given the 
importance of the images and the liveliness of the technical developments in 
this domain, the second part of the book specializes in the fusion of images. 
Nowadays, satellite images are intensively used in various applications, 
especially since their spatial resolution reaches 1 meter or better, thus 
offering a great deal of details. Many examples given in this part deal with 
such images. 

Several mathematical tools are presented in Chapter 5; they form the bases 
of many popular or advanced techniques for the fusion of images. Advices 
and details are given for the practical implementation of these tools. Then 
these tools are used for image fusion. 

Chapter 6 focuses on data fusion as a means for a better visual analysis of 
several sets of images. The very popular intensity-hue-saturation technique 
is extensively discussed. Together with the principal components analysis 
technique, they are appropriate to visualize images acquired by multiple 
sensors, disparate or not, commensurate or not. Another technique is 
presented, which treats non-commensurate sensors by the means of a fusion 
of representations. A composite scene is created by encrustation to display 
most of the information of interest. 

A sub-domain of image fusion is explored in great details in Chapter 7; it 
deals with the synthesis of images having different spatial resolutions at the 
best resolution available within the sets of images. These synthesized 
images are close to what should be observed by the corresponding sensor, if 
existent. Several observing systems acquire images, Bil, in different 
modalities or spectral bands i (or wavelength ranges) with a spatial 
resolution l, and images Ajh in bands j, with a better spatial resolution h. An 
example in Earth observation is the Ikonos system, which acquires one 
image in four bands: red, green, blue and near-infrared with a spatial 
resolution of 4 m, and at the same time, one panchromatic image with a 
resolution of 1 m. Synthesizing these multispectral images at a resolution of 
1 m permits a better mapping of our environment, and especially of cities. 
Another example is given by the industrial systems that acquire images in 

                                                           
3 D. Hall. Mathematical techniques in multisensor data fusion. Artech House, 
Boston, London, 1992. 
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different modalities (e.g., X-rays, electron microscope, infrared, etc.), each 
modality having different horizontal and vertical resolutions. Methods have 
been designed to use one or more modalities to increase the spatial 
resolution of other modalities in a very realistic way. 

Several authors have stressed that large benefits are expected from having 
synthesized B*ih images that are close to reality. This sub-domain of the 
fusion of imaging sensors is getting more and more interest. Makers of 
instruments are now integrating the capabilities of fusion techniques within 
the processing software (at ground level for spaceborne systems), and are 
consequently designing lighter and cheaper observation systems. 

Quality is an important topic, especially when industrial systems are under 
concern. An important part of this book is devoted to the quality assessment 
of images resulting from fusion process and to the comparison of fusion 
methods for the synthesis of images. 

Chapter 8 deals with the assessment of the quality of the synthetic images 
produced by methods, such as those described in Chapter 7. How to assess 
the benefits of the fused products to the visual analysis is described. The 
means to check whether the fused products meet the theoretical properties 
of the synthetic products are discussed. A protocol of validation of fused 
products is presented. Some criteria for a global assessment of the quality 
are analyzed. 

Chapter 9 illustrates both Chapters 7 and 8. Using the protocol for quality 
assessment, a comparison is performed between the fused products resulting 
from several methods presented in Chapter 7. 

Chapter 2 is written in French and summarizes the content of the book to 
the attention of the French-reading persons. 



2. RÉSUMÉ A L'ATTENTION DU LECTEUR 

FRANCOPHONE 

1. INTRODUCTION 

La fusion de données est un terme plutôt récent. Elle traduit une approche 
du traitement de l'information, adoptée spontanément dans plusieurs 
domaines, et ce, bien avant que le terme existe. Cette approche est fondée 
sur l'utilisation de la synergie offerte par les données de sources diverses. 
L'exploitation conjointe de sources indépendantes et/ou redondantes est 
connue comme fournissant de meilleurs résultats que l'exploitation des 
sources individuelles. 

On utilise souvent la vision humaine pour illustrer les bénéfices de la fusion 
de données. Les deux yeux d'un homme observent les objets sous des angles 
légèrement différents, et cette stéréovision permet la perception du relief. 
Exploiter conjointement deux yeux étend donc les capacités d'avoir deux 
fois un œil. Un autre avantage est la redondance. Si l'un des yeux est 
défaillant, la vision est encore possible, quoiqu'en mode dégradé. 

Les recherches et développements en fusion de données ont lieu depuis bien 
longtemps sous des noms différents. L'utilisation de ce vocable nouveau, 
"fusion d'informations", "fusion de données", traduit la prise de conscience 
que, quel que soit le domaine, on retrouve les mêmes problèmes 
fondamentaux. L'objet de la fusion de données est d'exprimer formellement 
ces problèmes, notamment en relation avec les fondements des sciences sur 
laquelle elle s'appuie, comme les mathématiques, la physique ... La 
recherche en fusion de données vise à exprimer le concept de fusion de 
données et ses propriétés, et aide à sa mise en œuvre pratique dans 
différentes applications. On peut par conséquent établir des définitions et un 
lexique commun à toutes les applications de la fusion de données, 
permettant ainsi un partage des connaissances plus efficace. On peut mieux 
décrire les propriétés des données et leurs interactions, développer des 
méthodes plus appropriées, mieux suivre la qualité de l'information tout au 
long du processus, mieux concevoir et réaliser des systèmes de fusion de 
données et les analyser sous différents aspects. 

La fusion de données offre de nombreux avantages : 
• robustesse et fiabilité ; le système est opérationnel même si l'une ou 

plusieurs sources d'information sont défectueuses ; 
• augmentation de la couverture spatiale et temporelle de l'information et 

des déductions ; 
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• accroissement du nombre de dimensions de l'espace des observations, 
menant à un accroissement de la qualité des déductions, et à une 
réduction de la vulnérabilité du système ; 

• réduction de l'ambiguïté des déductions ; des informations plus 
complètes ou plus précises permettent un meilleur choix entre les 
différentes hypothèses ; 

• apport d'une solution à l'explosion de la quantité d'informations 
disponible aujourd'hui. 

Les systèmes biologiques exploitent la fusion de données. Une illustration 
en est donnée par le système humain, qui utilise ses cinq sens pour 
percevoir son environnement (au sens très large). Les capteurs de notre 
corps acquièrent des informations par la vue, l'odorat, le toucher, l'ouïe et le 
goût (fig. 1.1, chapitre 1 "Introduction"). Les données acquises sont traitées 
par le cerveau. Pour ce faire, le cerveau va utiliser d'autres sources 
d'information : sa mémoire, son expérience, et ses connaissances a priori. 
En faisant appel à ses capacités de raisonnement, le cerveau "fusionne" 
toutes les informations, et effectue des déductions afin de produire 
éventuellement une représentation de cet environnement et ordonner des 
actions. Cet exemple montre également que la fusion de données est à 
l'intersection de plusieurs domaines scientifiques, ici les neurosciences, les 
sciences cognitives et la médecine. 

La fusion de données ne se limite pas aux processus biologiques. A l'origine 
militaire, elle touche énormément de domaines. L'un des plus actifs est celui 
de l'exploitation des images de satellites, et par extension, de l'observation 
de la Terre, c'est-à-dire l'exploitation de toutes les observations et mesures 
concernant la géosphère et la biosphère. L'observation de la Terre est 
effectuée au moyen de satellites, d'avions, de bateaux et de stations de 
mesure au sol. Cet ensemble fournit des mesures variées, partiellement 
redondantes, partiellement complémentaires, qui peuvent être très localisées 
et intégrées dans le temps, ou bi-dimensionnelles et instantanées (images), 
ou des profils verticaux, intégrés dans le temps ou non, ou encore des 
informations tridimensionnelles (profileurs imageurs de l'atmosphère ou de 
l'océan, portés par satellite ou bateau ou encore opérant depuis le sol). Si 
l'on considère également la grande quantité d'archives de mesures, la 
somme d'informations disponibles pour décrire l'environnement croît 
rapidement. La fusion de données est un sujet de plus en plus actuel, car 
susceptible d'aider efficacement les scientifiques à extraire des informations 
de plus en plus pertinentes et précises de toutes ces mesures. 

L'ensemble des capteurs pour l'observation de la Terre est extrêmement 
diversifié. Le spectre de leurs caractéristiques est très large, en termes 
d'échelles et d'échantillonnage dans l'espace et le temps, et de modalités 
d'observation. Cette diversité est une source formidable de questions 
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pratiques, dont la résolution repose sur une bonne compréhension et 
modélisation de problèmes plus fondamentaux. Par exemple, quels sont les 
liens entre des mesures de température du sol effectuées à l'aide d'un 
thermomètre au sol et intégrées sur une heure, et les mesures du même 
phénomène, mais effectuées depuis l'espace avec un radiomètre mesurant le 
rayonnement émis, de manière instantanée mais intégrées sur une surface de 
quelques kilomètres carrés ? La fusion de données est ici à l'intersection de 
la physique des processus de l'environnement, des sciences de la Terre, des 
sciences de l'information et des communications, et de la physique de la 
mesure. 

La prédiction du temps est un exemple de fusion de données dans ce 
domaine (fig. 1.2, chapitre 1). Les satellites météorologiques fournissent des 
mesures sur l'état tridimensionnel de l'atmosphère et sur les propriétés de 
surface du sol et de l'océan. Des avions et des ballons opèrent à des altitudes 
moins élevées. Des dizaines de milliers de stations au sol sont réparties 
irrégulièrement dans le monde. Elles mesurent les paramètres 
météorologiques, comme la température, le vent, la pression, etc. Les radars 
au sol suivent les orages et les cellules de pluie. En mer, des bateaux et des 
bouées automatiques mesurent également les paramètres météorologiques, 
ainsi que la houle. Toutes ces mesures sont traitées pour extraire les 
paramètres géophysiques pertinents, puis transmises par des réseaux de 
communication spécialisés. Cette somme d'informations, ainsi que les 
prédictions faites aux instants précédents, sont ingérées par des modèles 
numériques, au moyen de techniques d'assimilation de données, dans les 
centres de prédiction du temps. Ces modèles fournissent des prévisions, qui 
sont utilisées par les professionnels, et sont également diffusées par les 
media. 

2. OBJET DE CE LIVRE. SA STRUCTURE 

Ce livre a pour premier objet de clarifier le concept de la fusion de données, 
ou fusion d'informations, et, par conséquent, de mieux le faire comprendre 
et accepter. Actuellement, pour la plupart de ses utilisateurs, conscients ou 
non, la fusion de données représente plus un ensemble de techniques et 
méthodes qu'un cadre formel. 

Les cours donnés par l'auteur à des étudiants de troisième cycle universitaire 
français ou en école d'ingénieurs, ou encore à des ingénieurs confirmés, sont 
à l'origine de cet ouvrage. Ce livre devrait donc être d'un apport certain aux 
scientifiques, ingénieurs et autres praticiens intéressés par la fusion de 
données. 
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Cet ouvrage se démarque des livres précédents et bien connus1 2, en offrant 
d'une part une discussion approfondie sur les aspects fondamentaux et le 
concept de la fusion de données, et, d'autre part, un guide, tant théorique 
que pratique, de certaines techniques de fusion d'images et de l'évaluation 
des résultats, sans pour autant prétendre à l'exhaustivité.  

Ce livre est écrit en anglais. Le présent chapitre a pour objet d'en présenter 
le contenu de manière synthétique à l'attention des lecteurs francophones. 

La première partie du livre présente le concept de la fusion de données. 
Après avoir discuté l'état actuel des connaissances, elle définit de manière 
précise ce concept et établit l'essentiel des définitions nécessaires au 
domaine (chapitre 3). Dans ce même chapitre, sont discutées les propriétés 
des données devant entrer dans un processus de fusion. Une typologie des 
problèmes que doit résoudre la fusion de données est également présentée. 
La représentation d’un processus de fusion fait l’objet du chapitre 4, qui 
traite aussi des différentes architectures. 

La deuxième partie concerne la fusion d'images et la qualité des produits de 
fusion. Cette partie propose des solutions pratiques. Auparavant, elle offre 
une présentation approfondie des méthodes les plus usitées ainsi que 
d’autres plus évoluées. Cette partie s’adresse à un large public s’intéressant 
à l’imagerie. Il faut toutefois préciser, pour éviter tout désappointement, 
que, hormis quelques exemples, les techniques présentées sont limitées à la 
fusion de mesures, en utilisant le pixel comme support d'information. 
L'accent est mis sur les images de résolution spatiale différente. 

L'évaluation de la qualité des produits occupe une part importante de cette 
deuxième partie. Les protocoles et critères d’évaluation développés sont 
appliqués à différentes techniques de fusion d’images, afin de les comparer 
d’une part, et d’illustrer l’évaluation de la qualité, d’autre part. 

L’imagerie est de plus en plus utilisée de nos jours : en médecine, processus 
industriels, gestion du trafic automobile urbain, vérification des traités, 
gestion de crise naturelle ou politique, etc. Dans une certaine mesure, les 
informations présentées sous forme de grille, où chaque cellule peut être 
assimilée à un pixel, peuvent être considérées comme des images acquises 
par un capteur. C'est le cas notamment de toutes les cartes disponibles sur 
Internet relatives aux études et analyses du changement global. Les 
informations peuvent être de type mesures, par exemple, la température de 
l'air, ou de type catégorie, par exemple, le type de végétation  

                                                           
1 E. Waltz and J. Llinas. Multisensor data fusion. Artech House, 1990. 

2 D. Hall. Mathematical techniques in multisensor data fusion. Artech House, 
Boston, London, 1992. 
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De nombreuses méthodes et techniques existent en fusion de données. La 
plupart d'entre elles ont été décrites dans des ouvrages de référence. 
Cependant, peu d'entre elles concernent les images et les capteurs imageurs. 
Étant donné l'importance de l'imagerie et des développements 
méthodologiques y afférents, nous avons consacré la seconde partie de cet 
ouvrage à la fusion d'images. Les images acquises par satellite à haute ou 
très haute résolution spatiale, offrent une vue inédite de notre 
environnement avec de nombreux détails. Elles servent souvent 
d'illustrations dans cette deuxième partie. 

L'objet de la fusion d'images se réduit dans ce livre aux problèmes liés aux 
jeux d'images de résolution spatiale différente et de modalité différente. Il 
s'agit alors de la création de jeux d'images de dimension réduite, afin de 
mieux visualiser l'ensemble des informations ou afin d'effectuer la synthèse 
d'images à meilleure résolution spatiale. 

Plusieurs outils mathématiques sont décrits dans le chapitre 5. Ils forment la 
base de nombreuses méthodes usitées en fusion d'images. 

Le chapitre 6 traite de la fusion de données comme un moyen d'analyse 
détaillée et complète de plusieurs jeux d'images. Les techniques populaires 
"intensité - teinte - saturation" et "analyse en composantes principales" y 
sont décrites, avec d'autres. 

Le chapitre 7 présente de manière très détaillée les techniques usitées et les 
plus récentes, afin d'effectuer la synthèse d'images à la meilleure résolution 
spatiale disponible dans l'ensemble des jeux d'images. Ces images 
synthétisées doivent être aussi proches que possible des images qui seraient 
observées dans la même modalité si elle existait avec cette résolution 
spatiale. 

C'est un problème que l'on trouve fréquemment, aussi bien en observation 
de la Terre, avec des capteurs qui observent dans les bandes bleue, verte, 
rouge et infrarouge à 4 m de résolution ainsi qu'en mode panchromatique à 
1 m de résolution, ou encore dans des systèmes industriels utilisant les 
rayons-X et les microscopes électroniques pour analyser le même 
échantillon avec des résolutions horizontales et verticales différentes. Des 
méthodes ont été et sont élaborées pour accroître la résolution spatiale d'une 
ou plusieurs modalités de basse résolution spatiale, en utilisant une ou 
plusieurs modalités de meilleure résolution spatiale. 

La qualité est un sujet important, surtout lorsque des systèmes industriels ou 
opérationnels sont concernés. Une part importante du livre est dévolue à 
l'évaluation de la qualité des images résultant de processus de fusion et à la 
comparaison des méthodes de synthèse des images, discutés au chapitre 7. 
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Le chapitre 8 pose le problème de l'évaluation de la qualité et propose une 
généralisation de plusieurs protocoles déjà publiés et relatifs aux 
évaluations tant visuelles que numériques des produits de fusion. 

Le chapitre 9 est une illustration des chapitres 7 et 8. D'une part, il montre 
les résultats des méthodes discutées au chapitre 7 et, d'autre part, il met en 
œuvre le protocole d'évaluation pour comparer les différentes méthodes. 

3. DÉFINITIONS 

Si le concept de la fusion de données est facile à comprendre, il est difficile 
d'en trouver une définition, qui rende compte de ce cadre formel et des 
multiples facettes de la fusion de données. Une définition doit, de plus, être 
consensuelle pour être utilisable. 

Le chapitre 3 montre la pauvreté des définitions jusqu'alors proposées. Elles 
sont souvent restreintes à un ensemble d'outils ou de méthodes, voire à un 
ensemble d'informations. Il est rarement question de qualité et la notion de 
concept est totalement exclue. 

La définition proposée par le Joint Directors of Laboratories (JDL), du 
ministère de la défense aux États-Unis d'Amérique, est un cas à part3. Elle 
est appelée "le modèle JDL" et a fait l'objet de nombreuses études. Ce 
modèle fonctionnel met en avant les fonctions principales, les informations 
pertinentes et les interconnexions, rencontrées dans la fusion de données. Ce 
modèle donne une définition de la fusion de données comme étant un 
processus multi-niveaux et à facettes multiples (sic) ayant pour objet la 
détection automatique, l'association, la corrélation, l'estimation et la 
combinaison d'informations de sources singulières et plurielles. Ce modèle 
est décrit dans le chapitre 3 en détail. 

Le modèle JDL est extrêmement populaire dans le domaine militaire. En 
fait, il contient une certaine perversité, due à l'association étroite d'une 
définition, d'un modèle fonctionnel et de quatre niveaux hiérarchiques de 
traitement liés au modèle fonctionnel. Cette association est tellement étroite 
qu'aucun de ces éléments ne peut être dissocié des autres. Ceci entraîne une 
confusion de ce qu'est effectivement la fusion de données, confusion 
perceptible dans la littérature associée. En particulier, de nombreux articles 
confondent les niveaux de traitement avec des niveaux sémantiques, et ont 
tendance à les séparer, contrairement aux intentions des auteurs et des textes 
initiaux. 

                                                           
3 U.S. Department of Defense, Data fusion lexicon, Data Fusion Subpanel of the 
Joint Directors of Laboratories, Technical Panel for C3, 1991. 
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Malgré sa popularité et son importance pour le développement de la fusion 
de données, ce modèle ne constitue pas pour autant, une définition de la 
fusion de données, et, en aucun cas, ne fait référence à un cadre conceptuel. 

Le besoin d'une définition plus appropriée a entraîné la création d'un groupe 
de travail européen en 1996, sous les auspices de la SEE (société 
d'électricité et d'électronique), la branche française de l'Institute of Electric 
and Electronics Engineers (IEEE), et de EARSeL (European Association of 
Remote Sensing Laboratories), la branche européenne de l'International 
Society for Photogrammetry and Remote Sensing (ISPRS). Ce groupe a 
proposé la définition suivante : la fusion de données constitue un cadre 
formel dans lequel s’expriment les moyens et techniques permettant 
l’alliance des données provenant de sources diverses. Cette définition met 
clairement l'accent sur le concept et non plus sur les méthodes, techniques 
ou stratégies. 

La définition ajoute que la fusion de données vise à l’obtention 
d’information de plus grande qualité ; la définition exacte de «plus grande 
qualité» dépendra de l’application. La qualité est un mot générique 
indiquant que le résultat de la fusion est plus satisfaisant pour l'usager que 
l'ensemble de l'information originale. Une meilleure qualité peut signifier 
une plus grande précision sur une valeur ou l'estimation d'une classe, mais 
également un meilleur usage des ressources disponibles pour un même 
résultat. 

Au-delà de la définition de la fusion de données, c'est tout un ensemble de 
termes qui doit être défini. Grâce à l'utilisation des mêmes mots ayant la 
même signification pour tous, les scientifiques peuvent mieux échanger 
leurs idées et leurs expériences. Ces connaissances peuvent être mieux 
diffusées auprès des communautés utilisatrices du savoir scientifique. 
Partager le même lexique, accepté et connu par tous, permet une profonde 
irrigation des sociétés par le savoir. 

Ce chapitre contient ainsi une liste de termes de référence. Le groupe de 
travail a préféré adopter des termes déjà usités et bien compris dans d'autres 
domaines ou présents dans des normes, comme ISO ou CEN. Les 
principaux termes de référence définis sont: 
• combinaison, intégration et assimilation ; 
• mesure, signal et observation ; 
• objet, attribut et vecteur d'état ; 
• règle, décision et représentation. 

Ce chapitre discute aussi du problème de l'alignement. Les informations 
entrant dans un processus de fusion doivent être alignées. Il faut par 
conséquent définir une représentation commune de toutes ces informations. 
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Cette opération d'alignement est extrêmement importante. Elle doit être 
faite avec soin, car elle conditionne les résultats du processus de fusion. 

L'alignement, ou conditionnement, ou encore parfois, harmonisation, 
consiste à définir un espace commun, dans lequel les informations vont être 
projetées afin d'y être comparables. Lorsque l'on parle d'images, on a 
souvent affaire à un problème d'alignement géométrique ou de géocodage. 
Il faut projeter les images dans un même référentiel d'espace. On peut aussi 
avoir besoin d'un même référentiel de temps, ou encore harmoniser des 
nomenclatures de classes etc. L'alignement représente un grand ensemble de 
problèmes, souvent complexes, liés à l'observation (instrumentation et 
physique de la mesure et des objets observés) et au traitement de 
l'information. L'alignement fait partie du processus de fusion dans la mesure 
où cette opération est effectuée afin de satisfaire des contraintes imposées 
par le processus choisi. Cependant, de plus en plus de fournisseurs 
d'informations délivrent des informations déjà alignées et prêtes à entrer les 
processus de fusion les plus courants. 

L'association est l'union des différentes représentations issues des 
informations multi-sources. Ces informations sont alignées. L'association 
requiert que les représentations se réfèrent au même objet. Il n'y a aucun 
intérêt à essayer de fusionner des informations, quelles qu'elles soient, ne 
décrivant pas le même objet ou phénomène. L'association est aussi appelée 
concaténation, car elle entraîne une augmentation de la taille du vecteur 
d'état de l'objet considéré. Elle est indépendante du niveau sémantique des 
informations et s'effectue au moyen d'une analyse du niveau de corrélation 
et de relation entre les informations à fusionner et l'objet à représenter. 
L'association peut avoir pour objet la sélection de sous-ensemble de 
capteurs, qui sont les plus appropriés pour un problème donné. 

Un système de fusion est généralement composé de sources d'information, 
de moyens d'acquisition d'information, de moyens de communications et de 
capacités de traiter l'information. Il peut être par conséquent très complexe. 
Il est fréquent et pratique lors de l'étude ou la représentation d'un système, 
de séparer les aspects topologiques et les aspects de traitement 
d'information, même s'il existe des interconnexions. Plusieurs taxonomies 
d'algorithmes de traitement ont été proposées dans la littérature et sont 
brièvement présentées dans cette partie du chapitre 3. 

Enfin, ce chapitre se termine sur une présentation d'une typologie des 
problèmes de fusion de données. Cette typologie a une influence importante 
sur le choix de l'architecture du système de fusion, sur les choix d'outils et 
méthodes de traitement et de communications. Les typologies usuelles, 
comme "fusion de mesures", "fusion d'attributs" et "fusion de décisions", ou 
encore "fusion de bas et haut niveau" sont tout d'abord discutées. Elles 
peuvent parfois prêter à confusion et leur usage devrait être limité. Une 
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autre typologie est présentée en détails. Elle comprend la fusion d'attributs, 
la fusion d'analyses et la fusion de représentations. 

4. REPRÉSENTATION D'UNE OPÉRATION DE FUSION. 
ARCHITECTURES 

Il est important de pouvoir représenter un processus de fusion de manière 
simple et schématique. Une telle présentation simple mais précise de la 
fusion est utile en enseignement et formation des personnes, mais supporte 
également l'analyse d'un système à un plus haut niveau d'abstraction. 
L'adoption d'un schéma commun offre de nombreux avantages. Ce schéma 
doit être indépendant des applications, du type des informations utilisées et 
du type d'information résultante. 

Le modèle JDL est un exemple de schéma. Il est bien sûr parfaitement 
adapté aux besoins des militaires et est aisément extensible à tout problème 
de gestion de crises, militaire ou non. Cependant, pour la plupart des autres 
problèmes, il s'avère plutôt inadapté. En effet, le modèle, qui est assez 
complexe, ne s'applique que de manière partielle à la plupart des 
applications. 

Ce livre adopte un autre schéma, beaucoup plus simple, tiré de la littérature 
(fig. 4.1). Ce schéma permet de décrire aussi bien des opérations 
élémentaires que des opérations complexes. Étant modulaire, il peut être 
combiné de façon à représenter des systèmes faisant appel à plusieurs 
processus de fusion. Ce schéma est illustré par de nombreux exemples 
d'application. 

Trois types d'information forment les entrées de la cellule de fusion : les 
sources d'information à fusionner, les informations auxiliaires et les 
connaissances externes. Les sources d'information doivent être alignées. 
Elles peuvent être constituées des sorties de capteurs, et, plus généralement, 
de mesures, ou d'attributs ou encore de décisions. Les informations 
auxiliaires apportent des informations supplémentaires, résultant, par 
exemple, d'un traitement particulier d'une source spécifique, ou d'une autre 
opération de fusion. Dans le cas de processus itératifs, incluant des 
opérations dépendantes du temps, les résultats de l'itération précédente 
deviennent des entrées de l'itération courante. Ils sont considérés comme 
des informations auxiliaires, car ne provenant pas des sources originales. 
Les connaissances externes forment aussi une information additionnelle, 
dont l'objectif est principalement de contraindre ou guider le processus de 
fusion, par exemple, en imposant des règles a priori. A priori signifie que la 
connaissance est disponible avant que la fusion n'ait lieu.  

Les architectures de fusion décrivent l'ensemble des sources, la manière 
dont elles sont assemblées et les techniques mathématiques pour le 
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traitement. Ce chapitre donne les bases pour comprendre et concevoir des 
architectures. Il n'est pas un guide de mise en œuvre. En effet, la variété des 
applications de fusion est telle qu'il est impossible de fournir de tels guides 
pratiques applicables à tous les cas. 

Trois types d'architectures sont définis : centralisée, décentralisée (parfois 
appelée autonome) et hybride. L'architecture centralisée exploite en un seul 
lieu, simultanément ou non, l'ensemble des informations disponibles (fig. 
4.8). L'avantage théorique de la fusion centralisée est qu'elle fournit le 
meilleur résultat possible puisque la décision est prise en considérant toute 
la connaissance disponible. Si une source est très bruitée, cet avantage peut 
devenir un défaut car cette source peut contaminer l'ensemble de 
l'information et entraîner une diminution de la qualité du résultat. 
L'architecture centralisée requiert la disponibilité de toutes les informations 
en un même lieu, ce qui implique en particulier, des moyens de 
communication appropriés. Elle impose également une charge de calcul 
importante. À chaque changement d'entrée, l'ensemble des calculs doit être 
fait. 

L'architecture décentralisée offre une grande flexibilité et modularité (fig. 
4.10). La fusion de données est effectuée en plusieurs opérations 
s'effectuant, pour les premières, sur chaque source ou sous-ensemble de 
sources. Les résultats sont ensuite les entrées d'un processus de fusion final. 
Cette architecture est recommandée dans les domaines risqués, par exemple, 
lorsque les communications ne sont pas fiables ou lorsque les modes 
opératoires des capteurs sont soumis à de forts aléas. Un autre avantage de 
cette architecture réside dans la faible charge de calcul. Dans le cas 
notamment des capteurs asynchrones, les calculs sont actualisés au rythme 
d'acquisition de chaque capteur et non au rythme le plus rapide, comme 
dans le cas d'une architecture centralisée. 

D'autres architectures peuvent être conçues, à partir d'un mélange des 
architectures centralisée et décentralisée. Elles sont appelées hybrides. 
Selon leur conception, elles combinent les avantages et inconvénients de 
l'une ou l'autre architecture de base. 

Le choix d'une architecture n'est pas toujours chose aisée. L'architecture 
centralisée doit être préférée dès que possible, car elle produit les meilleurs 
résultats. Cependant, chaque architecture a ses propriétés et il convient de 
les analyser avant de se décider pour une architecture centralisée ou 
décentralisée, voire hybride afin de tirer le meilleur parti des propriétés de 
chacune. Des compromis sont souvent nécessaires en fonction des bandes 
passantes pour les communications et de leur fiabilité et sécurité, des types 
d'information à fusionner, des types de capteurs, de l'application elle-même, 
des méthodes mathématiques mises en jeu, de la mise en œuvre du système 
complet, de son implantation physique, etc. 
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5. QUELQUES OUTILS MATHÉMATIQUES POUR LA FUSION D'IMAGES 

Le chapitre 5 est consacré à la présentation de quelques outils 
mathématiques, formant la base de nombreuses méthodes usitées en fusion 
d'images. Le parti pris de ce chapitre est de se limiter à quatre outils, utilisés 
dans la suite du livre, de les détailler et de fournir les bases algorithmiques 
permettant leur mise en œuvre numérique. 

Le premier outil est relatif à l'espace des couleurs. Cet espace à trois 
dimensions est souvent représenté, notamment dans le monde de l'éclairage 
et de l'électronique, par trois composantes : teinte, saturation, brillance. La 
teinte distingue les couleurs : rouge, jaune, bleu, etc. La saturation se réfère 
à la pureté, c'est-à-dire comment la couleur est diluée par la lumière 
blanche. Elle permet de distinguer par exemple, le bleu marine du bleu ciel. 
La brillance est équivalente à l'intensité de la lumière achromatique. Trois 
couleurs primaires ont été définies par la Commission Internationale pour 
l'Eclairage (CIE). Combinées, elles permettent de retrouver toutes les 
couleurs possibles. A partir de ce standard, d'autres standards ont été 
développés pour répondre à certaines applications. Parmi ceux-ci, le 
standard dit RGB selon les initiales en anglais de Rouge, Vert, Bleu, a été 
défini pour les besoins de la télévision et de l'affichage numérique d'images. 
La conversion entre le standard RGB et le système (teinte, saturation, 
brillance) n'est pas triviale. D'ailleurs, on utilise plus souvent le système TSI 
(teinte, saturation, intensité) pour modéliser cette conversion. L'intensité est, 
à quelques nuances près selon les modèles, la moyenne des couleurs Rouge, 
Vert et Bleu. Le chapitre 5 présente deux modèles de conversion RGB - TSI 
(IHS en anglais) et la réciproque TSI - RGB. 

D'un point de vue mathématique, cette conversion RGB - TSI s'apparente à 
un problème de projection d'un repère dans un autre. L'intérêt de la 
projection réside dans le fait que certaines opérations sont plus aisées dans 
le deuxième repère. 

Une autre technique de projection est l'analyse en composantes principales, 
connue aussi sous le nom de la transformation de Karhunen-Loeve. Soit un 
ensemble de N images. L'analyse en composantes principales fournira un 
ensemble de N nouvelles images, appelées composantes. La caractéristique 
de ces composantes est qu'elles sont orthogonales, c'est-à-dire décorrélées. 
Les composantes sont ordonnées par décroissance de la variance. Le calcul 
des composantes principales s'effectue par diagonalisation de la matrice de 
variance - covariance, ou encore de la matrice de corrélation, des N images 
d'origine. 

Outre ces deux outils de projection, le chapitre 5 présente des outils 
d'analyse spatiale de l'image : la transformée en ondelettes et l'analyse 
multirésolution. Si la transformée de Fourier est un excellent outil pour 
l'analyse du domaine fréquentiel (plus exactement, des vecteurs d'onde) 
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d'une image, la transformée en ondelettes permet d'observer à la fois le 
signal et ses fréquences. C'est une transformée temps-fréquence. Quant à 
l'analyse multirésolution, c'est un moyen de décrire et modéliser de manière 
exacte et inversible un signal et ses fréquences. La combinaison de l'analyse 
multirésolution et de la transformée en ondelettes forme un outil performant 
et pratique pour décrire, analyser et modéliser le contenu spatial d'une 
image. 

Le chapitre 5 présente ces deux outils dans leurs principes. Il propose 
ensuite des éléments pour une mise en œuvre aisée de deux algorithmes. 
L'un est l'algorithme de Mallat, combiné ici avec une transformée en 
ondelettes de Daubechies. Cet algorithme est dit pyramidal et comprend une 
décimation des images au fur et à mesure de l'analyse. L'autre est 
l'algorithme dit "à trous". Il ne comprend pas de décimation. Leurs 
propriétés respectives sont discutées. 

6. FUSION D'IMAGES 

L'approche générale en fusion d'images est de créer un nouvel ensemble 
d'images I, généralement de dimension réduite, à partir de l'ensemble 
original d'images A, B, C,... : 

I = f(A, B, C, D,...) 

Un exemple classique de la fusion d'images est la classification. Ce chapitre 
présente brièvement la classification, l'identification et la reconnaissance de 
formes en tant que processus de fusion.  

Le chapitre 6 a pour objet de décrire complètement quelques techniques 
populaires utilisées en fusion d'images pour une analyse visuelle de 
l'ensemble des images disponibles, qu'elles soient de modalités différentes 
ou multi-temporelles, ou une combinaison des deux. La technique 
d'incrustation est un moyen efficace de fusionner des observations non-
commensurables. 

Une condition nécessaire à la fusion d'images est très souvent l'alignement 
géométrique des images. Il s'agit d'une des opérations les plus critiques de 
l'alignement. Il est aussi appelé co-enregistrement, superposition, correction 
géométrique, géocodage ou navigation. Ce chapitre traite de ce problème de 
manière détaillée. L'alignement peut être effectué de manière absolue, c'est-
à-dire par rapport à un repère non entièrement lié au problème courant. Un 
exemple d'un tel référentiel est le système canonique en latitude - longitude. 
L'alignement peut aussi être effectué de manière relative. Une image, ou de 
manière générale, une source, est sélectionnée qui sert de référence. 
L'alignement géométrique est décrit par un modèle, parfois analytique, 
souvent obtenu par ajustement à l'aide de points similaires observés dans les 
images, permettant de convertir une géométrie en une autre. 
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Assez souvent, l'application du modèle géométrique s'accompagne d'un ré-
échantillonnage des images. La commodité résultant de l'obtention d'un jeu 
d'images totalement homogène d'un point de vue géométrique et taille de 
pixel, en est la raison majeure. Ce ré-échantillonnage est également une 
opération critique puisqu'il va transformer le contenu des images originales. 

Dans les méthodes de projection - substitution abordées dans ce chapitre 
(IHS, PCA), l'alignement de la dynamique du signal est nécessaire. Les 
observations de certaines sources et combinaisons de sources doivent être 
converties, souvent par des fonctions affines, afin d'être similaires. La 
similarité est souvent représentée par les premiers moments statistiques : 
moyenne, variance. Dans la mesure où aucune loi de la physique n'est 
requise dans ce type d'approche, elle peut être utilisée pour fusionner des 
informations à des fins de visualisation et d'analyse de sources hétérogènes 
ou homogènes. 

La combinaison colorée est un moyen très usité pour visualiser un ensemble 
d'images. Soit un triplet d'images. A chaque image est allouée une voie 
(voie rouge, verte et bleue). La combinaison de ces trois voies produit une 
couleur, fonction des valeurs originales dans le triplet. S'il n'y a pas 
exactement trois sources à l'origine, le triplet est construit par sélection 
arbitraire des sources ou par combinaison des sources. La couleur peut être 
projetée dans le système (teinte, saturation, intensité). Sachant que 
l'intensité lumineuse porte l'information structurant l'ensemble des images, 
on comprend que l'on peut moduler / transformer / substituer les hautes 
fréquences d'ensemble originales à l'aide d'une autre information non prise 
en compte dans la combinaison colorée. Un exemple est donné, concernant 
la création d'une interface plus conviviale pour l'exploitation de données de 
type géographique. 

Deux techniques sont principalement utilisées : la technique IHS (utilisation 
de la conversion RGB - IHS) et la technique PCA (principal component 
analysis). Dans cette dernière, la projection s'effectue par analyse en 
composantes principales. La première composante joue le rôle de l'intensité 
dans la méthode IHS. C'est elle qui sera modifiée par l'information à 
fusionner. Enfin, une projection inverse est effectuée, pour revenir au 
référentiel original des sources. Cette projection inverse n'est généralement 
pas effectuée si l'application ne concerne qu'une analyse visuelle des 
combinaisons colorées. D'autres techniques peuvent être conçues en 
appliquant ce principe à l'aide d'autres transformées, orthogonales ou non. 

L'incrustation est une forme triviale de fusion. Il s'agit d'incruster dans des 
images ou combinaisons d'images, des éléments provenant d'autres sources. 
Ces éléments peuvent être des observations ou des attributs. C'est un moyen 
efficace de fusionner des observations non-commensurables, permettant 
d'augmenter et affiner la perception et l'analyse visuelle de ces éléments, 
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notamment, en créant des images composites mettant en avant l'information 
essentielle pour l'application. Plusieurs techniques sont disponibles. Ce 
chapitre en traite une particulière, à l'aide d'un exemple. 

7. FUSION POUR LA SYNTHÈSE D'IMAGES À MEILLEURE RÉSOLUTION 
SPATIALE 

Les chapitres 7, 8 et 9 traitent d'un problème de fusion de données 
particulier : étant donné un ensemble d'images multi-modalités possédant 
des résolutions spatiales différentes, le but du processus de fusion est 
d'effectuer la synthèse de certaines de ces images à la meilleure résolution 
spatiale disponible dans l'ensemble original. Ces images synthétisées 
doivent être aussi proches que possible des images qui seraient observées 
dans la même modalité si elle existait avec cette résolution spatiale. 

De nombreux travaux ont démontré l'intérêt de telles images synthétiques et 
ce domaine de recherche reçoit de plus en plus d'attention. L'intégration des 
capacités de telles techniques dans les systèmes d'observation peut aussi 
mener à des instruments et systèmes aussi performants mais moins 
complexes, plus robustes et moins chers. 

Soit Bl, les images de basse résolution spatiale l et Ah les images de plus 
haute résolution spatiale h. Chaque ensemble d'images a été acquis par 
plusieurs modalités. Il est possible d'étendre le problème à plusieurs 
résolutions spatiales. Le problème général est la construction d'un nouvel 
ensemble d'images B* : 

B* = f(A, B) 

Ces images synthétiques B*h doivent être proches de la réalité et respecter 
les trois propriétés suivantes. 

Première propriété. Toute image synthétique B*h ramenée à la résolution 
originale l, doit être identique à l'image originale Bl. 

Deuxième propriété. Toute image synthétique B*kh dans une modalité 
donnée k doit être identique à l'image Bkh qui serait observée dans la même 
modalité si elle existait avec cette résolution spatiale. 

Troisième propriété. L'ensemble multi-modalités synthétique B*h doit être 
identique à l'ensemble multi-modalité Bh qui serait observé avec les mêmes 
modalités si elles existaient avec cette résolution spatiale. 

De nombreuses méthodes ont été publiées. Elles diffèrent essentiellement 
par la manière dont elles respectent ces trois propriétés. On distingue trois 
groupes de méthodes. Ces trois groupes sont discutés en détail dans ce 
chapitre. Les propriétés, avantages et inconvénients, de ces méthodes, que 
l'on peut déduire de l'analyse de leurs équations, sont mises en avant. Ce 
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chapitre traite également des aspects pratiques de mise en œuvre des 
méthodes présentées dans chacun des groupes. 

Ces groupes sont : 
• projection et substitution : ces méthodes sont présentées dans le chapitre 

6. Quelques variantes existent, mais, dans l'ensemble, les méthodes IHS 
et PCA sont de loin les plus usitées ; 

• relative spectral contribution : ces méthodes exploitent des relations qui 
pourraient exister entre les différentes modalités si elles étaient 
ramenées à la même résolution spatiale, soit en fonction des instruments 
d'observation eux-mêmes, soit en fonction de la nature des objets 
observés. La méthode P+XS de l'agence française spatiale (CNES), la 
transformée de Brovey et la méthode de "couleur normalisée" sont les 
plus connues de ce groupe ; 

• concept ARSIS : ce concept (amélioration de la résolution spatiale par 
injection de structures) utilise des techniques de multirésolution, ou 
multi-échelle, et de filtrage sélectif de fréquences afin d'injecter dans les 
images à basse résolution les hautes fréquences à la plus haute 
résolution. De nombreuses méthodes et variantes ont été développées 
ces dernières années sur ce concept. Le concept ARSIS se démarque des 
deux autres groupes par, d'une part, la prise en compte de la première 
propriété lors de la construction des méthodes, et, d'autre part, par une 
séparation explicite du modèle d'analyse et de synthèse de l'information 
fréquentielle, du modèle de conversion de l'information entre les 
modalités et du modèle de transformation de ce modèle de conversion 
lors du changement de résolution. 

8. ÉVALUATION DE LA QUALITÉ DES IMAGES SYNTHÉTISÉES 

La qualité des méthodes et des images synthétisées fait l'objet du chapitre 8. 
Il s'agit d'un sujet important ayant un impact fort sur la mise en œuvre 
industrielle de telles méthodes et sur l'acceptation de ces synthèses par leur 
public.  

Le problème de l'évaluation de la qualité des synthèses est posé dans ce 
chapitre. On propose un nouveau protocole, qui est une généralisation de 
plusieurs protocoles déjà publiés. La standardisation des protocoles 
contribue à une meilleure acceptation des méthodes par l'industrie et des 
produits par leurs clients. Ce protocole exploite les trois propriétés définies 
au chapitre précédent et comprend des évaluations tant visuelles que 
numériques des produits de fusion. 

Ce protocole fait appel à une référence qui fait souvent défaut. Ce chapitre 
explique comment pallier ce manque. Il passe en revue certaines approches 
proposées et leurs avantages et inconvénients. On décrit l'influence de 
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certaines hypothèses sur les résultats. Lors de la mise au point des 
méthodes, on souligne l'importance du choix des scènes observées. Elles 
doivent comprendre un contenu important en hautes fréquences spatiales, lié 
à une forte variation du signal inter-modalités. 

La comparaison objective de la qualité d'images multi-modalités est une 
tâche difficile et fastidieuse. Le système visuel humain diffère d'un individu 
à l'autre, et, pour un même individu, ne réagit pas de manière égale à 
diverses distorsions visuelles. La qualité perçue par un observateur dépend 
ainsi fortement de l'observateur et de l'application. Un panel d'analystes est 
formé, qui va évaluer les produits de fusion au regard de critères bien 
définis. Un score moyen est établi à partir des notations individuelles. Ce 
chapitre donne un exemple de critères utilisés par le ministère de la défense 
des États-Unis d'Amérique. Lors de l'analyse visuelle, la notion de 
résolution d'image est importante envers l'interprétabilité de l'image. Un 
modèle est proposé, permettant de prédire la résolution effective de l'image 
en fonction des résolutions l et h. 

Par ailleurs, des calculs sont effectués sur les produits de fusion par 
comparaison avec les références. Des critères numériques sont proposés, de 
manière à quantifier objectivement les différents aspects des produits de 
fusion. Il s'agit souvent de quantités statistiques résumant les similitudes et 
différences entre les références et les produits de fusion, au regard des trois 
propriétés énoncées. Ces mesures de performance offrent l'avantage d'être 
faciles à mettre en œuvre et d'être automatisables, par exemple, au sein 
d'une ligne de production. 

Le besoin d'une quantité simple exprimant de manière globale mais 
représentative, la qualité d'un produit a déjà été exprimée. On montre qu'une 
telle quantité doit remplir trois contraintes : indépendance vis-à-vis des 
unités des mesures, des étalonnages des instruments et de leurs gains, du 
nombre de modalités et des résolutions l et h. Plusieurs quantités sont 
passées en revue vis-à-vis de ces contraintes. Une analyse bibliographique 
suggère que la quantité, appelée ERGAS (erreur relative globale 
adimensionnelle de synthèse), soit un bon candidat. Un seuil de 3 semble 
séparer des produits satisfaisants des produits insatisfaisants. Plus la 
quantité ERGAS est faible, plus faible est l'erreur de manière globale, 
meilleure est la qualité. 

9. ANALYSE ET COMPARAISON DE DIFFÉRENTES MÉTHODES 

Les méthodes discutées au chapitre 7 sont comparées dans ce chapitre à 
l'aide de cas concrets. Pour cette comparaison, le protocole présenté au 
chapitre 8 est mis en œuvre. Le présent chapitre repose sur un large 
ensemble de comparaisons entre différentes méthodes, soit publiées, soit 
réalisées au sein de l'École des Mines de Paris. Seules ont été prises en 
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compte les comparaisons effectuées selon le protocole décrit 
précédemment. Les critères sélectionnés dans les publications attachent 
beaucoup d'importance à la synthèse du signal pour chaque modalité et pour 
l'ensemble multi-modalités, soit de manière globale (par exemple, respect 
des moyenne et variance), soit au niveau du pixel. Il s'agit des aspects les 
plus importants pour l'application ultérieure d'algorithmes de classification 
multi-modalités aux images synthétiques. 

A cette comparaison, s'ajoute une discussion détaillée sur l'influence de 
l'intervalle de temps séparant les instants d'acquisition des différentes 
modalités et la manière dont les différentes méthodes prennent en compte 
cet intervalle. Une évaluation analytique de cette influence montre la forte 
relation existant entre elle et les performances vis-à-vis de la première 
propriété "toute image synthétique B*h ramenée à la résolution originale l, 
doit être identique à l'image originale Bl". Plus cette propriété est respectée, 
plus l'influence de l'intervalle de temps sera faible. Exceptée la méthode 
HPF, les méthodes du groupe du concept ARSIS sont ainsi nettement plus 
insensibles que les autres à l'intervalle temporel d'acquisition. Cette analyse 
est illustrée au moyen d'un cas très spectaculaire sur le gigantesque barrage 
des Trois Gorges en Chine. Les géologues chinois ont dans ce cas, constitué 
le panel d'analystes pour l'évaluation visuelle de la qualité. De même, leurs 
outils de classification et de détection de failles ont été utilisés pour 
quantifier leur degré de satisfaction. 

En conclusion de ce chapitre, les méthodes sont ordonnées en fonction des 
performances atteintes. Ces performances sont des moyennes ; il est 
possible d'observer des fluctuations dans ce classement. 

La transformée de Brovey et la méthode "couleur normalisée". Ces deux 
méthodes comportent un fort biais dans leur construction et produisent des 
erreurs importantes. On observe également une forte distorsion du contenu 
multi-modalités. 

La méthode HPF. En tant que réalisation possible du concept ARSIS, de 
meilleurs résultats étaient attendus. On observe un renforcement très 
excessif des structures. La synthèse de l'ensemble multi-modalité est 
généralement mauvaise. 

Les méthodes de projection-substitution : IHS et PCA. Ces méthodes 
produisent des synthèses de qualité variable et souvent mauvaise. On 
observe une distorsion du contenu multi-modalités. La méthode PCA doit 
être préférée à la méthode IHS, de manière générale. 

L'interpolation. L'interpolation n'est pas une méthode de fusion, bien 
entendu. Ses résultats indiquent le possible bénéfice d'une méthode de 
fusion. Ainsi, pour la classification multi-modalités, il vaut mieux effectuer 
une interpolation que l'une des méthodes citées au-dessus. 
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La méthode P+XS. Les méthodes faisant appel à la contribution spectrale 
relative généralisée donnent des résultats meilleurs que le groupe projection 
- substitution, sans être toutefois satisfaisants. Les contours sont trop 
renforcés et la synthèse du contenu multi-modalités comporte de 
nombreuses erreurs. Cette méthode est très sensible à l'intervalle de temps 
séparant les acquisitions des différentes modalités. 

Les méthodes Model 1, Model 2 et RWM. Ces trois méthodes sont des 
réalisations du concept ARSIS. Les deux méthodes Model 2 et RWM 
offrent les meilleurs résultats. La qualité est généralement constante. Ces 
méthodes sont également plutôt insensibles à l'intervalle de temps séparant 
les acquisitions des différentes modalités. 

La conclusion générale est que très peu de méthodes aboutissent à des 
résultats satisfaisants. Même si les méthodes Model 2 et RWM donnent très 
souvent satisfaction, des améliorations restent à apporter. Elles portent tant 
sur le modèle de représentation de l'information spatiale que sur le modèle 
de conversion de l'information fréquentielle ou contextuelle d'une modalité 
à l'autre. Un fort accroissement de la qualité est attendu d'une amélioration 
significative de la modélisation inter-modalités. Actuellement cette 
modélisation relève souvent d'un ajustement de dynamique soit au niveau 
de l'image originale, soit au niveau d'une fenêtre de fréquences. Une 
meilleure prise en compte des lois de la physique devrait améliorer les 
résultats. 
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3. DEFINITIONS 

THE QUEST FOR AN APPROPRIATE DEFINITION OF DATA FUSION 

The concept of data fusion is easy to understand. As explained before, we 
are all performing data fusion without naming it. Thus speaking of data 
fusion, of its properties, its fundamentals should be easy. Not at all! Several 
years ago, as mathematicians told the author that he was doing data fusion, 
he asked for a definition. Then the author was stunned by the poverty of the 
few definitions, the lack of clarity and consensus, and by the battle of 
words. The exact meaning of data fusion varied from one scientist to 
another. Several words appeared, such as merging, combination, synergy, 
integration, ... Some scientists said that merging was not fusion, or that 
fusion was more than merging; others argued that data fusion was no more 
than optimal control etc. All these words and expressions appealed more or 
less to the same concept but without expressing it, and were however felt 
differently. Data fusion also became fashionable, making things less easy. 
Several times, the term data fusion was used while classification would 
have been more appropriate, given the contents of the publication. Another 
striking aspect was that data fusion was often referred to as a collection of 
methods and techniques. 

Actually data fusion means a very wide domain. It is multidisciplinary by 
essence and is at the crossing of several sciences. It gathers together a large 
number of methods and mathematical tools, ranging from spectral analysis 
to plausibility theory. Fusion is not specific to a theme or an application. On 
the contrary, the tools used in a fusion process for a specific application 
may be tailored to that specific case. 

Data fusion should be seen as a concept, not merely as a collection of tools 
and means. A formal framework permits a better understanding of the 
fundamentals and properties of data fusion. It offers the advantages of a 
better description and formalization of the potentials of synergy between the 
various sources of information, and accordingly, a better exploitation of this 
information. It helps in organizing the richness of this domain in order to 
extract more benefit. It increases understanding between the various 
sciences; it brings mutual enrichment by sharing knowledge in 
fundamentals as well as in techniques and solutions. 

Expressing the concept of data fusion requires establishing terms of 
reference. Such terms allow the scientific community to express the same 
ideas using the same words and also to disseminate their knowledge 
towards the industry and 'customers' communities. Moreover it is a sine qua 
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non condition to set up clearly the concept of data fusion and the associated 
formal framework. 

Eventually the author discovered that introducing the concept of data fusion 
strongly increases the awareness of the scientific community on the whole 
chain of acquisition and processing of the information, ranging from the 
sensor to the decision, including the management, assessment and control of 
the quality of the information. 

Surprisingly, it is very difficult to provide a precise definition of data 
fusion. This large domain cannot be simply defined by restricting it, for 
example, to specific modalities, or specific wavelengths, or specific 
acquisition means, or specific applications. Fusion process may call upon so 
many different mathematical tools that it is impossible to define fusion by 
these tools. 

A few definitions can be found in the literature, apart that of the JDL 
discussed later. In geography, including images from airborne or 
spaceborne instruments and analysis of collected intelligence, the 
documents of the Open GIS consortium1 define fusion as « the process of 
organizing, merging and linking disparate information elements (e.g., map 
features, images, text reports, video, etc.) to produce a consistent and 
understandable representation of an actual or hypothetical set of objects 
and/or events in space and time ». In these documents, fusion is clearly a set 
of algorithms, techniques and operators. Fusion is conceived mostly as an 
analyst-driven process. They further define merging and integration as « the 
process of physically merging two data sets into a common, or fused, 
representation ». 

In Earth observation from space, Pohl, Van Genderen2 proposed « image 
fusion is the combination of two or more different images to form a new 
image by using a certain algorithm », which is restricted to images. 
Mangolini3 extended data fusion to information in general and added a 
reference to quality. He defined data fusion as a « set of methods, tools and 
means using data coming from various sources of different nature, in order 

                                                           
1 Geospatial fusion services testbed. The Open GIS Consortium (OGC), Wayland, 
Ma, USA, 2000. 

2 C. Pohl, and J. L. van Genderen. Multisensor image fusion in remote sensing: 
concepts, methods and applications. International Journal of Remote Sensing, vol. 
19, n° 5, pp. 823-854, 1998. 

3 M. Mangolini. Apport de la fusion d'images satellitaires multicapteurs au niveau 
pixel en télédétection et photo-interprétation. Thèse de Doctorat, Université Nice - 
Sophia Antipolis, France, 174 p., 1994. 
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to increase the quality (in a broad sense) of the requested information ». 
These definitions put the accent on the methods. They contain the large 
diversity of tools, but are restricted to these. 

In applied mathematics and image processing, the definition proposed by 
Hall, Llinas4 also refers to information quality and details the purposes of 
the data fusion. But it still focus on the methods: « data fusion techniques 
combine data from multiple sensors, and related information from 
associated databases, to achieve improved accuracy and more specific 
inferences that could be achieved by the use of a single sensor alone ». Li et 
al.5 wrote « fusion refers to the combination of a group of sensors with the 
objective of producing a single signal of greater quality and reliability ». 
Quality and reliability are referred to, but there is no reference to concepts. 
Furthermore it is restricted to sensors and signal. 

Indeed most of these definitions are focusing too many on methods though 
paying some attention to quality. As a whole, there is no reference to 
concept in these definitions while the need for a conceptual framework was 
clearly expressed by the scientists as well as practitioners. 

THE JDL DEFINITION 

Special consideration should be devoted to the works performed by the 
Department of Defense of the United States of America, and especially by 
the Data Fusion Subpanel of the Technology Panel for C3 (command, 
control, communications) of the Joint Directors of Laboratories (JDL). 

The JDL developed a functional model that illustrates the primary 
functions, relevant information and databases, and interconnectivity to 
perform data fusion. The JDL also gave a definition of data fusion6, which 
was further refined7 as a « multilevel, multifaceted process dealing with the 
automatic detection, association, correlation, estimation, and combination of 

                                                           
4 D. L. Hall, and J. Llinas. An introduction to multisensor data fusion. In 
Proceedings of the IEEE, vol. 85, n° 1, pp. 6-23, 1997. 

5 H. Li, B. S. Manjunath, and S. K. Mitra. Multisensor image fusion using the 
wavelet transform. Computer Vision, Graphics, and Image Processing: Graphical 
Models and Image Processing, vol. 57, pp. 235-245, 1993. 

6 U.S. Department of Defense, Data fusion lexicon, Data Fusion Subpanel of the 
Joint Directors of Laboratories, Technical Panel for C3, 1991. 

7 DSTO (Defence Science and Technology Organization) Data Fusion Special 
Interest Group, Data fusion lexicon. Department of Defence, Australia, 7 p., 21 
September 1994. 
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data and information from single and multiple sources ». This definition is 
more general than the previous ones with respect to the types of information 
than can be combined. It is very popular in the military community. 

This definition cannot stand alone. The word "multilevel" refers to the four 
levels of the functional model, i.e. how the processing is organized. 
Consequently the description of the functional model should accompany the 
definition. 

Figure 3.1 displays this model, revised by the Australian Department of 
Defense (DSTO). Refinements have been made to this model since then, 
with especially the introduction of a Level 0 "preprocessing" operating at 
the sensor level, but they do not impact on the following discussion. 

Level 1
Object

Refinement

Situation
Picture

Level 2
Situation

Refinement

Situation
Assessment

Level 4
Process Refinement

Performance Assessment

Level 3
Threat

Refinement

Threat
Assessment

 
Figure 3.1. The data fusion model of the Australian Department of Defense 
(courtesy D. Kewley) 

The model comprises four levels, noted levels 1 to 4. They form a hierarchy 
of processing. 

In Level 1, is performed "object refinement". This is an iterative process of 
fusing data to determine the identity and other attributes of entities and also 
to build tracks to represent their behavior. The term entity refers here to a 
distinct object. A track is usually directly based on detections of an entity, 
but can also be indirectly based on detecting its actions. The product from 
this level is called the situation picture. That is, Level 1 tries to determine 
what it is (i.e. identification) and where it is and when (i.e. tracking). 
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Level 1 is usually partitioned into four functions8: data alignment, 
association, tracking and identification. Data alignment functions project 
data into a common reference frame. Association tackles the problem of 
sorting or correlating observations into groups, with each group 
representing data related to a single entity. Tracking refers to the estimation 
of the position and velocity of the entity. Identification seeks to better 
identify / describe the entity. 

Level 2 performs "situation refinement", which is an iterative process of 
fusing the spatial and temporal relationships between entities to group them 
together and form an abstracted interpretation of the patterns in the order of 
battle data. The product from this level is called the situation assessment9. 

Level 3 performs "threat refinement", which is an iterative process of fusing 
the combined activity and capability of enemy forces to infer their 
intentions and assess the threat that they pose. The product from this level is 
called the threat assessment. 

Level 4 performs "process refinement", which is an ongoing monitoring and 
assessment of the fusion process to refine the process itself and to regulate 
the acquisition of data to achieve optimal results10. Level 4 interacts with 
each of the other levels. 

Notwithstanding the large use of the functional model, the JDL definition is 
not suitable for the concept of data fusion, since it includes its functionality, 
as well as the processing levels. Its generalities as a definition for the 
concept are reduced. 

In the literature, especially that devoted to defense systems, this definition is 
necessarily associated with a description of the four hierarchical levels. 
Contrary to the intention of the authors of the JDL definition, Level 1 is 
very often said "low-level" processing, and the others are said "high-level" 
processing. The association of the definition, the functional model and the 
way of presenting the levels create confusion in the use of terms. In 
particular, many documents refer to the "low-level" and "high-level" fusion. 
However, the concept of fusion does not call upon such levels and such a 
hierarchy in processes. Often documents contradict themselves by saying 
that levels are linked in an ascending mode or in a descending one. At 
times, it is even written that discrimination between levels is impossible. 

                                                           
8 D. Hall. Mathematical techniques in multisensor data fusion. Artech House, 
Boston, London, 1992. 

9 DSTO. Op. cit. 

10 L. A. Klein. Sensor and data fusion concepts and applications. Tutorial texts, 
vol. TT 14, SPIE Optical Engineering Press, USA, 131 p., 1993. 
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The confusion is further enforced by references to the level of semantic 
content and to the level of inference. A measurement has a lower semantic 
content than the attributes that are deduced. In turn, the attributes have a 
lower semantic level that the decisions that are taken, which have a lower 
level than the meta-decisions etc. The qualification of a semantic level or an 
inference as "low level" or "high level" depends upon the context and is not 
absolute. 

Data fusion applies to all semantic levels11, and this at all functional level 
defined by the JDL model. Therefore, it is impossible to establish a 
hierarchy in data fusion, which is general and can be always applied. 
Accordingly, such a hierarchy does not exist from a conceptual point of 
view, and should not be evidenced in the definition. 

Additional questions arise. How can the JDL model be applied outside the 
military domain? As seen before, weather forecasting is a perfect example 
of a system calling upon data fusion. If one may find the equivalent of 
Level 1 "situation picture" and Level 4 "performance assessment" in 
weather forecasting, the analogy with the two others is far from obvious. 
They may simply not exist in this case and in others. 

In our modern world, information is sold by specialized companies or 
institutes (e.g., geographical databases). The sensor / data acquisition 
systems are outside the control of the fusion process (Level 4). The fusion 
process is open-looped and optimal acquisition of data cannot be realized. 
Furthermore, the process of alignment has been already performed by the 
provider, and is further excluded from the subsequent fusion operations 
made by the customers. These are a few examples showing the difficulties 
in applying the JDL model. 

Actually, the definition of the JDL is not suitable for defining the concept of 
data fusion. Nevertheless, the influence of the JDL functional model on the 
development of data fusion has been, and still is, instrumental. Though not 
presenting a real formal framework, this hierarchy of processing levels has 
permitted practical implementations and to develop several projects of 
importance, contributing to a better understanding of the principles. A work 
is currently under way to extend the model in the framework of the UML 
language (universal modeling language)12. 

                                                           
11 L. F. Pau. Sensor data fusion. Journal of Intelligent and Robotics Systems, vol. 1, 
pp. 103-116, 1988. 

12 C. Kobryn. UML 2001: a standardisation odyssey. Communications of the ACM, 
42, 10, 1999. 
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A NEW DEFINITION IN DATA FUSION 

In data fusion, information may be of various kinds, ranging from 
measurements to verbal reports. Some data cannot be quantified; their 
accuracy and reliability may be difficult to assess. In mapping activities, 
one often uses some features held in a geographical information system to 
help in classifying multispectral images provided by several sensors 
airborne or spaceborne. In this particular case, some data are measurements 
of electromagnetic energy, and others may be symbols. 

Accordingly the definition for data fusion should not be restricted to data 
output from sensors (signal). Opposite to most of the published definitions, 
it should not be restricted to methods and techniques or refer to functional 
models or architectures of systems. 

Considering the lack of appropriate definition, a European working group 
was formed in 199613, under the auspices of the SEE, the French affiliate of 
the Institute of Electric and Electronics Engineers (IEEE), and the EARSeL, 
the European affiliate of the International Society for Photogrammetry and 
Remote Sensing (ISPRS). During several meetings, the debate focused on 
the formalization of the data fusion in remote sensing. The main outcomes 
of the debate were on definitions and terms of reference. The following 
definition was finally agreed upon in January 199814. 

Data fusion: data fusion is a formal framework in which are expressed the 
means and tools for the alliance of data originating from different sources. 
(In French: la fusion de données constitue un cadre formel dans lequel 
s’expriment les moyens et techniques permettant l’alliance des données 
provenant de sources diverses.) 

This definition is clearly putting an emphasis on the framework and on the 
fundamentals underlying data fusion instead of on the tools and means 
themselves, as is done usually. The latter have obviously strong importance 
but they are only means not principles. 

Note that the word "data" in data fusion is taken in a broad sense. It may be 
replaced by information fusion. 

                                                           
13 L. Wald. The present achievements of the EARSeL - SIG "data fusion". In : 
Proceedings, EARSeL Symposium 2000 “a decade of trans-European remote 
sensing cooperation”, Dresden, Germany, Buchroithner M. ed., Balkema, 
Rotterdam, pp 263-266. 

14 L. Wald. Some terms of reference in data fusion. IEEE Transactions on 
Geosciences and Remote Sensing, 37, 3, 1190-1193, 1999. 
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Note also that in this definition, the different observation modalities of one 
sensor (e.g., multispectral channels) are to be considered as different 
sources, as well as observations taken at different times by the same sensor. 

The definition adds that data fusion aims at obtaining information of 
greater quality; the exact definition of 'greater quality' will depend upon the 
application. Here quality does not have a very specific meaning. It is a 
generic word denoting that the resulting information is more satisfactory for 
the "customer" when performing the fusion process than that available 
without the fusion process. For example, better quality may be an increase 
in accuracy of a geophysical parameter or of a classification. It may also be 
related to the production of more relevant information of increased utility, 
or to the robustness in operational procedures. Fused information represents 
an entity in greater detail and with less uncertainty than what is obtainable 
from any of the individual sources. The fusion process can also extract 
higher order spatial, temporal and behavioral relationships between those 
entities. Greater quality may also mean a better coverage of the area of 
interest, or a better use of financial or human resources allotted to a project. 
In some cases, quality may be replaced by efficiency. 

If compared to the JDL work, this definition does not propose any 
functional model or architecture. As we will see further, the architecture 
that can be drawn is very open, and consequently is of less practical value 
than the JDL model. 

One immediate outcome of the definition is that now some aspects of data 
fusion, such as alignment or association are not all considered as stages of 
processing. For example, alignment becomes a property of the data to fuse, 
while association remains a processing issue. This is discussed in a further 
section. 

TERMS OF REFERENCE 

Other terms of reference are required to describe data fusion. Most of them 
exist in other domains and are of widely accepted use, or are the subject of 
standards, such as ISO, CEN, FGDC or OpenGIS. Examples of such terms 
are measurements, features, symbols, etc. The above-mentioned working 
group recommended their adoption in data fusion to avoid confusion and for 
the sake of the simplicity. 

MERGING, COMBINATION, INTEGRATION, ASSIMILATION 

The terms merging and combination, are used in a much broader sense than 
fusion, with combination being even broader than merging. These two terms 
define any process that implies a mathematical operation performed on at 
least two sets of information. These definitions are intentionally loose and 
offer space for various interpretations. Merging and combination are not 
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defined with an opposition to fusion. They are simply more general, also 
because we often need such terms to describe processes and methods in a 
general way, without entering details. Integration may play a similar role 
especially in system aspects; in information, it implicitly refers more to 
concatenation (i.e., increasing the state vector) than to extraction of relevant 
information. 

Another domain pertains to data fusion - data assimilation or optimal 
control. Data assimilation deals with the inclusion, or ingestion, of 
measured data into numerical models for the forecasting or analysis of the 
behavior of a system. A well-known example of a mathematical technique 
used in data assimilation is Kalman filtering. It is a technique that produces 
estimates of the state vector of the observed system. It is characterized by 
recursive evaluation, a model of the dynamics of the system and dynamic 
weighting of incoming observations. Data assimilation is daily used for 
weather forecasting. 

MEASUREMENTS, SIGNAL, OBSERVATION 

Terms such as measurements, attributes, rules or decisions, are often used in 
data fusion. These terms as well as others related to information are defined 
in the following. These definitions are those used in information sciences 
and optronics. 

Measurements are primarily the output of a sensor. This is also called a 
signal, or image in the 2-D case. The elementary support of the 
measurement is a pixel in the case of an image, a voxel in the case of 3-D 
measurement and is called a sample in the general case. Bijective functions 
are often applied to a signal as a pre-processing prior to a fusion process. 
The result is usually considered as a signal. For example, the measurements 
made by optical sensors are digital numbers that can be converted into 
radiances once the calibration operations are performed. If corrections for 
the spectral irradiance of the illuminating source are applied, reflectances 
are obtained, which are still considered as a signal. 

Commensurate sensors observe the same physical manifestation of an 
entity. Stereo-imagery uses a couple of similar sensors delivering 
commensurate data. Infrared sensors and UV sensors are usually not 
commensurate. An image of the roughness of the surface of a piece of metal 
acquired by a laser is commensurate to that acquired by radar. The same 
data are not commensurate to that acquired by an X-ray sensor because the 
latter image is depth-integrated. 

Observation is a general word that denotes the raw information. For 
example, a verbal report is a piece of raw information, and may be 
considered as an observation. Measurements are observations. In 
information theory, an observation is also called signal when it triggers a 
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process, whatever it is. For example, when one sees an acquaintance, the 
sight of him is a signal that triggers recognition. 

Terms relating to electronic imagery may be found in ISO documents15. In 
the case of image, the measurements are often called gray levels, whatever 
the type in computer encoding (character, integer, float, etc.). An image is 
called multi-modality if it is composed of several images acquired by a 
different modality. It is also called multi-channel, or multi-band, or 
multispectral in the case of optical sensors, or multi-frequencies in the case 
of microwave sensors. By extension, one may denote image any 
information that is presented under raster format, i.e. on a regular grid. Grid 
cell is equivalent to pixel. The information is often called gridded 
information (e.g., gridded temperature) or rasterized information. Actually, 
the term "gridded information" may denote information having more than 2 
dimensions in space, contrary to images. 

In this book, the term frequency is used indifferently for frequencies in time 
dimension (expressed in Hz) or for wavenumbers or wavevectors 
(expressed in m-1), which belong to the space domain. 

OBJECT, ATTRIBUTE, STATE VECTOR 

An object, or entity, is defined by its properties, e.g., its color, its materials, 
its shapes, its neighborhood, etc. It can be a natural object (e.g., tree, 
mountain), a natural phenomenon (e.g., a cyclone), or a man-made object 
(e.g., engine, road) etc. 

By extension, the support of a signal (e.g., a pixel) may be considered as an 
object. Some of its properties are defined by the set of observations that are 
attached to this support. For example, if a classification has been performed 
onto a multispectral image, the pixels belonging to the same class can be 
spatially aggregated. This results in a map of objects having a spatial 
extension of several pixels. Note that geographers limit objects as being 
single phenomena existing in the real world (e.g., river, street) 16 17. 

An attribute is a property of an object, which describes geometrical, 
topological, thematic or other characteristics. For example, the position and 
the velocity are two attributes of a vehicle. According to the problem, we 

                                                           
15 ISO/FDIS 12651. Electronic imaging - vocabulary. 1999. 

16 CEN/TC 287. Geographic information - Vocabulary. CR 13346:1998, Comité 
Européen de Normalisation (CEN), 1998. 

17 FGDC. Content standard for digital geospatial metadata. Annex A - glossary. 
Federal Geographic Data Committee, c/o US Geological Survey, Reston, Va, USA. 
FGDC-STD-001-1998, 1998. 
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may add other attributes of this vehicle: its color, shape, sizes, number of 
seats, fuel consumption etc. Feature is equivalent to attribute. It should be 
noted that some standards in geography18 19 use features to denote an 
abstraction of the real world phenomena. 

Attributes may be of measurements type or not. Examples of non-
continuous attributes of a vehicle are mode of propulsion and type of fuel. 
Such information is non-continuous and is called class, label, category, 
categorical data or taxon. In another example, classification of multi-
modalities images is often used as a fusion process. Outputs are classes and 
are attributes of the pixel. Another well-known example is the spatial 
context of a pixel, computed by local variance, or structure function or any 
spatial operator. This operation can be extended to time context in the case 
of time-series of measurements. Equivalent terms are local variability, local 
fluctuations, spatial or time texture, or pattern. 

By extension, any information extracted from an image or any signal is an 
attribute for the object. The aggregation of measurements made for each of 
the elements of the object (for example, the pixels or samples constituting 
the object), such as the mean value, is an attribute. Some authors call 
mathematical attribute such attribute deriving from statistical operations on 
measurements. 

The properties of an object constitute the state vector of this object. This 
state vector describes the object, preferably in a unique way. The state 
vector is also called feature vector, or attribute vector. The common 
property of the elements of the state vector is that they all describe the same 
object. If the object is a sample (e.g., a pixel), the state vector may contain 
the measurements as well as the attributes extracted from the processing of 
the measurements. 

The sometimes-called positional state vector contains the position 
(measurements) and the velocity of a moving object. The velocity is either a 
measurement (e.g., by Doppler effect) or an attribute (e.g., first derivative of 
consecutive observations of position). 

Another example of state vector is the color image, which is composed of 
three images (measurements): red, green, and blue. A more complex 
example is the meteorological state vector usually composed of assessments 
of the fields of pressure, temperature, humidity and wind at various 

                                                           
18 ISO/TC 211. Geographic information / geomatics. Definitions. ISO/TC 211 
N038, 1996. 

19 OpenGIS. OpenGIS abstract specification, The Open GIS Consortium (OGC), 
Wayland, Ma, USA, 1999. 
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altitudes. These assessments (attributes) derive from sophisticated 
processing of measurements. 

RULES, DECISIONS, REPRESENTATION 

Works in pattern recognition have drawn an analogy with the syntax of a 
language. Terms of higher semantic content have been defined, such as 
rules and decisions. Rules, like the syntax rules in language, define 
relationships between objects and their state vectors, and also between 
attributes of a same state vector. Rules may be state equations, or 
mathematical operations, or methods (that is a suite of operations, i.e. of 
elementary rules). They may be expressed in elaborated language. 
Examples of such rules are those used in artificial intelligence and expert 
systems. Decisions result from the application of rules on a set of rules, 
objects and state vectors. 

A representation of the entity / object is the set of measurements, or 
attributes, or rules describing the object, completely or not. In principle, a 
representation consists in all the knowledge available about this object. A 
representation includes the state vector of the object together with the 
relevant rules. 

For example, the representation of a fighter aircraft at instant t will 
comprise its position, velocity, past and possible trajectory, and additional 
knowledge not necessarily derived from the set of sensors observing at 
instant t, such as its type, typical mission, range of action, maximum speed, 
maneuverability, weapons, ammunitions, etc. In the case of forest fire 
fighting, the state vector will include the location of the fire front, its 
velocity, past and possible trajectory and intensity. The representation will 
also comprise information about the terrain (e.g., slopes, vegetation 
inflammability, and accessibility) and resources for fire combating. 

SUB-DOMAINS IN DATA FUSION 

Data fusion may be sub-divided into many domains. The sub-division may 
be made by functionalities or objectives of the fusion (e.g., tracking), by 
theme (e.g., medicine), by type of inputs to the fusion process (e.g., 
attributes), by class of architectures, by class of algorithm or mathematical 
tools (e.g., wavelet transform), etc. 

For example, the military community uses the term positional fusion to 
denote aspects relevant to the assessment of the state vector or identity 
fusion when establishing the identity of the entities is at stake. 

If observations are provided by sensors and only by sensors, one will use 
the term sensor fusion or multisensor fusion. Image fusion is a sub-class of 
sensor fusion; here the observations are images. If the support of the 
information is always a pixel, one may speak of pixel fusion. Other terms 
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easily understandable are measurement fusion, signal fusion, features 
fusion, and decision fusion. They mean that the fusion process deal only 
with respectively, measurements, signals, features, and decision. 

Evidential fusion means that the algorithms behind call upon the evidence 
theory, fuzzy fusion denotes processes and algorithms using fuzzy logic, etc. 

ALIGNMENT 

The information entering a fusion process should be aligned. The alignment 
of the sources defines a common representation (XS) on the basis of the 
measurements (zS)

t, and the representations (XS)
t at instant t. 

Differently said, a common co-ordinate system (e.g., geographical space 
and time) should be found wherein the sources data as well as the global 
knowledge can be represented. The data are said aligned, and the relevant 
operations are called alignment operations or alignment processes. This is 
called alignment, or conditioning, or sometimes harmonization. 

For example, the geocoding of airborne or space-borne images is part of the 
alignment operation. Geocoding aims at providing an assessment of the 
absolute (or relative) geographical location of a pixel. Similarly 
mathematical techniques exist, which render two images of the same object 
superimposable, including a resampling for harmonizing the pixel sizes. 
The specific case of the geometrical alignment of images is discussed in 
Chapter 6. 

Alignment provides a general frame of referencing that can applied to 
homogeneous (commensurate) as well as heterogeneous (non-
commensurate) data. This is a difficult problem, and there is no general 
theory. 

For example, assume a parallelepiped made of metal, observed by a laser 
and by X-rays. The common reference space of these two non-
commensurate sources has three spatial dimensions. However the depth 
perception is ill defined because of the depth integration performed by the 
X-rays sensor and its sensitivity to heterogeneity in the piece of metal. 
Hence it is not easy to establish the 3-D space under concern. If one adds 
another source, non-commensurate to the two others, the problem is getting 
more complicated (e.g., electron microscope). 

Alignment may request a conversion / transformation of observations. For 
example, it may be necessary to convert all data into optical paths in order 
to combine them. Alternatively, it may request an extraction of attributes, 
which may be the appropriate quantities to fuse, especially in the case of 
non-commensurate observations. Models may be necessary for aligning two 
sets of commensurate observations acquired on different supports, e.g., pin-
point measurements integrated over a given period of time and 
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instantaneous measurements of the same entity / phenomenon integrated 
over a surface or within a volume. 

Depending upon the case, corrections of changes in illumination of the 
object or in attenuation of the signal between the target and the sensor 
should be performed. This may occur in natural environment: a change in 
atmospheric constituents induces changes in light propagation, or in 
industrial environment: dust or paint aerosol may influence the illumination 
of the object to sense. 

The concept of alignment is extended to a wider reference space 
(representation space). It includes the standardization of units in case of 
measurements, the calibration of sensors, the corrections of changes in 
illumination, the standardization in taxonomy if sources are attributes, or in 
syntax and lexicon if sources are rules, the selection of a common language 
for verbal or written reports etc. 

Indeed alignment is part of the fusion process. It is sometimes considered as 
a pre-processing, but it should be stressed that this operation is solely 
performed in order that the information satisfies some constraints imposed 
by the objectives of the fusion process. That alignment is part of the fusion 
process may be hidden by the fact that information providers, including 
instruments makers, may supply data that are already aligned and ready for 
subsequent processing by customers. 

ASSOCIATION 

Let be two sources of information S(1) and S(2). Each provides a 
representation, (XS(1))

t and (XS(2))
t at instant t. Let S be the union set of 

sources. Assume information is aligned for this set S. Associating the two 
representations (XS(1))

t and (XS(2))
t requires that they refer to the same object. 

There is no benefit of trying to fuse measurements, attributes, rules or 
representations that do not refer to the same phenomenon or entity. 

The union of the representations is called association or concatenation. 
Association is made by an increase of the size of the state vector of the 
object. 

Association is independent of the semantic level of the information. It is 
performed by an analysis of the degree of correlation / relation between the 
information to be fused and the entity under concern. 

Some examples have been given previously, where sources are not exactly 
referring to the same object. In that case, though the sources are aligned, the 
representations cannot be associated. It can be a matter of period of 
observation for example. If one is observing a moving target within a 
limited period, any information relating to instants well before and well 
after is poorly correlated to the dynamics of the target. 
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On the contrary, quasi-simultaneous observations of different or same parts 
of the same human spine by X-rays scanner and nuclear-magnetic resonance 
imaging system refer to the same object. Once aligned for units (or gray 
level dynamics) and geometric superimposability, these observations can be 
fused for, e.g., a 3-D reconstruction of the spine, possibly given some 
additional knowledge. 

Data concatenation is accomplished by juxtaposing all the data into the state 
vector, hence augmenting it. A straightforward example is given by a time-
series of images from the meteorological geostationnary satellites, which 
are taking a picture of the Earth every half-hour or less. The raw data are 
processed by the meteorological offices, and are spatially superimposable 
once delivered to the customer. In that case, at each pixel, one can define a 
state vector by the concatenation of all the observations made at this pixel in 
the period under concern. Because the data provider has performed the 
alignment of data, the customer deals in this case with concatenation and 
subsequent analysis. 

In some cases, the issue of association can be the selection of sub-sets of 
sensors, which are the most relevant for a given problem. A metric should 
then be defined for the comparison between sensors, and the choice of the 
most appropriate ones. 

TOPOLOGICAL AND PROCESSING ISSUES 

A fusion system can be a very complicated system. It is composed of 
sources of information, of means of acquisition of this information, of 
communications for the exchange of information, of intelligence to process 
the information and to issue information of higher content. 

The issues involved may be separated in topological and processing issues. 
Despite the interconnection between both issues in an integrated fusion 
system design, they can be decoupled from each other in order to facilitate 
the development of a systematic methodology of analysis and synthesis of a 
fusion system according to Thomopoulos20 21. Recent advances in 
technology and in the modeling of complex systems may render this 
separation useless or unrealistic (e.g., UML language). 

                                                           
20 S. C. A. Thomopoulos. Sensor integration and data fusion. Journal of Robotic 
Systems, vol. 7, pp. 337-372, 1990. 

21 S. C. A. Thomopoulos. Decision and evidence fusion in sensor integration. In 
Advances in Control and Dynamic Systems, Ed. C. T. Leondes, vol. 49, part 5, pp. 
339-412, Academic Press, 1991. 
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The topological issues address the problem of the spatial distribution of 
sensors, the communication network between sensors and places of 
processing and decision-making, the bandwidth and the global architecture. 
Also at stake are issues for the exchange of information, the availability and 
reliability of information at the time of the fusion. The cost of acquiring the 
information may also be relevant to the topological issues. In non-military 
applications, these issues are partly addressed by the vendors / distributors 
of information. They are also partly addressed by the customer, given its 
objectives and constraints, including the financial budget. 

The processing issues address the question of how to fuse the data, i.e. 
select the proper measurements, determine the relevance of the data to the 
objectives, select the fusion methods and architectures, once the data are 
available, and according to the specifications issued by the project under 
concern. 

There is no specific processing general techniques in data fusion. All 
mathematical tools may apply. Hall proposed taxonomy of algorithms for 
sensor fusion22. The first category of techniques deals with the positional 
fusion, i.e. the assessment of the state vector from the observations. The 
second category, called identity fusion, seeks to combine data to establish 
the identity of an entity. The third category includes ancillary techniques to 
support the processing in the level 1 of the JDL model. This taxonomy is 
not efficient. Hall himself wrote that positional and identity fusions may 
occur in a simultaneous or interleaved fashion, using similar algorithms. 

In military applications, three stages of processing often appear, which may 
perform independent of the level of information being fused23. Correlation 
(first stage) applies a metric to each of the redundant parameters on which 
association is dependent to measure the degree to which that data is related, 
or associated, to an entity (e.g. a target track). If these parameters cannot be 
obtained from the source data then there is no way to fuse that data with the 
entity. Association (second stage) combines all of the correlations together 
and thresholds the result to decide if association exists between the source 
data and an entity. If they are associated, then the combination stage occurs. 
Combination (third stage) estimates the new state of an entity. It may use 
intermediate results from the preceding stages, particularly correlation, by 
aggregating and then merging the parameters. The multiple values for each 
redundant parameter are aggregated to form the single new updated value of 
that parameter. This results in a set of complementary parameters, which are 
then merged into the one unified representation of that entity. 

                                                           
22 D. Hall. Op. cit. 

23 DSTO. Op. cit. 
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TYPOLOGY OF PROBLEMS IN DATA FUSION 

In the literature, data fusion is often split into two categories of problems: 
"low-level" and "high-level", or three categories: "measurement level", 
"feature level" and "decision level"24, which correspond to the semantic 
levels of the inputs and inferences. 

This presentation may have at times practical advantages. However, it is not 
fully sustained by the concept of data fusion and should be avoided as much 
as possible to avoid confusion. Implicitly, this presentation implies that the 
concept contains a built-in hierarchy based upon the semantic level of the 
inputs and that of the inferences. This is not true at all. Fusion may operate 
at any of the various semantic levels, with possible crossings between 
levels. 

This property is not fully expressed in the literature using the JDL model, as 
already discussed. (Beware not to confuse the semantic levels and the levels 
of the JDL model.) Together with the clear expression of the typology of 
problems, expressed below, this property impacts on the design of the 
architecture of a fusion system, on the selection of tools, suite of softwares 
and hardware (processing issues), communications (topological issues) and 
on the design of innovative procedures. 

Three types of problems in data fusion are identified25. They clearly state 
that crossings between semantic levels are possible and frequent. Actually, 
the three semantic levels cited above are not the most appropriate to 
describe the fusion processes. Attributes, analyses and representations 
should be preferred. 

FUSION OF ATTRIBUTES 

Assume the sources of information are aligned and associated. Fusion of 
attributes consists in merging the attributes of a same object, derived from 
two representations (XS(1))

t and (XS(2))
t at instant t obtained by means of the 

sources of information S(1) and S(2), in order to obtain new attributes in the 
space of sources S = S(1) ∪ S(2). 

This is the case of classification processes that are performed on 
measurements (attributes) obtained by two different modalities or more, 
observing the same ensemble of objects (e.g., a piece of metal or a 
landscape). These fusion processes provide new attributes for these objects 

                                                           
24 J. A. Benediktsson and D. A. Landgrebe. Introduction to the special issue on data 
fusion. IEEE Transactions on Geoscience and Remote Sensing, 37(3), pp. 1187, 
1999. 

25 L. F. Pau. Op. cit. 
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(e.g., cracks or landuse category). Actually, representations may be obtained 
at various instants. Here, same instant t means that the time lag between the 
representations (XS(1))

t and (XS(2))
t is small enough with respect to the time 

scale of change of the attributes to fuse and of those resulting from the 
fusion process. 

FUSION OF ANALYSIS 

Assume the sources of information are aligned and associated. Fusion of 
analysis consists in aggregating representations (XS(1))

t1 and (XS(2))
t2, with 

t2 > t1, into a new representation (XS)
t3, with t3 ∈ [t1, t2], then in 

generating an analysis or interpretation of the object for further use at 
instant t4, with t4 > t2, or at a further step in an iterative process. 

In the simpler case, the instants t1, t2 and t3 are identical. A typical case is 
that of a mobile target, co-operative or not, that is observed by two sensors 
S(1) and S(2) at the same instants. From each of the representations (XS(1))

t 
and (XS(2))

t, an analysis can be performed on the trajectory and velocity. 
Prediction of these parameters at instant (t+1) can be made. Fusing the 
attributes provide a new representation, from which a new analysis can be 
generated for use at instant (t+1). Kalman filtering is one of the well known 
tools for such cases.  

In most real situations, the sources of information are asynchronous and 
representations are not available at the same time. 

FUSION OF REPRESENTATIONS 

Fusion of representations is defining and performing meta-operations 
applicable to representations (XS(1))

t and (XS(2))
t to obtain a new 

representation (XS)
t. Fusion of representations includes fusion of decisions. 

This fusion of representations may be performed at any moment, i.e. 
combined with other types of fusion. 

 



4. REPRESENTING A FUSION PROCESS - 

ARCHITECTURES 

REPRESENTING A FUSION PROCESS 

A fusion system is above all a system. As such, it obeys the general theory 
of systems. This Chapter does not discuss this theory. It focuses on the 
representation of a fusion process by simple schemes and architectures. 
These schemes should convey the major specific aspects of the fusion 
process. They are very useful, especially in education and training. Usually 
expressed in the form of graphics, they greatly help in expressing and 
understanding the fusion process. 

According to Bass et al.1, and in line with the standard ISO/IEC under 
construction2, the architecture of an application is the structure, or the 
structures of the system, which comprises the components, the main 
externally visible properties of the components and the key relationships 
among those components. The architecture tells what happens and thus can 
be seen from various viewpoints. Hence it depends upon the interest of the 
reader, whether he is a computer man or a manager etc. The architecture 
encompasses our traditional understanding of blocks connected by data, 
communications, control or other type of links. 

Adopting a common scheme / architecture for fusion process offers several 
advantages. Among others, it permits better understanding and foster co-
operation between people because the language is the same; it supports 
analysis by capturing domain and knowledge and community consensus. 
Though architecture can be conceived without specific regard to a particular 
form of physical representation, such a representation is instrumental to 
make the architecture understandable to others. The representation should 
be as independent as possible from any application or technological 
solutions. 

The JDL functional model may help in setting a scheme and architecture. It 
is well adapted to any situation of crisis, military or not. However not all 
applications in data fusion deal with the whole system, as the military 
people do. 

                                                           
1 Bass, Clements and Kazman. Software architecture in practice. Addison-Wesley, 
1998. 

2 ISO/IEC 10746, Open distribution standard. 10746-4: Architectural semantics. 
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In many applications, the work and responsibilities are shared, the data and 
services are bought and the whole system is not mastered by a single entity. 
Many applications only deal with fusion of decisions, and not with sensors. 
Others are interested by positional fusion, i.e. the assessment of the state 
vector (typically Level 1 in the JDL model). The JDL model is often too 
complex. A simpler scheme for sketching a fusion process will be more 
appropriate. This is also true for applications, in which fusion is performed 
at higher semantic levels. 

Several other schemes have been proposed. In one scheme, pixel-level, 
attribute-level (or feature-level) and decision-level are used to describe the 
fusion process3. In pixel-level fusion, the data are combined at the pixel 
level of the sensors. In the attribute-level fusion, the features are extracted 
from each sensor data and combined. In the decision-level fusion, the fusion 
is performed on decisions. In a very similar scheme, the taxonomy is low-
level fusion, middle-level fusion and high-level fusion, with reference to the 
semantic content of the information input in the fusion process. 

The first scheme presents a first drawback. The pixel is only a support of 
information and has no semantic significance; measurements or 
observations would be more appropriate. The scheme can then be 
generalized to non-imaging sensors. 

But the major drawback of these two schemes is that they are misleading: 
they do not consider fusion processes dealing simultaneously with these 
different semantic levels. The various natures of the information to be fused 
have already been emphasized. Many examples can be found in any 
domain, where information of various semantic levels is fused. The property 
of data fusion called "fusion of representations" also stresses that fusion can 
operate at the three different levels with possible mixing. Hence such 
schemes should be avoided. This book proposes a more general scheme. 

THE FUSION CELL. SOME EXAMPLES 

We have selected a scheme that integrates any of these levels. Houzelle, 
Giraudon4 proposed a scheme that consists in a fusion cell for fusion of 
decisions. This scheme may be easily adapted to any input, and it allows all 
semantic levels (measurements, attributes, and decisions) to be 
simultaneous inputs to a fusion operation (Fig. 4.1). 

                                                           
3 L. A. Klein. Sensor and data fusion concepts and applications. Tutorial texts, vol. 
TT 14, SPIE Optical Engineering Press, USA, 131 p., 1993. 

4 S. Houzelle and G. Giraudon. Contribution to multisensor fusion formalization. 
Robotics and Autonomous Systems, vol. 13, pp. 69-85, 1994. 
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This scheme considers three types of inputs: sources of information to be 
fused, auxiliary information, and external knowledge. Any fusion operation 
can be described by the means of this fusion cell. Actually, this cell may 
represent from simple to very complex operations. It can be combined with 
others to sketch combined fusion processes, as shown in the following. 

Sources of information are the main inputs to the fusion cell. They are the 
inputs of the mathematical operations included in the fusion cell. They 
should be aligned. These inputs can be outputs of sensor: images or any 
other signal, and more generally measurements. They can also be attributes 
or decisions. 

External knowledge

ResultsSources

Auxiliary information

F

 
Figure 4.1. Representation of a fusion operation by a fusion cell 

The auxiliary information brings additional information, resulting from the 
specific processing of a source, or from another fusion operation. In 
iterative processing, including time-dependent operations, the results may 
become inputs to the fusion operation in a subsequent step or instant. They 
will act as auxiliary information, since they are not original sources. 

External knowledge is also additional information, whose objective is 
mainly to constrain or guide the fusion process by e.g., imposing a priori 
knowledge. A priori means that the knowledge is available prior to the 
fusion process. It can be made of process laws of mathematical foundation, 
or empirical laws that can be expressed or not in quantitative form. As an 
example, rules for decision processes (e.g., expert system, neural networks, 
and fuzzy logic) are such an external knowledge. 

EXAMPLE. FUSION IN INDUSTRIAL PROCESSES 

In this example (Fig. 4.2), several sensors sensor 1, sensor 2... sensor n are 
monitoring an industrial process. For example, these sensors can be 
distributed in space to monitor a plant or an airplane. They may measure 
similar quantities at various places. In other cases, they may be close in 
space and measure different quantities. The observations or measurements 
of these n sensors are fused in the cell F. The procedure obeys process laws, 
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which are inputs as external knowledge, in order to guide or constrain the 
fusion. The outputs may be attributes (e.g., effective attitude of a ship) or 
decisions (e.g., increase the speed of a conveyor belt). 

Process laws

Results or
decisions

F

Sensor 1

Sensor 2

Sensor n

 
Figure 4.2. Scheme for an industrial process 

The process laws may take into account the history of each measurement or 
result. In that case, the history becomes input as external knowledge by 
modifying the process laws. In other cases, this history is an input of the 
fusion cell as an auxiliary information. 

The scheme in Figure 4.2 may represent the monitoring of an object, e.g., 
the trajectory of a rocket. Here, the outputs of the fusion cell at instant t 
become inputs for the following instant t+1, as auxiliary information 
(dotted lines, Fig. 4.2). In that case, the fusion cell may consist in a Kalman 
filter. The process laws contain the model of the dynamics of the observed 
system. At each time, the state vector at time t+1 is related to the 
measurements at time t (input measurements) and the state vector at time t 
(auxiliary information). 

The engine of modern vehicles works along this scheme (Fig. 4.3). The 
process laws are called engine cartography. This cartography has been 
established from fundamental parameters (usually rotation and load). Given 
these parameters, it returns the optimal ignition angle. The sensors measure 
e.g., temperature, pressure and flow in different places. These 
measurements are fused taking into account the rules given by the engine 
cartography. The result of the fusion process is e.g., the quantity of gas to be 
injected into the combustion chamber. In more sophisticated engines, the 
history of the results is often injected as an auxiliary information. 
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Figure 4.3. Example of a scheme describing a data fusion process: the 
engine of modern cars 

EXAMPLE. MAPPING 

Mapping the Earth from satellite images is another example of data fusion 
(Fig. 4.4). Several images of different nature (optical, radar), are inputs to 
the fusion cell. The fusion method is usually a classifier, and the outputs are 
maps of classes and of confidence level. 

In this example, an image with a high spatial resolution is merged with 
multispectral optical image of lower spatial resolution and with radar 
images. From the image of best spatial resolution, an image of texture is 
extracted to help in classifying the original measurements. Though it will 
enter the classifier with the same weight than the other sources, it may be 
considered as an auxiliary information because it is derived from the 
original sources. The available geographical information is contained in a 
geographical information system and is a valuable input to the fusion 
process. The codebook for classification is give as annex knowledge as it is 
the case in a supervised classification process. 
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Figure 4.4. Typical scheme for the mapping of landscape using Earth 
observation satellite images 

EXAMPLE. MAPPING BY FUSING SATELLITE IMAGES AND GROUND 

MEASUREMENTS 

Beyer et al.5 fused digital maps in raster format with measurements made at 
meteorological stations to construct the final raster maps of the solar 
radiation over Europe6 with a pixel size of 5' of arc angle (approximately 10 
km at latitude 45°). These maps were derived from the processing of images 
acquired by meteorological satellites. The site measurements are scarce in 
space but are more accurate than the satellite-derived maps. The latter offer 
a good description of the spatial distribution of the solar radiation, more 
accurate than what can be achieved by interpolation techniques. 

In order to provide accurate maps the satellite-derived maps and the site 
measurements were fused as shown in Figure 4.5. After alignment for 
geographical absolute location, units, sampling supports in space and time, 
trends with seasons and latitude were removed from both types of data. The 
residuals are mostly isotropic and may be considered as random variables. 
Then a co-kriging is performed on the residuals, the distance being a 
function of the geographical location and of the elevation. This function is 
an external knowledge; the elevation of each pixel of the maps is an input to 

                                                           
5 H.-G. Beyer, G. Czeplak, U. Terzenbach and L. Wald. Assessment of the method 
used to construct clearness index maps for the new European solar radiation atlas 
(ESRA). Solar Energy, 61, 6, 389-397, 1997. 

6 European solar radiation atlas. Fourth edition, includ. CD-ROM. J. Greif, K. 
Scharmer. Published for the Commission of the European Communities by Presses 
de l'École des Mines de Paris, France, 2000. 
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the fusion process. Once the residuals interpolated, the trends are re-injected 
and the final maps are obtained. 
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Figure 4.5. The fusion of raster maps and site measurements for the 
European solar radiation atlas 

This example shows how the proposed scheme may deal with sources 
having different supports of information. 

EXAMPLE. COMPRESSION OF INFORMATION 

The following example is purely of academic interest; it does not describe 
any current technique in compression of information Let assume that color 
images should be transmitted. The three channels composing an image are 
called R (red), G (green), and B (blue). The images are originally coded in 
24-bit (3 times 8 bits). Compression should be performed on these color 
images in order to decrease the necessary bandwidth. The compression 
should be applied before transmission and compressed color images are 
coded in 8 bits. The compression / re-coding algorithm calls upon rules, 
which are fixed but changes should be brought if necessary. 

The algorithm should also respect the main contours and some of the 
colored transitions. Accordingly, the three channels R, G, B are converted 
into the intensity, hue, saturation space (I, H, S). The intensity I reveals the 
structures and contours of the objects, while the saturation S is assumed to 
reveal the colored transitions. A quantity Q is defined as follows 

Q = R-G if the saturation S is greater than S0 

Q = R-B otherwise 

The threshold S0 is fixed but changes should be brought if necessary.  

An index ID is defined that relates to the structures. Its is an input to the 
compression algorithm. This index is a mathematical combination of the 
wavelet coefficients (C1, C2) and of Q. The wavelet coefficients are 
obtained by two iterations of a wavelet transform WT applied to the 
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intensity I of the images; they identify the contours in the intensity I on a 
multi-scale basis. 
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Figure 4.6. A scheme representing a data fusion process for data 
compression 

According to these specifications, one may draw the architecture of the 
process (Fig. 4.6). The cell F1 performs the fusion of the three bands R, G 
and B and converts them in intensity I and saturation S. The cell F2 provides 
the quantity Q, which is combined with the wavelet coefficients in the cell 
F3, which results into the index ID. Finally this index enters the cell F4 
together with the three bands R, G and B, and the compression is performed 
according to fixed rules. 

Rules, S0

Compressed
information

Red

Green
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F

 
Figure 4.7. Another scheme for the same operation for compression 

Figure 4.6 is a detailed presentation of the fusion process. It comprises 
several elementary fusion cells and helps in better understanding the 
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relationships between the data and the processes. For the same example, the 
fusion system may also be represented using a more condensed scheme, as 
in Figure 4.7. 

This series of examples illustrates the large domain of applications of 
fusion. It shows the capabilities of the selected fusion scheme to represent 
fusion processes. Such a scheme does not replace the detailed descriptions 
that are usually requested to create a fusion system. It conveys the essential 
features of the fusion process and in this respect, is of great help to better 
understand the fusion process. 

ARCHITECTURES 

Fusion architecture describes the set of sources of information, how they are 
assembled, and how they are used, together with mathematical techniques 
and processing, in order to perform a fusion operation. This section does not 
intent to provide guidelines for implementation. The variety of data fusion 
applications is so wide and the implementation environments are so diverse 
that it is impossible to set up a blueprint for implementation. This section 
addresses the basis for understanding the key issues and problems in 
implementation. 

The choice of architectures is not arbitrary. It depends on the nature of the 
information involved and the nature of the inferences sought. Usually three 
types of architectures are defined: centralized, decentralized and hybrid. 

Centralized architecture may also be termed central-level fusion, or central 
fusion processing. Decentralized architecture is sometimes called 
autonomous architecture or, in case of sensor fusion, post-individual sensor 
processing fusion or sensor-level fusion. The term "distributed architecture" 
is ambiguous. It may refer to the case where pre-processing is performed at 
each sensor, before entering a centralized process, which still is a 
centralized architecture; it is also called distributed (federated) architecture 
or Level 1 processing if the JDL model is used. But it may also be 
equivalent to hybrid architecture. 

CENTRALIZED ARCHITECTURE 

The centralized architecture exploits in a single location, simultaneously or 
not, the set of data acquired by the set of sources of information (Fig. 4.8). 

In this Figure, Si are the n sources. A source can be a set of measurements, 
attributes or decisions. All sources are inputs to the single fusion cell. The 
results R and quality parameters Q are obtained by the processing of all 
sources available at that moment. Of course, this architecture may include 
auxiliary information and external knowledge. 
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Figure 4.8. Centralized architecture. Si are the sources, R and Q the results 
and quality parameters 

Stereo-photogrammetry has many applications, ranging from the study of 
manufactured objects to the monitoring of quarries and mapping of 
buildings. If such sensors are on board a satellite, or if the same spaceborne 
camera observes the same area under two different angles during e.g., two 
different orbits, the relief of the Earth can be reconstructed. Stereo-
photogrammetry uses centralized architecture. Using two cameras observing 
the same object or area with different angles ("left" and "right" images), the 
relief of an object can be constructed (Fig. 4.9). 
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Figure 4.9. Centralized architecture for a stereo-photogrammetry process 

The advantage of the centralized architecture is that theoretically it provides 
an optimal result, since the decision is made taking into account the whole 
knowledge available. The loss of information is minimal since the original 
information is fused directly without approximations via attributes, state 
vectors etc. The representation of objects, and further their discrimination, 
is more effective if the informations to fuse are not generated by 
independent phenomena. 

However, if a particular source has a large error rate or a low signal-to-noise 
ratio in the case of a sensor, and depending upon the fusion technique, it 
may happen that this source contaminates the whole data set, and leads to a 
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decrease of the quality of the decision, compared to what would have been 
achieved without it. 

Let use again the example of the human vision, which is a centralized fusion 
process. If one eye is deficient (e.g., very blurred vision), the other will 
ensure the vision in a degraded mode and the whole system will try to 
correct the vision of the other eye by calling much on the functioning one. It 
follows a great strain on the functioning eye, which will become rapidly 
tired. In this particular case, the performances in vision at the end of the day 
is finally worse than that attained by a single eye. 

In Earth observation, such cases may be encountered as e.g., with imaging 
radar whose image quality is a function of various parameters, such as the 
rainfall before the instant of acquisition, or the surface state of the bodies of 
water. In most cases, using radar images, as inputs to a fusion operation will 
be highly profitable. In some cases, it may decrease the quality of the result. 
For example, if the wind is strong enough, it has been observed that rice 
fields cannot be perceived at certain growth states, because the clutter due 
to the wavelets make them confusing with other objects in the landscape. It 
is then more profitable to adopt another architecture. 

The centralized architecture has some drawbacks with respect to processing. 
It requires all the data to be present on the processing site, which implies a 
large communications bandwidth. It also imposes a heavy processing load 
on the computer, which renews at any change of input. 

DECENTRALIZED ARCHITECTURE 

The decentralized architecture offers a large flexibility and modularity, and 
is often adopted for these reasons. It is also called autonomous because it 
involves independent processing of each source of information (or group of 
sources) until the fusion of some representation of higher semantic level 
takes place at a later stage (Fig. 4.10). 

It should be selected when communication problems are at stake: small 
bandwidth, unsecured communications, which may be broken, etc. If the 
acquisition rate of information (sources) is very different between all 
sources, it may also be adopted to avoid re-processing all the sources while 
a few have changed, which is the case in the centralized scheme. The 
decentralized architecture will be adopted in risky domains, such as a 
battlefield or industrial hazards. 

Each source Si enters a fusion cell, which may also include auxiliary 
information and external knowledge. As said before, a source Si is a set of 
inputs, which are composed of measurements, attributes, and / or decisions. 
The outputs of the local fusion cells (F1, F2... Fn) are results Ri and quality 
parameters Qi. These results and quality parameters are transmitted to the 
final fusion cell F. The results Ri are the inputs to this process. The quality 
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parameters Qi are auxiliary information and will help in deciding the weight 
of a source in the final process. 
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Figure 4.10. Decentralized architecture. After Mangolini7 

One may note that each fusion process Fi is performed locally, using local 
intelligence. The fusion processing usually reduces the amount of 
information to be transmitted to the final fusion process. This 
accommodates for low communications bandwidth. 

One may also note that this scheme is more robust to the loss of a source of 
information than the centralized scheme. From a practical point of view, it 
is easy with such architecture to remove, or not to take into account, a 
sensor whose confidence is questionable. It is much more difficult with a 
centralized architecture. In the case of strongly asynchronous information 
acquisition, i.e. very different time sampling of information from each 
source, the decentralized architecture gathers the locally fused information 
at the final central point, and thus does not need to renew the whole process 
at each acquisition time of the most rapid source. 

The sources are processed independently from the others. Accordingly the 
results locally available Ri have a fairly low information content, depending 
upon the sources. It further results in the fact that the final result R has a 
lower quality and a lower information content than that would have been 
achieved with a centralized architecture. 

                                                           
7 M. Mangolini. Apport de la fusion d'images satellitaires multicapteurs au niveau 
pixel en télédétection et photo-interprétation. Thèse de Doctorat, Université Nice - 
Sophia Antipolis, France, 174 p., 1994. 
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Figure 4.11 exhibits a typical decentralized architecture in the case of the 
management of a humanitarian crisis by an international organization, such 
as those that have been experienced in the past few years during civil wars. 

In location X, all data and procedures are available for providing basic 
digital maps and geographical data that are needed. Inputs are mostly 
archived information in order to speed up the processing. This location X is 
usually far from the operation terrain. Besides providing relief to refugees, 
field teams (locations Z1, … Zj) collect information to better understand the 
present situation in several aspects, and send reports to the headquarters 
(location Y in the graph). There, a system processes all the data gathered, 
plus recent images acquired by spaceborne or airborne systems, to provide 
the best available situation plan for decision making. 
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Figure 4.11. Typical decentralized architecture in a case of humanitarian 
crisis 

In this case, the decentralized architecture is highly recommended for many 
reasons: communications lines may degrade suddenly, the number of 
sources of information varies, the quality of the collected information is 
highly variable and may necessitate interpretation and qualification by a 
skilled person, who should be located where necessary (e.g., location Z1 or 
X), the airborne surveys may be subjected to administrative / belligerents 
authorization, security factors and meteorology, the satellite imagery 
collection may be impeded by cloud coverage or availability of systems, 
etc. 
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HYBRID ARCHITECTURE 

Other architectures may be designed that are a combination of centralized 
and decentralized architectures. They are called hybrid architectures and 
have various forms (Fig. 4.12). 

In this Figure, the sources S1, S2... Sn are separated in two sub-sets: S1, ... 
Si, and Sj, ... Sn with possible overlaps. Each sub-set enters a fusion process 
having a centralized architecture. The results R1 and R2 are the sources of a 
final fusion process F, with the quality parameters Q1 and Q2 as auxiliary 
information. 
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Figure 4.12. Hybrid architecture. After Mangolini (op. cit.) 

Such architectures involve fusion of the sources at different semantic levels 
and at different processing stages. Depending upon the combination, such 
architecture is more or less close to a centralized or decentralized 
architecture, and so are its properties (advantages and drawbacks). 

Weather forecasting, as discussed in the introduction, is an example of a 
system with hybrid architecture for fusion processes. 

Another example is offered in the fusion of categorical data and 
observations (Fig. 4.13). Benthic communities denote the communities that 
are living on the sea floor close to the shoreline. They are mapped by means 
of various sampling techniques, which lead to different maps. Furthermore, 
there is a lack of standardized codes (categories) for depicting the 
communities. In addition, changes in communities, their size and location 
occurred in time. Consequently, maps of a same area are partly conflicting 
and partly in agreement. Fusion was used to reconcile this suite of maps and 
provide a synthesis map of categorical data for a given area together with a 
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series of maps reporting where conflict occurs, its nature and its 
magnitude8.  
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Figure 4.13. The fusion of a suite of maps differing in content for the 
construction of a synthesis map 

Hybrid architecture was selected and the fusion is a three-stage process. The 
final fusion process is based upon fuzzy logic. The inputs are the original 
maps of communities; plausibility maps are input as auxiliary information 
as well as the dates of the maps. External knowledge of the possible 
conflicts helps in control the construction of the synthesis map. The 
plausibility maps are estimated from the previous stage of fusion, performed 
for each map independently. Each map is merged with other information of 
measurement type: the bathymetry, the state of turbulence of the sea, the 
currents and the quality of the water9. External knowledge is composed of a 

                                                           
8 R. Méaille and L. Wald. A Geographical Information System for some 
Mediterranean benthic communities. International Journal of Geographical 
Information System, 4, 1, 79-86, 1990. 

9 A. Iehle, L. Wald and C.-F. Boudouresque. Analyse et évaluation de la fiabilité de 
l’information dans le système d’information géographique des assemblages 
benthiques méditerranéens «MBA». Scientific Reports of the Port-Cros National 
Park, 16, 93-113, 1995. 
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codebook and its associated uncertainties and of some rules on the possible 
reciprocal neighborhood of the communities, the plausibility of each pixel 
of each map is constructed. The codebook is built in an initial stage. All 
maps of all areas and all geophysical information of influence: bathymetry, 
state of turbulence of the sea, currents and water quality, are fused through a 
classifier. A state vector of these geophysical measurements is associated to 
each category, together with the uncertainties of this classification. 

SELECTION OF AN ARCHITECTURE 

Centralized architecture should be preferred whenever possible because it 
provides the higher accuracy of the fused product. However, each 
architecture has advantages and drawbacks. Architecture should be selected 
on a case by case basis. Trade-off involve many factors10, including the 
availability of smart sensors that perform data preprocessing, the 
availability of communications links and their bandwidth, and the 
computational abilities of the central processor / decentralized processors. 

The application determines the phenomena observed, the type of sensors or 
of information utilized, and the inferences sought. These inferences in turn 
determine the types of techniques requested. Deployment and 
implementation constraints provide significant requirements that should be 
taken into account. Finally the capabilities of a system or suite for the 
acquisition or collection of data or information and the communication links 
(bandwidth, security, etc.) between the various elements also affect 
architecture selection. 

Data fusion contributes to improved information accuracy, timeliness and 
content. Several major works have been performed to test and evaluate 
implemented, or modeled, data fusion systems, and to determine their 
contribution to the effectiveness in military or civilian applications. A 
hierarchy of measures is available in the military domain that relates 
performance characteristics of C3I systems to military effectiveness11. 
Dimensional parameters are the typical properties or characteristics that 
directly define the elements of the fusion system. Measures of performances 
(MOPs) are the measures that describe the behavioral aspects of the system 
and how well a fusion system performs. Measures of force effectiveness 
(MOFEs) quantify the ability of the total military force to complete its 
mission. It attempts to measure how well a fusion system, which is part of 
the total military force, satisfies an intended mission. 

                                                           
10 D. Hall. Mathematical techniques in multisensor data fusion. Artech House, 
Boston, London, 1992. 

11 E. Waltz and J. Llinas. Multisensor data fusion. Artech House, 1990. 
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SOME TECHNIQUES IN FUSION OF IMAGES 





5. SOME MATHEMATICAL TOOLS FOR THE FUSION OF 

IMAGES 

Many popular or advanced techniques for the fusion of images share similar 
mathematical tools. Some of them are presented in this Chapter. Following 
Chapters illustrate how these tools may be used. 

In this Part of the book, spectral means color, and more generally, 
electromagnetic radiation wavelength. Hence a spectral band is a portion of 
the electromagnetic spectrum. A multispectral image is composed of several 
images, each being acquired in a different spectral band. A spectral image 
may also be termed channel. More general terms are modality or mode 
instead of spectral band, and multi-modality image. A spectral signature 
(modality signature) is a state vector made of the values taken in each 
spectral band (modality). 

CONVERSION RGB - IHS 

THE COLOR SPACE 

Color may be seen as a fusion process. Familiar objects, such as TV 
screens, PC monitors, color films, etc perform this process. Discussions of 
color usually involve three dimensions, known as hue, saturation, and 
brightness, as a descriptive tool1. Hue distinguishes between colors such as 
red, yellow, blue, etc. Saturation refers to purity, i.e. how the color is diluted 
by white light; it determines how pastel or strong a color appears, and 
distinguishes pink from red, sky blue from royal blue, etc. Brightness is 
equivalent to the intensity of the achromatic light; it is independent of hue 
and saturation. Artists may use another approach, specifying color as 
different tints, shades, and tones of strongly saturated, or pure, pigments. 

Three primary colors (X, Y, Z) have been defined by the Commission 
Internationale pour l'Éclairage (CIE) that can be combined to define all light 
sensations we experience with our eyes. These CIE primaries form an 
international standard for specifying colors. Color models may be then 
developed to conveniently specify color range. Among other models, the 
RGB (red, green, blue) primaries have been defined for color TV monitors 
and raster displays. 

                                                           
1 In the following, the author is indebted to the excellent book Fundamentals of 
Interactive Computer Graphics by J. D. Fooley and A. Van Dam, published by 
Addison-Wesley Publishing Company, 1982. 
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The RGB model uses a three-dimension cartesian co-ordinate system. The 
main diagonal, with equal amounts of each primary, represents the gray 
levels. This model does not relate to intuitive notions of hue, saturation and 
brightness. 

The HSV (hue, saturation, and value) model of Smith2 calls upon these 
notions. Figure 5.1 represents the six-sided cone defining the model. The 
top of the hexcone corresponds to V=1, which contains the maximum-value 
color. The point at the apex is black and has a co-ordinate of V=0. 
Complementary colors are 180° opposite one another as measured by H, 
which is the angle around the vertical axis, with red at 0°. The value of S is 
a ratio, ranging from 0 on the centerline (V-axis) to 1 on the triangular sides 
of the hexcone. For example, co-ordinates for yellow are H=π/4 and S=1 (V 
may be any value between 0 and 1). For white, V=1, S=0, and H can take 
any value between 0 and 2π. 
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Figure 5.1. Color model HSV of Smith (op. cit.) 

Other models have been derived from this HSV model. In the HSV model, 
the value V is equal to max(R, G, B) which means that two components are 
ignored to compute the value. It has been proposed to use instead a linear 
combination of the three primaries, whose result is called here intensity I. 

                                                           
2 A. R. Smith. Colour gamut transform pairs. Computer Graphics, 12, 12-19, 1978. 
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This forms the IHS model that is currently used for the fusion of images. 
Several variations of this model have been proposed, which mainly differ in 
how the intensity is computed. 

A SIMPLE MODEL FOR THE CONVERSION RGB-IHS 

As an example the equations to convert RGB model into IHS model and 
reciprocally are given below, as found in Pohl and Van Genderen3, and 
which are found in several commercial softwares. 

The RGB to IHS transform can be performed using the following equations: 
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 [5.1] 

and H = tan-1(ν2 / ν1) and S = √(ν12 + ν22) 

Note that H is not defined if ν1 = 0, i.e. if R+G = 2B 

Reciprocally, the IHS to RGB transform can be performed as follows: 

ν1 = S cos(H) 

ν2 = S sin(H) 
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  [5.2] 

THE MODEL OF KING ET AL. 

A more elaborated method has been developed by King et al.4 to perform 
transformations between RGB and IHS spaces. It takes into account the fact 
that the relationship between IHS and the cartesian RGB co-ordinates is not 
linear and is functionally dependent upon the co-ordinates. 

For the sake of presentation and not to go into many details, it is convenient 
to use an intermediate system ABC, which relates to RGB as follows: 

                                                           
3 C. Pohl and J. Van Genderen. Multisensor image fusion in remote sensing: 
concepts, methods and applications. International Journal of Remote Sensing, vol. 
19(5), 823-854, 1998. 

4 R. W. King, V. H. Kaupp, W. P. Waite and H. C. MacDonald. Digital color space 
transformations. In Proceedings of the IGARSS'84 Symposium. Published by the 
European space agency, ESA SP-215, pp. 6649-654, 1984. 
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and reciprocally 
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The system ρΦθ is the spherical counterpart of the ABC system, that is 

A = ρ sin θ cos Φ ρ = √(A2 + B2 + C2) 

B = ρ sin θ sin Φ Φ = arctan (B/A) [5.5] 

C = ρ cos θ θ = arccos (C/ρ) 

This system is similar to the IHS system. However, constraints exist, that 
request that all three components R, G, B are positive. Therefore the space 
described by the spherical system ρΦθ should only include that region 
permitted to exist in the RGB system. 

Six constraining surfaces Ic and Sc are defined as functions of Φ and θ and 
corresponding to one of the co-ordinates R, G, B taking the value 0 or 1. Ic 
and Sc denote the maximum possible intensity and saturation for a vector in 
the direction specified by R, G and B. 

R=0, 2π/3 ≤ Φ ≤ 4π/3 Sc = arctan[-1/√2 cos Φ] 

G=0, 4π/3 ≤ Φ ≤ 2π Sc = arctan[√2 / (cos Φ − √3 sin Φ)] 

B=0, 0 ≤ Φ ≤ 2π/3 Sc = arctan[√2 / (cos Φ + √3 sin Φ)] [5.6] 

R=1, -π/3 ≤ Φ ≤ π/3 Ιc = √3 / (√2 sin θ  cos Φ +  cos θ) 

G=1, π/3 ≤ Φ ≤ π Ιc=√6/(-sinθ cosΦ + √3 sinθsinΦ  + √2 cosθ) 

B=1, π ≤ Φ ≤ 5π/3 Ιc=√6/(-sinθ cosΦ − √3 sinθsinΦ  + √2 cosθ) 

The final set of equations completes the transformation: 

I = ρ / Ic 

H = Φ / 2 π [5.7] 

S = θ / Sc 
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THE PRINCIPAL COMPONENTS ANALYSIS 

The principal components analysis (PCA) is a mathematical transformation 
of a set of N images into a set of N new images. These N generated images 
are called principal components, or simply components. They are computed 
by linear combinations of the original images. These N components are 
orthogonal, that means that no component is linearly correlated with 
another. The total variance of the original N images is mapped onto the N 
components so that the first component corresponds to the largest amount of 
the total variance, with decreasing amount of variance going to each 
following component. 

Let {Bn}, n ∈ [1,N], be the set of original images and C the variance-
covariance matrix of this set. 

C(i, j) = covariance(Bi, Bj) [5.8] 

As C is symmetric, it can be decomposed as follows: 

Vt C V = 
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...   ...   ...   0
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where {δk} are the sorted eigenvalues so that: 

δ1 > … > δN 

and V is the unitary matrix whose columns are the eigenvectors: 

V = (ν1, …., νN), where νk = (ν1,k, …, νN,k)
t is the eigenvector corresponding 

to δk. 

δk is the amount of total variance that is explained by the kth component. 
The sum of δk, for k=1...N, is equal to the total variance. 

The kth component PCAk is computed according to the kth eigenvector: 

PCAk = p=1Σ
N

 νp,k Bp [5.10] 

and the vector PCA is given by 

PCA = V B [5.11] 

or 
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Reciprocally, the images B are retrieved by 

B = V-1 PCA [5.12] 

The principal components analysis may be performed by using the 
correlation matrix, instead of the covariance. This implies a scaling of the 
axes. This helps in preventing some original images from dominating the 
transform because of their larger signal dynamics. The principal 
components analysis can also be found under the name Karhunen-Loeve 
technique. 

THE WAVELET TRANSFORM AND MULTIRESOLUTION ANALYSIS5 

The Fourier transform is likely the most known method for spatial analysis 
and does not need to be presented here. The wavelet transform is a more 
recent tool, which is a space-wave vector (or time-frequency) transform, 
while the Fourier transform only provides analysis in the wave vector (or 
frequency) domain. The wavelet transform may be combined with the 
multiresolution analysis, and both tools form a convenient means to 
describe, analyze and model the information contained in an image, or in a 
series of data.  

THE WAVELET TRANSFORM 

As the Fourier transform, the wavelet transform performs a decomposition 
of the signal on a base of elementary functions: the wavelets. The base is 
generated by dilations and translations of a single function ψ called the 
mother wavelet: 

ψa,b = a-1/2 ψ[(x-b) / a] [5.13] 

where a, b ∈ ℜ and a ≠ 0. a is called the dilation step and b the translation 
step. Many mother wavelets exist. They are all oscillating functions that are 
well localized both in time and frequency. All the wavelets have common 
properties such as regularity, oscillation and localization, and satisfy an 
admissibility condition. For more details about the properties of the 

                                                           
5 This section has been written in collaboration with Thierry Ranchin. Many thanks 
to him. 
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wavelets, one can refer to Meyer6 or Daubechies7. Even if they have 
common properties, each of them leads to a unique decomposition of the 
signal related to the selected mother wavelet. In the one dimension case, the 
continuous wavelet transform of a function f(x) is: 

dx
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−   is the complex conjugated of ψ. The computation of the 

wavelet transform for each scale a and each location b of a signal f(x) 
provides a local representation of f(x) and the information content is 
represented by the wavelet coefficient WTf(a,b). The process can be 
reversed and the original signal reconstructed exactly (without any loss) 
from the wavelet coefficients by: 
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where Cψ is the admissibility condition of the mother wavelet. Discrete 
versions of the wavelet transform exist and are applied to signals using 
filters. 

THE MULTIRESOLUTION ANALYSIS 

The multiresolution analysis a means to describe and model the signal in the 
time-frequency domain or in the space-wavevector domain or in any 
domain with similar duality. It makes use of space (or time) transforms or 
filters. This section does not describe the multiresolution analysis in its 
mathematical aspects. It introduces the multiresolution analysis to the reader 
via specific cases, which are of high value in fusion of images. 

Figure 5.2 is a very convenient illustration of the multiresolution analysis 
and more generally of pyramidal algorithms8. The basis of the pyramid is 

                                                           
6 Y. Meyer. Ondelettes et opérateurs 1: Ondelettes. Hermann, Paris, France, 215 p., 
1990. 

7 I. Daubechies. Ten lectures on wavelets. CBMS-NSF regional conference series in 
applied mathematics 61, SIAM, Philadelphia, USA, 357 p., 1992. 

8 S. G.Mallat. A theory for multiresolution signal decomposition: the wavelet 
representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 
11(7):674-693, 1989. 
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the original image. Each level of the pyramid is an approximation of the 
original image computed from the original one. When climbing the 
pyramid, the successive approximations have coarser and coarser spatial 
resolutions. The computation of the approximations is done using a base of 
functions, called the scale functions. The base is generated following the 
same scheme than the one used for the generation of the wavelet base. 
Hence scale and wavelet bases have the same properties. 

Successive
approximations
of the original

image
Difference of information
between two successive

approximations

Original image  
Figure 5.2. Pyramid representing the multiresolution analysis combined 
with the wavelet transform 

The basis of the pyramid is the landscape measured by the sensor. The 
wavelet coefficients are produced by the application of the wavelet 
functions: they describe the differences existing between two successive 
approximations of the same image (i.e. two successive levels of the 
pyramid). The approximations are produced by the application of the scale 
functions. Approximations are also called contexts. This phase is called 
analysis. 

If the process of the multiresolution analysis is inverted, the original image 
can be exactly reconstructed, from one approximation and from the 
different wavelet coefficients describing the differences in signal between 
this approximation and the original image: this phase is called synthesis. 

As we are processing images, the wavelet and the scale functions are 
applied first in columns and then in lines (rows). This leads to a 
representation of the information using the scheme proposed in Figure 5.3. 
Here a dyadic wavelet transform is assumed, that is that the resolution of 
any approximation is half that of the previous approximation. 

The dilation of both the wavelet and the scale function is obtained by the 
sub-sampling of the original image. Hence if the original image comprises 
e.g., 768 lines by 1024 columns, the first approximation is 384 lines by 512 
columns, as well as the three wavelet coefficients images. 
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The first context image contains all the scales greater than half the original 
spatial resolution (1/2 in Fig. 5.3). The three wavelet coefficients images 
represent the structures with sizes comprised between the original spatial 
resolution and half this resolution for the diagonal (CD), vertical (CV) and 
horizontal (CH) directions. In the second context image are represented all 
the scales greater than a quarter of the original resolution, and the wavelet 
coefficient images contain the scales between half and a quarter of the 
original resolution. 

If the multiresolution analysis is performed once more, the context image 
1/4 will be decomposed into a context image 1/8 comprising all the scales 
greater than one eighth of the original resolution and three wavelet 
coefficients images in diagonal (CD), vertical (CV) and horizontal (CH) 
directions representing the structures with sizes comprised between a 
quarter and one eighth of the original resolution 
 

Context image 
(scales ≥ spatial 
resolution 1/4) 

"horizontal" 
structures 

resolution 1/4 

"vertical" 
structures 

resolution 1/4 

"diagonal" 
structures 

resolution 1/4 

Structures 
"horizontal" directions 
spatial resolution 1/2. 

Wavelet coefficients CH 

Structures 
"vertical" directions 

spatial resolution 1/2. 
Wavelet coefficients CV 

Structures 
"diagonal" directions 
spatial resolution 1/2. 

Wavelet coefficients CD 

Figure 5.3. Presentation of a multiresolution analysis using the Mallat 
algorithm. Original resolution of the image is 1. (Taken from Ranchin and 
Wald9) 

It should be noted that the pyramidal approach is one of the many possible 
implementations of the multiresolution analysis. The multiresolution 
analysis may call or not upon wavelets that can be constructed in a great 
deal of ways. Hence, the multiresolution analysis comprises a very large 

                                                           
9 T. Ranchin T. and L. Wald. The wavelet transform for the analysis of remotely 
sensed images. International Journal of Remote Sensing, 14(3):615-619, 1993. 
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number of possible implementations. Many of them are suitable for the 
application of the ARSIS concept for image fusion, which is discussed in 
following Chapter. 

The following sections propose two different practical implementations of 
the multiresolution analysis and the related wavelet transforms. 

PRACTICAL IMPLEMENTATION OF THE ALGORITHM OF MALLAT 

The algorithm of Mallat can be implemented using a filter bank structure 
(Fig. 5.4). This algorithm is one of the possible implementations of the 
pyramidal approach. 

In Figure 5.4, fj(x, y) represents the original image, where x is the column 
(beginning from 1), and y is the line or row (beginning from 1). The index j 
denotes the ranking of the current approximation. f(x, y) is the original 
image, f1(x, y) is the first approximation etc. 
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Figure 5.4. Implementation of the analysis phase of the Mallat's algorithm 
into a filter bank structure 

In this Figure, H and G are two filters. The columns and rows are processed 
separately. Filter H is applied on the columns of fj(x, y). Same for filter G. 
Both resulting images are re-sampled (operation ↓2, Fig. 5.4): one column 
over two is removed. Then filters H and G are applied again on each re-
sampled image. The resulting four images are re-sampled again: one row 
over two is removed. This results into four images: 
• fj+1(x, y) is the approximation (context) with half the spatial resolution of 

the original fj(x, y) one; 
• the three wavelet coefficients images CH

j+1(x, y), CV
j+1(x, y) and CD

j+1(x, 
y). 
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The filters H and G may be selected among those designed by 
Daubechies10. Here the four-tap filters are choosen. Table 5.1 gives the 
coefficients of the filter H. All these coefficients have to be divided by √2 
for normalization purpose. 
 

H(0) H(1) H(2) H(3) 
0.482962913145 0.836516303738 0.224143868042 -0.129409522551 

Table 5.1. Values of the coefficients of the filter H for the wavelet 
(Daubechies, op. cit.) 

The filter H is applied as shown in Figure 5.5, which presents its application 
along a row. Operations along columns are similar. The new value fnew(x, y) 
for the current pixel (x, y) is computed as a multiplication between the 
coefficients of the filters and the pixels: 

fnew(x, y) =  H(3) f(x-2, y) 

 + H(2) f(x-1, y) + H(1) f(x, y) + H(0) f(x+1, y) [5.16] 
 

f(x, y)

H(0)H(1)H(2)H(3)

-H(0) H(1) -H(2) H(3)

H filter

G filter

Row of image

f(x+2,y)f(1, 1) ...

 
Figure 5.5. Position of the filters for the analysis. f(x, y) denotes the 
function on which the filter is applied, e.g. fj(x, y). The column x is odd. 
Standard solutions can be adopted for the borders 

Then, due to the sub-sampling, the next pixel to be computed is (x+2, y). 
The new value of pixel (x+1, y) is temporarily set to 0. Actually, this pixel 
is not processed at all because it will be removed by sub-sampling (Fig. 
5.4). Once the entire image processed for the columns, the same process is 
applied to all rows along the column direction. 

                                                           
10 I. Daubechies. Orthonormal bases of compactly supported wavelets. 
Communications on Pure and Applied Mathematics, vol. XLI, 909-906, 1988. 
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Filter G is applied in a similar way. This filter derives from the filter H (Fig. 
5.5). The coefficients are the same in absolute value, but their sign and 
order differ. 

From the approximation fj+1(x, y) and from the three wavelet coefficients 
images, CH

j+1 (x, y), CV
j+1 (x, y) and CD

j+1 (x, y), one can exactly reconstruct 
the original image fj(x, y) (Fig. 5.6). 

ColumnsRows

fj+1(x,y)

CH
j+1(x,y)

CV
j+1(x,y)
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j+1(x,y)
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~H

~G
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+

fj(x,y)
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↑ 2

↑ 2
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↑ 2 x4

 
Figure 5.6. Implementation of the synthesis of the Mallat's algorithm into a 
filter bank structure 

In the synthesis, an over-sampling ↑2 is necessary. It is obtained by adding 
a zero between the pixels (Fig. 5.7). In the case of orthogonal filters as 
presently, H 

~
 and G 

~
 are the same filters than those used in the analysis (i.e. H 

and G). Firstly an over-sampling in columns is applied on the 
approximation and the three coefficients images. Then either the filter H or 
G is applied for each pixel including those set to zero in the analysis phase. 
Results are summed two by two as shown in Figure 5.6. An over-sampling 
is applied in lines, prior to the application of filters H 

~
 and G 

~
. The final 

summation provides the original fj(x, y) (or synthesized) image after a 
multiplication by 4. 

The application of the filters H 
~
 and G 

~
 is performed as shown in Figure 5.7, 

in a similar way than for the analysis phase. 

It is recommended to check the good implementation of the Mallat's 
algorithm. The following scheme can be employed, given any image. Apply 
analysis (Fig. 5.4) with one iteration: the first approximation fj+1(x, y) is 
obtained. Then perform synthesis (Fig. 5.6) on fj+1(x, y). The resulting 
image should be identical to the original, except for the borders of the 
image. Computing the difference between both images, pixel by pixel, can 
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check this. The whole checking procedure should be performed for more 
than one iteration. 

f(x, y)

-H(0)H(1)-H(2)H(3)

H filter

G filter

Row of image

f(x+2,y)0 00

H(0) H(1) H(2) H(3)

0 ...f(1,1)

 
Figure 5.7. Position of the filters for the synthesis. f(x, y) denotes the 
function on which the filter is applied, i.e., fj+1(x, y), CH

j+1(x, y), CV
j+1(x, y) 

or CD
j+1(x, y). The column x is odd. Standard solutions can be adopted for 

borders of image 

THE "À TROUS" ALGORITHM FOR THE MULTIRESOLUTION ANALYSIS AND 

WAVELET TRANSFORM 

Actually, the discrete approach of the wavelet transform and of the 
multiresolution analysis can be done with several different algorithms. The 
Mallat's algorithm uses an orthonormal basis, which may be well suited to 
several problems in data fusion, but is not shift-invariant, which may cause 
some problems. 

Another popular wavelet transform is the "à trous" (with holes) transform11. 
A sequence of approximations is constructed, by performing successive 
convolutions with a filter obtained from a scaling function (the filters H and 
G in the Mallat's algorithm). This scaling function may be a B3 cubic 
spline12, leading to the following 5x5 filter: 

                                                           
11 P. Dutilleux. An implementation of the "algorithme à trous" to compute the 
wavelet transform. In Compte-rendus du congrès ondelettes et méthodes temps-
fréquence et espace des phases, Marseille 14-18 septembre 1987, Springer-Verlag 
ed., pp. 298-304, 1987. 

12 J. L. Starck and F. Murtagh. Image restoration with noise suppression using the 
wavelet transform. Astronomy Astrophysics, 288, 342-350, 1994. 
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1    4     6    4    1
4   16   24   16    4
6   24   36   24    6
4   16   24   16    4
1    4     6    4    1

 [5.17] 

The wavelet coefficients are the differences between two consecutive 
approximations, Cj+1(x, y) = fj(x, y) - fj+1(x, y). The synthesis equation 
follows: 

fj(x, y) = fj+n(x, y) + 
k=1
Σ
n

 Cj+k(x, y) [5.18] 

where n is the number of iterations. 

Note that in this scheme, and contrary to the Mallat's algorithm, all 
approximations and wavelet coefficients have the same number of pixels 
than the original image. It does not form a pyramid as in Mallat's algorithm 
but a parallelepiped. The application of the filter should take this into 
account. Practically speaking, the size of the filter should grow as the 
successive approximations are constructed. The present filter should apply 
to the original image f(x, y) to obtain the first approximation f1(x, y). Then 
null values (0) are introduced in the filter in-between the present 
coefficients in both directions. This larger filter is applied to the first 
approximation f1(x, y); this results into the second approximation f2(x, y). 
Then zeros are again introduced into the filter, which again doubles in size 
in both directions. This iterative process leads to the sequence of 
approximations and further of wavelet coefficients. 

Contrary to the wavelet of Daubechies presented above, the "à trous" 
algorithm is not orthogonal, that is that the wavelet coefficient Cj+1(x, y) for 
a given scale j retains information from the neighboring scales. Otherwise 
said, Cj(x, y) and Cj+1(x, y) are correlated. The "à trous" algorithm is 
certainly easier to implement than the Mallat's algorithm. Nevertheless, 
their properties are different, and the influence of these properties on the 
result of the fusion should be carefully analyzed. 



6. FUSION OF IMAGES 

INTRODUCTION 

The general approach in the fusion of images is to create a new set of 
images I, usually of reduced dimension, from the original sets of images: 

I = f(A, B, C, D, ...) [6.1] 

where A, B, C, ... are the original sets of images and characteristics that may 
be derived from them. These sets may originate from various modalities, 
e.g., panchromatic, X-rays, electron microscope, taken at different instants 
and with different times of integration and may have different space 
resolutions. Within a set, all images are geometrically aligned (see later) 
and have the same pixel size. As said in Chapter 3, here the term image 
comprises any information that is presented in a raster format, or gridded 
format in 2 dimensions. The grid cell is called pixel. 

A classical example of fusion of images is the classification process. 
Several images of commensurate or non-commensurate measurements and 
possibly of other information are inputs to a classifier. If the classification if 
of supervised type, a codebook exists that is input to the fusion process as 
an external knowledge. The result is an image of taxons and possibly 
another image of the related accuracy (or plausibility, or reliability etc.). In 
an unsupervised procedure, the state vectors of the pixels are grouped on 
similarity properties. The final classification is performed by querying 
additional constraints to the operator. The unsupervised classification is 
usually an iterative fusion process with successive refinements until 
operator satisfaction is met. In classification processes, the original 
dimension of the information is reduced. In this example, the semantic level 
of the fused product is higher than that of the original set of images. 

Another example is given by the construction of digital elevation model 
(DEM), which represents the relief of an object or a terrain relative to a 
reference. This elevation model is constructed by stereo-photogrammetry. 
This is one of the major applications of the images acquired by space-borne 
systems observing the Earth. Cloud cover impedes the observation by 
optical systems, resulting into "loss" of usable data and gaps in the 
constructed elevation model. The missing parts can be recovered by 
performing interferometry using radar systems in lieu of optical systems. In 
the example illustrated in Figure 6.1, fusion is performed on two optical 
images to obtain a first DEM (actually an image of parallax), then on two 
radar images to obtain a second DEM (actually an image of coherence). 
Quality parameters are also available for each of the DEMs. A Bayesian 
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approach is used to optimize parameters for the images of parallax and 
coherence for the fusion of these derived images. The resulting image is the 
final digital elevation model, which is more complete and more accurate 
than the two others are1. 

Two Radar Images

Digital Terrain Model
Complete - Accurate

Image of Parallax
Binary Mask of Missing  Gaps

Image of Coherence
Interferogram

Two Optical  Images
FUSION PROCESS

 
Figure 6.1. Example of a fusion process for the construction of a digital 
elevation model 

Many other approaches in image fusion exist. Some include extraction of 
features from each image and then fusion of features without referring any 
more to image. An example is given by the mapping of roads by fusing 
several sets of images, where the final product is a symbol "road" in the 
form of vectors in a geographic information system. 

The objects of the fusion of images are various. Some have already been 
seen. They depend upon the domain of applications. In robotics, the major 
thrust for fusing images is the acquisition of the relief for accurate 
displacements or moves of the robot. In environment, classification is the 
most usual fusion process when knowledge of land use and its 
characteristics is at stake. If visual analysis and interpretation are under 
concern, the fusion aims at creating a reduced set of images, which contains 
all the information of interest present in the original sets of images. Fusion 
may be performed to create new sets of images in various modalities with a 
better spatial resolution, which are close to similar observations if existent. 

This Chapter presents very briefly the classification and identification as a 
fusion process. Then it focus on techniques calling upon fusion to display 
information of interest scattered in several images acquired by various 
modalities. Color space is used in that purpose. Some techniques are 

                                                           
1 In L. Wald. Data fusion for a better exploitation of data in environment and Earth 
observation sciences. Presented to UNISPACE III, July 2000, Vienna, Austria. By 
courtesy of Issam Tannous. 
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extensively discussed. They are useful to deal with a large number of 
commensurate modalities, e.g., hyperspectral optical sensors acquiring 
images in several hundreds of channels, or with non-commensurate images. 

Following Chapter focuses on methods for the synthesis of images having 
the best spatial resolution available in the original sets of images. 

GEOMETRICAL ALIGNMENT OF IMAGES 

The alignment has been discussed in Chapter 3. The images should be 
aligned to performing correctly the fusion process. The exact constraints 
depend upon the method; they will be presented on a case by case basis in 
the following pages. However the geometrical alignment is almost always 
requested for the fusion of images; it is discussed now for once. 

Many techniques for image fusion perform calculations on a pixel basis. 
Hence the images should be perfectly superimposed in order to get 
maximum accuracy. The geometrical alignment is often the most critical 
step in the alignment process. It is also called co-registration, 
superimposition, geometrical correction, conflation or navigation. The terms 
warping or rubber sheeting are sometimes used, but they refer to specific 
techniques. The geometrical alignment can be performed on an absolute 
basis. An absolute reference is selected that exists outside the specific 
problem under concern. All images are aligned in this reference. An 
example is the latitude - longitude system or any geographic projection 
system. The alignment may be relative: an image is selected, which serves 
as a reference, and all images are aligned on that one. In this case, the size 
of the pixel of the reference image plays a major role. 

Some systems deliver images that are already co-registered. Otherwise there 
are several approaches to perform geometrical alignment. 

Assume that the systems for image acquisition are perfectly described by 
analytical models whose parameters are all known. Then the alignment is 
made by the appropriate combination of the models. For example, if the set 
B of images is to be aligned on the set A, and assuming that fA and fB 
represent the models, the alignment of B is made by performing fA[fB

-1(B)]. 
The number of parameters is usually very large, and, very often many of 
them are not precisely known. To overcome this shortcoming, one calls 
upon external knowledge if existent (e.g., range of variation of each 
parameter, mean value, value at previous instant or iteration), and on some 
features present in both sets of images. These features are assumed to 
represent the same object and to have the same locations. Using this 
additional information, one may find the parameters, which minimize a cost 
function. 
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Very often, the models are unknown to the persons performing the fusion 
process. This is the case when images are commercial products or originate 
from a commercial acquisition system. 

In some cases, one may use the technique of landmarks. A landmark 
designates a pixel or a set of pixels, which have remarkable properties: very 
bright pixel in a dark context, geometrical arrangements like lines, crosses, 
etc. It is also called homologue points in stereo-photogrammetry or ground 
control point. Of interest are the landmarks that appear in one of the images 
of each set of images A and B. Then one assumes that any landmark present 
in both sets represents the same object and should have the same 
geometrical location in the reference space (here selected as being that of A 
for the sake of the simplicity). For example, if a table is seen under similar 
viewing geometry in both sets of images of an indoor scene with permanent, 
or well-controlled and modeled, illumination, and if it has not been moved 
between the times of acquisition of the images, its angles may constitute 
landmarks. This hypothesis is not always valid and should be checked 
carefully for each landmark. Many difficulties arise in the case of objects, 
which are seen under very different viewing geometry, or objects, whose 
shapes are changing during the time lag between the acquisition of images 
in two different modalities, such as the inside of a living stomach or cloud 
fields, or objects, whose limits / borders may vary according to the 
modalities, such as X-rays versus electron microscope. 

If several landmarks are found, one may estimate a model for the 
conversion of the geometry of B into that of A. The complexity of the 
models depend upon the number of landmarks. In the simplest case, with at 
least three landmarks, one may perform a least-square fitting of straight line 
(polynomial of first order) on the co-ordinates (line, row). The detection of 
landmarks is usually done manually; hence the amount of landmark 
amounts to a few tens at most. Some methods perform automatic detection 
of pairs of landmarks; the resulting number is very large and the landmarks 
are well distributed within the reference space. The space can then be 
divided into triangles, each landmark being the summit of a triangle. On 
each triangle, a bi-linear model can be estimated. Some constraints may be 
taken into account such as the continuity of the models and their first 
derivatives on the sides of the triangles. The geometrical alignment model is 
the composition of these local models. Additional local models need to be 
estimated for the part of the reference space that lies outside the convex 
envelope defined by the landmarks. Then the co-ordinates (x, y)B in the 
space B are given by 

(x, y)B = fB[(x', y')A] [6.2] 

where (x', y')A are the co-ordinates in the reference space and fB the model. 



Fusion of images 93 

The case of oblique viewing without enough knowledge of the acquisition 
model and its parameters should be treated differently. Here oblique 
viewing implies that some facets of the object or some slopes in the 
landscape are hidden. The lines of sight differ between the two sets of 
images A and B. This means that an object may not appear in one of the set 
or not have the same appearance in both sets. Oblique viewing is the 
standard mode of acquisition in radar imagery. If the creation of the image 
is mostly due to the changes in relief, then the problem my be solved by the 
knowledge of the lines of sight relative to the observed scene if a digital 
elevation model is available and accurate enough. In the case of radar 
imagery in very steep relief, the area covered by the digital elevation model 
should be much larger than the reference space in order to take into account 
the steep high relief outside the reference space, whose echoes are present 
in the radar image. One simulates the oblique viewing of the elevation 
model using the parameters of the set A and then of the set B. Two synthetic 
images are obtained: AS and BS. The technique of landmarks is applied to A 
and AS, and to B and BS. Here landmarks are composed of crests and 
troughs. Then all geometrical models are known and one may convert the 
space of B into that of A. 

Once the geometrical model known, one may find useful or necessary to 
resample the images of the set B to project them into the reference space: 

B'(x', y')A = g[B(x, y)B], where (x, y)B = fB(x', y')A [6.3] 

Several resampling operators are available. Very good results are attained 
by truncated versions of the sine cardinal. A bi-cubic function offers a very 
good trade-off between the accuracy and the computing time. In some cases 
of oblique viewing, the value of the pixels that are shadowed by the relief 
may be inferred from other images, given some assumptions and models. 
An example is the resampling of radar imagery in steep relief using optical 
imagery2. This also demonstrates that a fusion process may be nested into 
another one. 

Assume that A has the highest spatial resolution h (i.e. the smallest pixel 
size) and B the lowest spatial resolution l. The techniques described in this 
Chapter and the following require that the images Bl be exactly 
superimposed onto the images Al at the resolution l. For any pixel (x, y)l of 
the reference space at resolution l, one should be able to construct the state 
vector of the various modalities of the sets Al and Bl by concatenation. For 

                                                           
2 L. Castagnas. Application of the multiresolution analysis to the fusion of satellite 
images: example of SPOT and ERS-1 data. In Proceedings of the 1993 IEEE 
International Conference on Systems, Man and Cybernetics, vol. 3, pp. 684-686. 
IEEE n° 93CH3242-5, 1993. 
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the sake of the simplicity, in the following, the images are assumed to be 
geometrically aligned and the term "images of lowest resolution" Bl denote 
the projected resampled images. 

CLASSIFICATION - IDENTIFICATION 

Estimation of the identification of objects by means of techniques of 
correlation - association is a common task in fusion of images. It is also 
called classification, or pattern recognition. The fusion process benefits very 
often from the properties of complementarity of the sources. In some cases, 
redundancy of sources is helpful to increase the quality of the identification, 
especially if some sources are noisy or unreliable or inaccurate. 

Comparison of observations with models describing the physics of a 
phenomenon by the means of estimation methods such as data assimilation 
or Kalman filtering is a task of identity estimation in terms of the given 
models. In such approaches, data are usually commensurate. 

Other approaches are more appropriate to the fusion of non-commensurate 
information. Many classifiers call upon laws pertaining to statistics and 
probabilities and are powerful tools to merge commensurate or non-
commensurate images. For example, it is common to use optical and radar 
images as inputs to a classifier. Additional inputs may be some "texture" 
parameters (e.g., local variance) computed on some of the original images. 
Other features may also be taken into account by the classifier (e.g., 
boundaries or hydrography by the means of a geographical information 
system.) 

Usual techniques in classification of commensurate or non-commensurate 
data are cluster analysis, classical inference, Bayesian inference or the 
Dempster-Shafer theory. Cognitive-based methods aim at reproducing the 
human inference process. Knowledge-based systems, or expert systems, or 
fuzzy logic belong to this family. 

There is a wealth of literature about classification or pattern recognition3. 
Many classifiers exist in commercial softwares. They may request more or 
less computer resources; it usually remains reasonable. The input images 
must be geometrically or geographically aligned. They should have the 
same pixel size (usually that of the image having the best spatial resolution). 

                                                           
3 See the special issue on data fusion, IEEE Transactions on Geoscience and 
Remote Sensing, 37(3), 1999. 
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COLOR COMPOSITING - THE IHS AND PCA METHODS 

It is very common to allocate the three basic colors (Red, Green, and Blue) 
to three modalities or spectral bands. The color compositing permits to 
visualize the combination of these three modalities and to understand better 
their relationship. A component may be actually any combination of the 
available information. If the number of modalities is greater than three, it is 
common to perform a principal component analysis, and to allocate the first 
three components to the R, G, and B axes. Other combinations are possible, 
such as sums, differences, ratios etc. Since no physical law is implied, color 
compositing is commonly used to visually merge homogeneous images or 
heterogeneous ones, such as optical and radar images. Here again, each 
component may be a combination of the original data. 

To perform a color compositing, images should be superimposable 
(geometric alignment). Usually the spatial resolution does not have a major 
importance. Hence the images are resampled to fit the image having the best 
spatial resolution. They should also be aligned for signal dynamics; their 
histograms, or at least their range of values, should be similar. Most of the 
commercial softwares offer such functionalities. There is no particular 
difficulty. 

The problem to solve is the creation of a triplet (R, G, B) at spatial 
resolution h from the sets of images and derived characteristics, also at 
spatial resolution h. 

(R, G, B)h = f(Ah, Ch, ...) [6.4] 

Two techniques are mainly used. They pertain to the projection and 
substitution type and are detailed hereafter. Other combinations are 
possible, such as sums, differences, ratios, ratios of differences and sums 
etc., which are performed on a case by case basis. 

THE IHS METHOD 

The IHS method applies to four images, three of them belonging to a set C, 
one to the set A. It is based on an analogy between the three images (also 
called channels or bands) of the set C and the color primaries, as discussed 
previously. The fourth image A plays a role apart. It is usually an image of 
the same type than the images of the set C but with a higher spatial 
resolution, or an image non-commensurate with the images of the set C. If 
the set C comprises more than three bands, then one should select three 
bands among them. Alternatively the original bands, or a selection of them, 
may be combined in order to give three bands. The ways of combining them 
are diverse and depend upon the purpose of the fusion process. If the set C 
comprises only two bands, one trick is to create a third one by combining 
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the two available by, e.g. summing up these two. The image A itself may 
result from a combination of several images. 

Each of the three bands Ci is labeled as blue, green and red respectively. 
Then, these color components are converted into intensity (I), hue (H) and 
saturation (S) components using for example, one of the models discussed 
previously. The next step is the substitution of the intensity by the image A. 
The scheme is shown in Figure 6.2: 

(C1, C2, C3)

(C’1, C’2, C’3)

(R, G, B)

(R’, G’, B’)

(I, H, S)

(A, H, S)
I=A

 
Figure 6.2. Scheme of the IHS method 

The substitution of the intensity by A implies to match the dynamics range 
of A to that of I, which can be done by histogram matching, or variance and 
mean matching, or other techniques. Actually, it is recommended to 
perform the alignment of the dynamics on the R, G, B and A images before 
their conversion into the IHS model. 

Figure 6.3 displays a typical scheme for an IHS process. Here, three images, 
called Rl, Gl and Bl, of low spatial resolution l are fused with another one 
HRh of higher resolution h. 

Rl

Gl

Bl

RGB -> IHS
substitution
IHS -> RGB

α
HRh

Rh

Gh

Bh

R”h

G”h

B”h

Resampling

Geometrical
model

HRl

 
Figure 6.3. Typical scheme for a fusion process based upon the IHS method 

The first step is the alignment in gray levels of the four images Rl, Gl, Bl and 
HRh. Then the image HRh is resampled to the resolution l. The geometrical 
alignment is performed by the means of the landmark technique, the 
estimation of the geometrical model, its application to images Rl, Gl and Bl, 
and finally the resampling of the results at resolution h. The geometrically 
aligned outputs R"h, G"h and B"h and the image HRh are the inputs of the 
fusion cell. R"h, G"h and B"h are converted into I'h, Hh and Sh. The 
substitution of the intensity I'h by HRh (Ih = HRh) and the inverse conversion 
from the IHS system into the RGB system provide a new set of images (Rh, 
Gh, Bh), which includes more spatial details (more high frequencies) than 
the original set (Rl, Gl, Bl). 



Fusion of images 97 

Refinements can be made which include the substitution of the intensity I 
by a linear combination of the image A and the original intensity I': 

new intensity I = α A + (1-α) I' [6.5] 

At that stage, the fusion is accomplished and the process may stop there if 
visual analysis of the fused image is performed in the IHS model. 
Otherwise, the last step performs the inverse model converting the new IHS 
components into blue, green and red components. 

Some commercial softwares for the processing of images from e.g., Adobe 
or JASC companies, propose a function called transparency, which acts 
similarly to the IHS method. The new intensity is a linear combination of 
the original intensity and of A, which can be user-adjusted. 

The IHS method can be applied to images not resulting from measurements, 
but displaying other types of information e.g., attributes or taxons (see the 
following example), not obeying to a relationship of order. 

THE PCA METHOD 

The PCA method calls upon the principal components analysis and is 
similar in essence to the IHS method. It applies to one plus two or more 
images, and is more general than the IHS. It is recommended either to 
equalize the dynamics of the signal in each image, including A, in order to 
make them similar, or to perform the PCA with the correlation matrix and 
matching the dynamics of A with that of the first component. This 
alignment of dynamics ensures better performances but may cause a 
distortion of the spectral content. 

The PCA provides N components. The first component corresponds to the 
largest amount of the total variance. Very often, this component may be 
seen as a rough approximation of the average value of the images at each 
pixel. In the PCA method, the first component acts as the intensity in the 
IHS method. Accordingly, it is replaced by the image A. Refinements can 
be brought in this substitution step by performing a combination of this 
image A and of the first component. At that stage, the fusion is 
accomplished. An inverse PCA transformation may be performed to provide 
the fused N images in the original co-ordinates system. 

If visual analysis is at stake and since very often, most of the variance is 
contained in the first three components, one does not perform the inverse 
transformation. Only the three first components are retained. They are 
assimilated to the three color primaries RGB discussed earlier, and 
displayed for analysis. 

This method is appropriate in the case of a very high number of images Ci 
provided e.g., by a hyperspectral imager, which are to be fused with other 
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modalities. Like the IHS method, it deals indifferently with commensurate 
or non-commensurate images. However, contrary to the IHS method, it 
should only be applied on images whose contents are ruled by a relationship 
of order. 

The principal components analysis is a form of orthogonal transformation, 
based on the analysis of the covariance matrix. Other transformations exist, 
orthogonal or not; they can be used in lieu of the PCA using the same 
principle. Examples are the Fourier transform (in the modality domain) or 
empirical orthogonal functions. 

AN EXAMPLE OF THE IHS METHOD 

In the course of the realization of the European solar radiation atlas4, a 
clickable map for Europe has been produced, which serves as an interface 
for the user to select some geographical points. The map has been made in 
raster format from vector geographical databases. Its scale is small: the 
pixel size is approximately 10 km (actually 5' of arc angle). 

To help the user in orientating himself, it was decided to draw landmasses 
and large water bodies (lakes and seas). Nations were also drawn on the 
map, one color per nation and geographical co-ordinates (latitude, 
longitude) were available at any instant (Fig. 6.4). However, this was not 
sufficient and incorporating major orographic features (i.e. terrain relief) 
into the map brought an additional visual help. Preservation of the color of a 
nation is important to well distinguish them. Accordingly, the IHS 
technique was selected as the fusion process. Modulating the intensity of the 
color has done the incorporation of the orographic features. 

The scheme of the fusion process is shown in Figure 6.5. It was performed 
by means of a commercial software for image processing. 

The raster map was split into the three R, G, and B components. Setting the 
illumination source at its northeast, with an elevation above horizon of 
approximately 30 degrees illuminated the digital elevation model (DEM). 
This produced a shadowed DEM, which enhanced the relief and steep 
slopes. The R, G, B components were converted into I, H, S components. 

Using a transparency function of the software, a new intensity was 
produced, which is a linear combination of the shadowed DEM and the 
original intensity (see Eq. 6.5). The water bodies were preserved. 

                                                           
4 European solar radiation atlas. Fourth edition, includ. CD-ROM. J. Greif, K. 
Scharmer. Published for the Commission of the European Communities by Presses 
de l'École des Mines de Paris, France, 2000. 
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Figure 6.4. Part of the map of the countries in the European solar radiation 
atlas (Presses de l'École des Mines, 2000) 
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Figure 6.6. Part of the map serving as the user- interface in the European 
solar radiation atlas. Orographic features have been incorporated (Presses 
de l'École des Mines, 2000) 
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Figure 6.5. Scheme of the IHS fusion used to produce the interface map in 
the European solar radiation atlas. 

The final product was a trade-off between the appearance of the orographic 
features and the preservation of colors of nations. The new I', H, S 
components were then converted into new R', G', B' components, which in 
turn were combined to produce an 8-bits image. 

The resulting map is shown in Figure 6.6. Major orographic features are 
clearly visible, and are a valuable help to locate sites in large countries. 

VISUAL ENCRUSTATION 

Assume two sets of images A and B. Encrusting some elements originating 
from A into images originating from B, color composite or not, is a trivial 
form of fusion. The elements of A may be measurements or attributes or 
both. The images supporting the encrustation may be a combination of the 
original images B, or a combination of attributes derived from these images 
or both. 

Encrustation is very useful in the visual analysis of several sets of non-
commensurate images. The content of the images may be measurements or 
attributes; a relationship of order may exist or not for each image. Each 
image has its specific interest regarding some elements of the scene under 
concern. Encrustation is one approach to enhance the perception and visual 
analysis of these elements and to create a composite scene showing most, if 
not all, of the information of interest. 

There are several techniques, which meet this general approach. It is 
impossible to describe all of them; this book focuses on one example. The 
methodology shown can be used for other applications, which are dealing 
with the analysis of some geometrical features perceived by one or more 
modalities in relationship with an environment better seen by other 
modalities. Examples are analysis of cracks in metals or detection of farms 
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in the South of Africa for the monitoring and management of the water 
resources. 

Optical imagery, including color composites, is of very high interest for 
image analysts involved in surveillance and detection of objects of 100 m in 
size or less. Such images are comfortable because they offer a fair amount 
of similarity with what can be observed by a human eye from an airplane. 
Figure 6.7 exhibits an optical image of the international airport of Marseille 
(France) taken by the satellite SPOT in the panchromatic band. The pixel 
size is 10 m. The airport is partly built on a lake, which appears in dark 
tones in the upper left corner of the image. The runways are in clear tones; 
the airport is clearly visible. 

 
Figure 6.7. SPOT image of the airport of Marseille, France. Copyright 
CNES - SPOT Image (1992). 

Radar imagery is also used by image analysts. It offers unique advantages. 
Beyond its all-weather and night capabilities, it may image sharp objects of 
small size, even smaller than the pixel size. 

An appropriate combination of optical and radar images permits the analyst 
to spot these objects into a familiar view of the landscape and ease and 
speed up the analysis of the satellite radar scenes. Applications are in the 
surveillance domain and may deal with humanitarian catastrophes, whether 
they are natural (e.g., floods) or man-made (e.g., wars, guerillas). The fused 
product may be used to detect the camps of refugees and to assess the 
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number of refugees, which helps in shaping and sizing the international aid 
resources and efforts. 

Figure 6.8 exhibits a radar image obtained by the satellite ERS over the 
airport of Marseille. The two images are not contemporary, though both 
taken in 1992. The original size of the pixel is 12.5 m in the radar imagery. 
Both images have been geometrically aligned. The ERS image has been 
resampled for a better illustration of the method, with a pixel size of 10 m. 

This radar image is more difficult to interpret than the optical one. There is 
a "salt and pepper" effect, called speckle. It is inherent to this type of ERS 
radar imagery. It makes objects difficult to distinguish. Indeed only the 
runways and taxiways appear clearly in this image in dark tones. White 
spots are due to strong echoes. They are very often related to large buildings 
but do not delineate them perfectly. The waves at the surface of the lake 
return the radar signal rendering impossible the detection of the shoreline. 

 
Figure 6.8. ERS image of the airport of Marseille, France. Copyright ESA 
(1992) 

All these comments may appear as drawbacks. Nevertheless the radar image 
has the capability of imaging objects of size smaller than the pixel size, 
provided they comprise square angles and are located in flat areas of low 
radar cross-section. Such elements are of interest in airports. The method 
described hereafter tends to make them more visible to the image analyst by 
fusing radar and optical images. 
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Figure 6.9 shows the scheme of the fusion method. A multiresolution 
analysis is applied to the SPOT image PAN using a wavelet transform "à 
trous". In this algorithm, only a scale function is used (see Chapter 5). This 
algorithm provides at each step one context and one non-directional wavelet 
coefficient image. 

All images have the same size. Three iterations are performed, providing 
three images of wavelet coefficients CPAN1, CPAN2, CPAN3 and one image of 
context PAN3. Segmentation is made by the means of a multiscale 
algorithm, using these four images as inputs. The parameters of the cost 
function are also inputs (rules). They are such that the segmentation process 
delivers selected areas of the images that are large and homogeneous. Here, 
homogeneous means that transitions and gradients are small relative to the 
surface of the area. Runways of the airport and the airfield are such selected 
areas; zones of buildings are excluded. The first fusion process provides a 
representation of the areas where elements of interest may be present. 
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Figure 6.9. Scheme of the encrustation method for the example of Marseille 
airport 

A multiresolution analysis is also applied to the radar image using one 
iteration of the algorithm "à trous". The images of wavelet coefficients 
always have histograms that are centered at zero and present a very sharp 
distribution. Figure 6.10 is a typical example of the histograms of the image 
of the wavelet coefficients for this example. 

This histogram is assumed to be a representation of the probability density 
function of the wavelet coefficient image. It can be adjusted to a theoretical 
probability density function obeying a generalized Gaussian law. 

The contents of the histogram can be interpreted as follows: 
• the values close to zero (central peak of the histogram) represent noise 

or very small variation of the image; 
• the high values of the histogram (left and right parts of the histogram) 

represent the strong variations of the image i.e. well marked structures 
as borders between different elements. 
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Figure 6.10. Typical histogram of the wavelet coefficients image 
representing the information at a given scale  

The method for the detection of elements of interest is based on this 
observation. Recall that these elements present strong transitions and have 
sizes lower than the pixel size. A thresholding is applied on the wavelet 
coefficients. Only values that are greater than the absolute value of the 
threshold are kept. They are the well-marked structures of small sizes. This 
threshold depends on the application and on the size of the structures to 
detect (as well as the number of iterations of the wavelet transform) to be 
performed). Some tests are always needed to fit this value to the aim or it 
can be user-adjusted. The output of this process is a representation of the 
possible elements of interest. 

The final stage is the fusion of the representations together with the visual 
marking of the retained elements into the panchromatic image PAN 
(encrustation). The fused product is presented to the image analyst for 
visual analysis. An enlargement of the resulting image is shown in Figure 
6.11. 

The retained possible elements of interest are encrusted as bright points. 
Three of them are shown into a circle. The objects that are represented by 
these features are actually much smaller than the pixel size (10 m). One is a 
vehicle: a standard 4 wheel drive vehicle, aiming at keeping the sea birds 
away from the runway. The second one is a power converter, a set of three 
cubes of 2 m in size made of metal. The third one is the ILS antenna, an aid 
to navigation. It is made of metal, very thin and of a few meters high. 

Such a fusion of representations of elements derived from optical and radar 
images has an application in image visual analysis. Through an appropriate 
interface, the analyst may select in an interactive manner the range of scales 
of interest and the thresholds for the characterization of well-marked 
structures. The joint exploitation of the two sets of images is thus possible 
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and offers better performances than the combined results of individual 
exploitation. 

Vehicle

Power
converter

ILS antenna

 
Figure 6.11. Enlargement of the panchromatic image with the encrustation 
of features extracted from the radar image. Some features are identified. 

 



7. FUSION FOR THE SYNTHESIS OF IMAGES WITH A 

HIGHER SPATIAL RESOLUTION 

INTRODUCTION 

In various applications, the benefit of having images with the highest 
spectral resolution (or the largest number of relevant modalities) and the 
highest spatial resolution has been demonstrated. On the one hand, the high 
spatial resolution is necessary for an accurate description of the shapes, 
features and structures. On the other hand, depending on the application and 
the level of complexity of the observed scene, the different objects are 
better identified if high spectral resolution images are used. Hence, there is 
a desire to combine the high spatial and the high spectral resolutions with 
the aim of obtaining the most complete and accurate description of the 
observed scene. 

However the sensors offer either high spectral resolution and low spatial 
resolution, or low spectral resolution (broadband) and high spatial 
resolution. Hence research has developed, which aims at proposing 
algorithms for fusing both types of images, in order to synthesize images 
with the highest spectral and spatial resolutions available in the sets of 
images. 

These images should be as close as possible to reality and should simulate 
what would be observed by a sensor having the same modalities but the 
highest spatial resolution. The accurate synthesis of the multispectral 
character is very important to many applications, including those calling 
upon classification or the reproduction of the natural colors. Classification 
processes often use bases of spectra (multi-modality signatures), which 
result from measurements or simulations by models or from the experience 
of image analysts. In the course of the classification, the observed spectra 
are compared to the known ones and a decision is taken according to their 
similarities. Accordingly, any error in the synthesis of the multi-modality 
signatures at the highest spatial resolution induces an error in the decision. 

This research is very vivid in Earth observation. Many methods have been 
developed. Some of them are used in the military domain. Synthetic 
products are also available by the providers of satellite images and the civil 
market is becoming more and more important. The concept is also gaining 
attention from instrument makers, especially for space-borne missions. By 
integrating fusion techniques in the processing software, the instrument 
makers can design instruments made of several sensors, each of them being 
well adapted to one aspect of the mission, e.g., one sensor with a high 
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spatial resolution and another with a high spectral resolution. Hence some 
trade-off may be avoided in the design. It results into lighter, cheaper and 
more reliable systems. 

Some meteorological satellites are observing the Earth by means of passive 
sensors working in several bands of frequencies a few GHz (millimetric 
wavelengths). For instrumental reasons, the lower the frequency, the larger 
the size of the pixel. Presently all spectral data are fused after they have 
been resampled to the largest pixel size found in the set of images, i.e. 
approximately 100 km. The fusion provides estimates of rainfall, sea 
surface temperature and surface wind. Meteorologists would prefer to have 
such gridded parameters at a better spatial resolution, that is a smaller size 
of the grid cell. The realization of an instrument meeting their needs would 
be very costly. Fusion methods for synthesizing images in GHz frequencies 
with a better spatial resolution are an efficient low-cost alternative to the 
making of an instrument. 

Several space-borne systems have dual sensors offering multispectral 
capabilities and low spatial resolution on one side, and a panchromatic band 
with a high spatial resolution on the other side. The SPOT system is one of 
them. It presents a panchromatic band with a spatial resolution of 10 m 
(SPOT-P) and three spectral bands XS1 (green-yellow), XS2 (red) and XS3 
(near infrared) with a resolution of 20 m. Such multispectral images are 
very useful to map the different types of land use (e.g., fields, forests, 
roads...). The improved spatial resolution allows these features to be better 
delineated, meaning that the synthesized images are more useful for 
applications such as mapping, precision farming, surveillance, national 
security etc. 

The Landsat space-borne system offers a panchromatic band with a spatial 
resolution of 15 m, six spectral bands located between blue and near-
infrared with a spatial resolution of 30 m, and a thermal infrared band with 
a spatial resolution of 60 m. Several authors have used one or more of the 
six spectral bands, or the panchromatic image, to synthesize a thermal 
infrared image at a better spatial resolution. Recent Earth observation 
commercial missions (Ikonos, Orbview) provide broadband images 
(panchromatic) with a high spatial resolution of 1 m, and three multispectral 
images with a lower spatial resolution of 4 m, taken in the blue, green and 
red bands. Ikonos has an additional near infrared band at 4 m. 

Customers have expressed a great interest in obtaining high spatial 
resolution landscapes with objects having their natural colors. Here, natural 
colors mean the colors that are perceived by the human eye. All these 
examples demonstrate that such fusion methods are of a large concern, 
outside the research community in mathematics. 
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These fusion methods are sometimes called "band sharpening". Care should 
be taken. "Band sharpening" may be performed to increase the utility of a 
set of images for visual analysis, while the synthesis of image aims at 
producing actual images of higher spatial and spectral resolutions. 

Care should be taken with the term "spatial resolution". A spatial resolution 
is expressed in meters. Objects or features as wide as or bigger than the 
resolution can be distinguished in the image. The size of the pixel of the 
original image is most often equal to the spatial resolution of the instrument. 
However it is often said that the lower the size of the pixel, the better the 
resolution. A high resolution h (e.g., 1 m) means a small pixel size, while a 
low resolution l (e.g., 5 m) means a larger pixel size. Nevertheless, it 
remains that h < l, i.e., that the resolution of 1 m is less than the resolution 
of 5 m. This is certainly confusing but there is a general consensus on using 
the term "resolution" in this way. One may add that the mathematicians do 
not care of the size of the pixel in meters. For example, in the 
multiresolution analysis (see Chapter 5), the original resolution of the image 
is set to 1. Then in the course of the analysis, and assuming a dyadic case, 
the resolution will be successively equal to 1/2, 1/4, 1/8 etc. 

THE GENERAL PROBLEM 

Let denote the acquired images of lowest spatial resolution by Bl, and the 
images of highest spatial resolution by Ah. The subscripts l and h denote the 
spatial resolution of images B or A, i.e., low and high resolution, 
respectively. Binterp

h denotes the result of the interpolation (resampling) of Bl 
from resolution l to h. Each set of images A and B is composed of several 
images acquired by various modalities, e.g., panchromatic, X-rays, electron 
microscope, nuclear-magnetic resonance, taken at different times and with 
different times of integration and have different space resolutions. Within 
each set, the images are geometrically aligned and have the same pixel 
sizes. Within the set B, Bkl denotes the image acquired by the modality k 
(hereafter called the spectral band k). In the following, for the sake of the 
simplicity, the set A is assumed to have only one image Ah, unless 
mentioned otherwise. The problem may be easily extended to a set A 
comprising several images or to more than two sets of images. 

The fusion methods aim at constructing synthetic images B*h, which are 
close to reality. The methods should perform a high-quality transformation 
of the multispectral content of Bl, when increasing the spatial resolution 
from l to h. 

The general problem is relevant to the fusion of representations and is the 
creation of a new set of images B* from the original representations A and 
B: 

B* = f(A, B) 



 Data Fusion 110

In addition, these synthetic images B* must respect the three following 
properties. 

First property. Any synthetic image B*h once degraded to its original 
resolution l, should be as identical as possible to the original image Bl, that 
is 

D1(Bkl, B*kl) < ε1k [7.1] 

where D1 is the distance between Bkl and B*kl. Approximation induced by 
the resampling of B*kh into B*kl should be taken into account: the limit ε1k is 
determined by the requested degree of accuracy. ε1k should be small for all 
modalities; this ensures the similarity between the sets Bl and B*l. An 
example of D1 is the square root of the mean of the squared differences (Bkl 
- B*kl) on a pixel basis. A typical value for ε1k is 0.05 times the mean value 
of Bkl. Depending upon the objectives, other distances may be used in order 
to enhance specific properties in the image, e.g., structures or shapes. 

Second property. Any synthetic image B*h should be as identical as possible 
to the image Bh that the corresponding sensor would observe with the 
highest spatial resolution h, if existent: 

D2(Bkh, B*kh) < ε2k [7.2] 

where D2 is the distance between Bkh and B*kh for the modality k. 

The second property does not imply an accurate synthesis of the multi-
modality properties of the set B when increasing the spatial resolution. This 
should be an additional property. 

Third property. The multispectral (or multi-modality) set of synthetic 
images B*h should be as identical as possible to the multispectral (or multi-
modality) set of images Bh that the corresponding sensor would observe 
with the highest spatial resolution h, if existent: 

D3(Bh, B*h) < ε3 [7.3] 

where D3 is the distance between the sets Bh and B*h. 

Several methods have been published. They differ in the way they respect 
the three properties. Considering the methods that are used and known, one 
may distinguish three groups of methods: the projection and substitution 
methods, the relative spectral contribution methods and the methods 
relevant to the ARSIS concept. Evidently, there are some hybrid methods 
belonging to more than one group. These three groups are discussed in the 
following sections. 

The problem may be seen as the inference of the information that is missing 
to the images Bkl for the construction of the synthesized images B*kh. The 
missing information is linked to the high frequencies in the representations 
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A and B. Since this information is to be inferred from the modalities in A, a 
relation should exist between the modalities in B and at least one of the 
modalities of A, relative to the high frequencies. The images of the sets A 
and B do not need to be commensurate. Some studies have been published 
where images acquired in thermal infrared bands have been synthesized 
with a better spatial resolution with a satisfactory quality by the means of 
images acquired in the visible range. 

The geometrical superimposability of images is usually of importance for 
such fusion methods, especially since they are dealing with the addition / 
combination of high frequencies. The images Bl and Al should be 
geometrically aligned, as discussed in previous Chapter, once all images are 
set to the lowest available spatial resolution. Some acquisition systems 
provide images of different spatial resolutions that are already co-registered. 
Otherwise this can be done by means of standard methods available in 
public or commercial software packages for image processing. Some 
providers of images arrange for their products to be co-registered. The 
images of lowest resolution Bl are projected into the geometry of the images 
of highest resolution degraded to the lowest resolution Al. During the 
process, a resampling of the multispectral images B is made. The 
resampling operator has an influence upon the final result. In most cases, a 
bi-cubic interpolator offers a good compromise between the accuracy of the 
result and the required computer time. 

A few authors have assessed the influences of respectively the quality of the 
co-registration and the resampling operator on the final results. The relative 
discrepancies between the results are a few per cent; these influences can be 
kept very small provided the co-registration is accurate enough and the 
operator is appropriate enough. In the following, for the sake of the 
simplicity, the term "image of lowest resolution" Bl will denote the 
projected resampled image of lowest resolution. 

The images A and B may not have been acquired simultaneously. Changes 
between the two sets may arise from 
• the fact that the images are acquired by different modalities; 
• the differences in spatial resolution; 
• the differences between illumination or acquisition conditions; 
• the changes in the observed scene itself. 

As for the two latter causes, as long as the time-lag is small with respect to 
the time scale of the variations in small-size features of each cause, its 
influence upon the quality of the transformation of the spectral content 
when enhancing the spatial resolution (i.e. the synthesis of B*h) is low or 
negligible. Such a time scale is greatly variable; it depends upon the objects 
themselves as well upon the spatial and spectral resolutions with which they 
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are observed. If the time lag is large, the user must weight its consequences. 
He should know precisely the merging method to be used, because all 
methods do not take into account in the same way the small structures to be 
injected from the images of highest resolution into the images of lowest 
resolutions. This point is briefly discussed in the following section and more 
extensively in Chapter 9. An analysis of the influence of a large change with 
time in the observed scene upon the fused product is made for several 
methods. It is illustrated by the case of the building yard of the gigantic 
river dam of the Three Gorges in China. Several sets of images are 
available, with time lag ranging from a few months to several years, 
showing the constantly evolving yard. This study demonstrates how outputs 
of the methods may be differently affected by the time lag. 

THE SPOT IMAGES 

For a better understanding, the fusion methods are illustrated by the case of 
the SPOT system. As said before, this system presents two sets of images: 
• one panchromatic image, called P or PAN, with a spatial resolution of 

10 m and a wide spectral band (from 450 to 810 nm); 
• three other images, called XS1, XS2 and XS3, with a spatial resolution of 

20 m only, i.e. twice less than that of P. Each spectral band XS 
(modality) has a narrower spectral window than the band P. Hence this 
second set B offers a better spectral resolution. 

The peak-normalized spectral response functions of these bands are denoted 
Sk(λ), where λ is the wavelength and k the spectral band (P, XS1, XS2 or 
XS3). They are displayed in Figure 7.1. 

The equivalent radiance Lk in the band k is 

Lk = 
⌡⌠L(λ) Sk(λ) dλ

⌡⌠Sk(λ) dλ
  [7.4] 

where L(λ) is the spectral density of radiance (W m-2 sr-1 µm-1). 

The bands XS1 and XS2 are in the visible range, as well as the 
panchromatic band P of course. The band XS3 is in the near infrared 
domain outside the visible range. The peak-normalized spectral response 
function for the half-sum of the bands XS1 and XS2 is drawn in Figure 7.4.  

Of interest to the discussion are also the following points: 
• the equivalent radiances LXS1 and LXS2 are similar for a spectrally 

uniform reflector: LXS1 ~ LXS2; 
• the average value of the equivalent radiances of the bands XS1 and XS2 
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is very close to the equivalent radiance of the band P for a spectrally 
uniform reflector: L(XS1+XS2)/2 ~ LP; 

• the band P is covering more near infrared wavelengths than does the 
band XS2 (approximately 750 to 810 nm); 

• the bands XS3 and P are separate. 

Finally note that this is valid for the systems SPOT-1, -2 and -3. In the 
system SPOT-4, the bands XS are noted B (B1, B2, and B3). There is an 
additional B4 band in the near infrared range. The spatial resolution of the 
bands B1, B3 and B4 is 20 m. There is no panchromatic band and the band 
B2 has a spatial resolution of 10 m. In this case, the set A is comprised of 
the image B2 and the set B of three images: B1, B3 and B4. Contrary to the 
previous systems, there is no spectral overlap between the sets A and B, 
except for a very small one between the bands B1 (XS1) and B2 (XS2) as 
shown in Figure 7.1. 
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Figure 7.1. Relative spectral responsivity of the bands of the instrument 
HRV of the SPOT system (SPOT 1, 2 and 3) 

PROJECTION AND SUBSTITUTION METHODS 

These methods have already been discussed in previous Chapter. The set of 
images Binterp

kh is projected into another space, where one of the components 
exhibits most of the structures present in the set Bl. This component is 
replaced by the image Ah. The inverse projection is performed and the 
synthetic images B*kh are obtained. In the case of the method IHS, the 
component to be replaced is the intensity Il. Prior to substitution, the three 
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components IHS are interpolated to the resolution h and the component 
Iinterp

h is replaced by the image Ah. 

The substitution component is usually Ah but may be a linear combination 
of Ah and of the component to be replaced (or any other function). From a 
practical point of view, the construction of the new components in the 
projection space requests that the images Binterp

kh exhibit similar encoding 
dynamics. This constraint may induce spectral distortion in the synthesis of 
B*kh. The similarity in encoding dynamics is also necessary between the 
substitution component and the component to be replaced. This alignment 
procedure is often performed by matching histograms. 

Among these projection and substitution methods, the IHS and PCA 
methods are the most used. 

Some refinements were proposed making use of the wavelet transform1. 
Instead of replacing the intensity Iinterp

h by the image Ah, it is possible to 
synthesize, in the sense of the multiresolution analysis, the intensity Ih at 
resolution h, by adding the appropriate wavelet coefficients extracted from 
Ah to Il. Then, the inverse projection is performed to obtain the synthetic 
images B*kh. In this approach, the wavelet transform “à trous” is the easiest 
tool to use. This approach also holds for the PCA method. It has the 
advantage to respect the first property, while the original method does not. 

To achieve good results using such techniques from the point of view of 
performing a high-quality transformation of the multispectral content when 
increasing the spatial resolution, it is necessary that 
• the component to be replaced comprises a very high percentage of the 

information related to the high frequencies structures; 
• the correlation between the component to be replaced and the 

substitution component is very high, for all frequencies and not only for 
the highest frequency. 

Whatever the method, looking to the equations makes it obvious that, 
except in rare cases, such methods cannot achieve high-quality 
transformation of the multispectral content when increasing the spatial 
resolution from l to h. Maybe the clearest demonstration of this is given by 
looking to the equations, when reducing (e.g., resampling) the spatial 
resolution of the synthesized images B*kh back to the original resolution of 
the set B, that is looking to the first property. It appears that the influence of 
the high resolution image Ah is not limited to the high frequencies that have 

                                                           
1 J. Núñez, X. Otazu, O. Fors, A. Prades, V. Palà, and R. Arbiol. Multiresolution-
based image fusion with additive wavelet decomposition. IEEE Transactions on 
Geosciences and Remote Sensing, 37(3), 1204-1211, 1999. 
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been injected to increase the resolution; it covers the whole set of 
frequencies that are present in Ah. Hence the substitution component may 
include frequencies that should not appear in a given band. This comment 
explains the two constraints for success listed above. 

Figure 7.2 illustrates the IHS method. The case is a part of the city of 
Riyadh (Saudi Arabia). A color composite of a SPOT XS sub-scene 
acquired on May 16, 1993 (upper left image) is displayed. In this picture, 
one can clearly see the large interchange of two urban highways (middle 
left). The highways are in black. The interchange is enhanced by the 
presence of vegetation (here in red). Lots in the sandy areas (upper part) are 
ready for further constructions of buildings; the network of asphalt streets is 
perfectly visible. On the contrary, details in the housing in the lower half 
part cannot be seen. The large white-blue rectangular shape in the lower left 
part below the interchange is a mall. 

The color composite is performed by a dynamic allocation of color codes to 
color classes respective to the frequencies of the triplets. The coding for the 
three color composites is the same. Their colors can be compared; they 
represent the multispectral information contained in the set of images Binterp

h 
or B*h(IHS) or B*h(Model2). 

The upper right corner of Figure 7.2 exhibits a panchromatic image taken 
by the Russian camera KVR-1000 on September 7, 1992. This image Ah has 
a spatial resolution of 2 m and has been acquired more than eight months 
before the SPOT scene. It displays much more details than the SPOT XS 
image. See for example the details in the mall. But there are also two 
striking features. Firstly, the details of the highway interchange do not 
appear in the KVR image likely because of some saturation and defects in 
the KVR film, which has been digitized. Secondly, the lots in the sandy 
areas were not finished at that date: a few asphalt streets can be seen and the 
others are sandy paths that are hardly visible in the KVR image. 

Here the ratio between h and l is 10. The images in the lower half of Figure 
7.2 are color composites of the three synthetic images B*kh obtained by two 
different fusion methods: the IHS method and the ARSIS-Model2 method, 
which is discussed later. 

In the IHS composite (lower left) more details appear compared to the 
original XS color composite (see e.g., the mall). However the IHS 
procedure has introduced two large visible defects: the highway interchange 
is less visible because of the defects in KVR and the network of asphalt 
streets in the lots is no longer visible because of the time lag between both 
images. This means that if one has to interpret this fused product, one would 
falsely conclude that this part of the district is still under work and that the 
streets are not ready for car traffic or building construction. 
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Figure 7.2. Scenes of the city of Riyadh (Saudi Arabia). From left to right, 
top to bottom: SPOT-XS color composite (spatial resolution is 20 m,  
CNES SPOT-Image 1993), KVR-1000 panchromatic image (spatial 
resolution is 2 m,  Sovinformsputnik 1992), and color composites of 
synthetic product: IHS and ARSIS-Model2 methods. 
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This image illustrates the fact that the structures seen in the fused products 
B*kh output from the IHS method are those present in the substitution 
component, and only them. This clearly demonstrates that the fused 
products will not respect the first property or the second one. 

As for the third property, one has to look to the colors of the IHS fused 
product and compare them to the colors of the composite of the original XS 
images. One should not expect these colors to be identical. Since the 
synthetic method should only add high frequencies to the original images of 
the set B, one may expect the colors of the color composites Bkl and B*kh to 
be fairly close. This is not the case at all for the IHS fused product. The 
color composite should exhibit more bluish tones. 

In the color composite (lower right) made from the products synthesized by 
the ARSIS-Model 2 method, it is possible to distinguish the structures of the 
mall, and all the buildings in this area. The colors of this composite are 
close to that of the composite of the original XS images. It means that the 
statistical distribution of the spectra is similar between the sets Bl and 
B*hModel2. The change in the spectral content induced by the increase of 
spatial resolution is of higher quality than for the IHS method. The roads on 
the interchange, including the details of the lower left loop, are now visible. 
The asphalt streets that are not visible in the KVR image can be 
distinguished as they are in the original XS color composition. Contrary to 
the IHS method, the ARSIS-Model 2 method is capable of taking into 
account the changes in structures due to the time lag. 

RELATIVE SPECTRAL CONTRIBUTION 

In this group of methods, the relationships between the various modalities 
are exploited. The P+XS method is one of these methods. It is presented 
first because it fully illustrates this concept in a pragmatic manner. 

THE P+XS METHOD 

This method has been devised by the CNES, the French space agency, for 
the system SPOT to produce multispectral images with a resolution of 10 
m2. It is founded on the assumption that the half-sum of the radiances in 
XS1 (modality 1) and XS2 (modality 2) is equal to the radiance in the 
panchromatic band P (Fig. 7.1). It can be applied to other systems provided 
their modalities obey the two assumptions made. 

                                                           
2 Anonymous. Guide des utilisateurs de données SPOT, 3 tomes, Editeurs CNES et 
SPOT-Image, Toulouse, France, 1986. 
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Assume that LAh, L*1h and L*2h are the radiances of a 10 m pixel in 
respectively the image Ah and in the fused products B*1h and B*2h. The 
previous assumption is: 

2
** 21 hh

Ah
LL

L
+

=  [7.5] 

A second hypothesis is necessary that describes the distribution of the 
radiance LAh between L*1h and L*2h. The P+XS method assumes that the 
ratio of the radiances in both bands is constant with the change in resolution 
from l to h: 
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This assumption is entirely valid only if the pixel of size 20 m is composed 
of four pixels of size 10 m having all the same spectral behavior. The final 
equations are then: 
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where (x0, y0)l is the pixel in the set Bl corresponding to the pixel (x, y)h in 
the set Ah. These formulae produce the synthetic images B*1h and B*2h. 
They do not apply to the band XS3 of the SPOT system because there is no 
overlap between the bands P and XS3 (Fig. 7.1). The synthetic image B*3h 
is created by a simple duplication of pixels of the image B3l. There is no 
fusion process in this particular case. 

RELATIVE SPECTRAL CONTRIBUTION 

The method "relative spectral contribution", which applies to radiances, 
restrains itself to the sub-set of the N spectral bands Bk lying within the 
spectral range of the Ah image. Furthermore, it is assumed that 

Al ≈ 
k=1
Σ
N

 Bkl for k belonging to the sub-set. [7.8] 

Actually, this may happen in radiances. Anyway, this equation may be 
generalized, and the components Bkl may be adjusted in digital counts (gray 
levels) for this equation to apply. An intermediate multispectral image, B"kh, 
is computed: 
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where Binterp
kh is a resampled version (e.g., cubic interpolation) of Bkl at the 

higher resolution h and assuming that ∑
=

N

j
jhB

1

interp  is not equal to zero. 

To obtain the final result (i.e. the multispectral image B*kh at the resolution 
h), the intermediate multispectral image B"kh has to be adjusted in such a 
way that the mean value of each component of the synthesized multi-
modality image B*kh is the same than the mean value of each original 
component Bkl. Therefore: 

B*kh = B"kh m(Bkl) / m(B"kh) [7.10] 

where m(Bkl) and m(B"kh) are the mean values of the images Bkl and B"kh 
computed over all pixels, assuming that m(B"kh) is not equal to zero. 

The Brovey transform is a simplification of this method, where the last step 
(adjustment of mean value in Equation 7.10) is omitted. It is found in 
several commercial softwares, but beyond its own limitations, is not always 
well implemented. Ideally, it should deal with radiances and the software 
should request the calibration coefficients, while it is often performed on 
gray levels. This usually causes additional distortions in the spectral 
content. 

The "color normalized" method is a version of the Brovey transform. It is in 
use in the Department of Defense in the USA. It is defined for three images 
Bk, preferably in true colors, and one panchromatic image Ah: 
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The values are image gray levels. The dynamics of each image: Ah and 
Binterp

kh, for k=1, 3, should be similar. The small additive constants prevent 
division by zero. The spectral content is usually incorrectly synthesized, 
when increasing the spatial resolution. 

Another type of adjustment of the intermediate image B"kh is sometimes 
proposed. The adjustment is a function of the mean value found for the 
spectral class under concern. The interpolated multi-modality images 
Binterp

kh are classified into M classes by e.g., an unsupervised classification. 
For each class Cc (c ∈ [1, M]), and each modality k, the mean value m(Bkl)c 
is computed. Once the image B"kh is computed according to the Equation 
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7.9, its dynamics is adjusted so that the mean for class Cc and modality k of 
the synthesized component B*khc is the same than for the original 
component: 

B*khc = B"kh m(Bkl)c / m(B"kh)c 

assuming that m(B"kh)c is not equal to zero. Assuming that every pixel (x, y) 
of the image belongs to one class and only to one, the synthesized image 
B*kh is given by: 

)(),(* 0
1

0 ccyxB)(x, y, cB*
M

c
khckh −= ∑

=

δ  [7.12] 

where δ is the Dirac distribution. Of course, B*kh is less continuous than Bkl; 
the larger the number of classes, the more continuous B*kh. 

The method "relative spectral contribution" imposes the mean of the 
synthesized image to be equal to that of the original image. This is a major 
drawback since observations show that, for the same landscape or scene, the 
mean of an image is not invariant with the spatial resolution. This remark 
holds for the class-specific adjustment version. 

THE GENERALIZED RELATIVE SPECTRAL CONTRIBUTION 

The relative spectral contribution method can be generalized by relaxing the 
constraint imposed by the Equation 7.8. This equation becomes 

Al ≈ 
k=1
Σ
N

 αk Bkl for k belonging to the sub-set. [7.13] 

where αk is the ratio of the integral of the spectral band k and of the integral 
of the spectral band A. This ratio depends upon the sensor (see e.g. the case 
of the SPOT system given above, Fig. 7.1). Then 

∑
=

= N

j
jhj

hkh
kh

B

AB
B

1

interp

interp

*
α

 [7.14] 

The P+XS method is an example of the generalized method. 

Instead of using the integrals of the spectral windows, some authors have 
proposed to define αk by linear regression over targets, whose spectra are 
known. Assume that Ah is a multispectral image, whose spectral bands are 
much larger than the N spectral bands Bk and are covering these bands Bk. 
Checking the first property is the first constraint imposed on the synthesis 
method: 

B*kl = Bkl , k = 1...N [7.15] 
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The second constraint is 

Ajh = (1 / ∆λj) ∫∆
Β

j h d
λ λ λ*  [7.16] 

where λ is the wavelength and ∆λj is the spectral band j of the set of images 
Ah. This creates a number of equations with a larger number of unknowns. 

To solve the problem, it is assumed that 
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kh faB

1

)(* λ  [7.17] 

where fi(λ) are orthogonal functions and M the dimension of the space. 
Using models, one simulates several spectra under a variety of conditions. 
Then a base of orthogonal functions fi is defined by the means of, e.g. a 
principal component analysis, to represent this space of spectra. One defines 
M according to the requested accuracy. 

Equation 7.13 holds on a physical basis as far as the spectral range covered 
by the N bands is the same than that covered by A. If there is a gap between 
two bands Bl, or if the N bands do not cover the whole band of A, then some 
objects having a strong spectral signature in this gap will be unnoticed in 
the bands Bl but will be present in Ah. Because of the construction of the 
images B*kh, these objects will falsely appear in these bands. 

The relative spectral contribution methods, generalized or not, do not tell 
what to do when the spectral range of the modality k in the set B lies outside 
the spectral range of the modality A. The P+XS method recommends a 
simple duplication of pixels values for the images XS3, whose spectral band 
lies outside the range of the panchromatic band P. The duplication has the 
property of not changing the spectral content of the original images Bkl. 
However, other interpolation methods, including bi-cubic resampling 
techniques, of these images from the resolution l to h provide better results 
regarding the spatial and spectral aspects. The resulting images respect the 
first property. These methods are recommended instead of the duplication 
technique. 

The relative spectral contribution methods, generalized or not, usually 
induce a spectral distortion during the synthesis. This distortion occurs at all 
scales, thus making the synthesized image B*l different from the original 
image Bl. This can be easily seen from Equation 7.7 in the P+XS method. 
The B*1h (i.e., L*1h) image is function of the B1l (L1l) image, but also of B2l 
(L2l) and Ah (Lp). The influence of the latter images is not limited to the high 
frequencies but covers the whole spectrum of frequencies. It creates a 
stronger relationship between synthesized images than that existing between 
original images. This can be formally demonstrated by the means of a 
Fourier transform. The influence of the other spectral bands on the 
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synthesized image may range from low to high, depending mostly upon the 
landscape and also of the modulation transfer functions of the sensors. If the 
representation of an object is fairly close in the different spectral bands, the 
influence will be low. 

A further drawback is that these methods cannot resolve local anti-
correlations between spectral bands with a high accuracy in the synthesizing 
of the spectral content. Using additional equations and calling upon 
additional knowledge may prevent these problems. 

THE ARSIS CONCEPT 

The ARSIS concept is based upon the use of multiscale techniques in order 
to inject the high frequencies that are missing into the images of lowest 
resolution. Here multiscale techniques refer to mathematical tools, which 
are calling upon convolution and image filtering. These tools perform a 
hierarchical description, modelling and synthesis of the information content 
relative to spatial structures in an image. 

The ARSIS concept assumes that the missing information is linked to the 
high frequencies in the representations A and B. It searches a relation 
relating these high frequencies and models this relation. A method 
belonging to the ARSIS concept performs typically the following 
operations: i) the extraction of a set of information from the set A, ii) the 
inference of the information that is missing to the images Bkl using this 
extracted information and iii) the construction of the synthesized images 
B*kh. 

The methods developed within this concept respect the first property by 
construction though it depends upon the techniques used. The two other 
properties may be included in their design. 

The concept is called ARSIS, after the acronym of its French name 
"amélioration de la résolution spatiale par injection de structures" 
(improvement of spatial resolution by structure injection)3. It has been 
designed in a generic way, transcending the mathematical tools used for its 
implementation. 

                                                           
3 M. Mangolini, T. Ranchin, and L. Wald. Procédé et dispositif pour l’amélioration 
de la résolution spatiale d’images à partir d’autres images de meilleure résolution 
spatiale. French patent n° 92-13961, 20 novembre 1992, and T. Ranchin. 
Applications de la transformée en ondelettes et de l'analyse multirésolution au 
traitement des images de télédétection. Thèse de Doctorat en Sciences de 
l'Ingénieur, Université de Nice-Sophia Antipolis, 146 p., 1993. 
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The ARSIS concept makes use of a multiscale analysis for the description 
and the modeling of the missing information between the images Ah and Bl. 
The multiscale method mostly used for its various implementations is the 
multiresolution analysis, together with the wavelet transform (see Chapter 5 
for a description of these mathematical tools). 

Most examples of practical implementation of the concept ARSIS found in 
the literature are based on a multiresolution pyramidal approach4. Other 
tools for the multiscale analysis exist that have been used in the same 
purpose by various authors. Examples are filter banks instead of wavelet 
transform, gaussian filters, generalised Laplacian pyramid5 or the second 
derivative of an apodisation function. 

Figure 7.3 illustrates the ARSIS concept in the case of a multiresolution 
pyramidal approach. The multiresolution analysis is applied to the two 
images A and B. A scale by scale description of the information content of 
both images is thus obtained. The high frequencies between Ah at the 
resolution h (the bottom of the left pyramid) and Al at the resolution l (the 
first level of the pyramid) are represented by the wavelet coefficients (the 
details). As seen in Chapter 5, the multiresolution analysis is such that given 
these wavelet coefficients and the image Al, one may synthesize in an exact 
manner the image Ah. 

In a similar manner, if the wavelet coefficients were available between the 
resolutions h and l for the right pyramid, and starting from Bl, one would be 
able to synthesize in an exact manner the image Bh (the dotted line at the 
bottom of the right pyramid). Since these wavelet coefficients for the image 
B are unknown (right pyramid), one solution to this problem consists in 
inferring them from the wavelet coefficients of the image A (left pyramid). 
Then, the synthetic image B*h may be constructed. 

The missing information to be injected in the pyramid B from pyramid A is 
located in the missing bottom of the pyramid B (dotted line). Only this part 
is needed to improve the spatial resolution of the image Bl. But, if the 
missing information is set equal to that provided by the image A, the 
synthesized image B*h will not be equivalent to "what would be seen by the 
sensor B if it has the spatial resolution of the sensor A". Hence, in order to 
improve the quality of the synthesized image, a transformation should be 

                                                           
4 See a review in T. Ranchin, and L. Wald. Fusion of high spatial and spectral 
resolution images: the ARSIS concept and its implementation. Photogrammetric 
Engineering and Remote Sensing, 66(1), 49-61, 2000. 

5 B. Aiazzi, L. Alparone, S. Baronti, R. Carlà, and L. Mortelli. Pyramid-based 
multi-sensor image data fusion. Wavelet Applications in Signal and Image 
Processing, Proceedings SPIE Conference, vol. 3169, pp. 224-235, 1997. 
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applied to convert the information provided by the multiscale representation 
of image A into the information needed for the synthesis of image B. 

Image A Image B

Synthesized
image B*h

Bl

Al

Ah

 
Figure 7.3. The use of the multiresolution pyramidal approach for the 
fusion of high spatial and spectral resolution images in the ARSIS concept 

METHODS NOT CALLING EXPLICITLY ON THE MULTISCALE ANALYSIS 

The HPF method, the methods of Pradines and Price and their derivatives 
and the LMVM method are examples of implementation of the concept 
ARSIS, which are not based explicitly on the multiscale analysis. They are 
relevant to the ARSIS concept because high frequencies are extracted from 
the image Ah by the means of moving windows and are injected into the 
images Bkl to synthesize images at higher resolution B*kh. 

In addition, these methods have in common that the spectral behavior of the 
high frequency information is not taken into account. In other words, there 
is no model for the transformation of the high frequencies of image A into 
those of image B. This induces spectral distortion during the synthesis. The 
implicit hypotheses are i) that the correlation between Al and Bl is large, ii) 
that this correlation is positive and iii) that these two hypotheses hold for Al 
and Bl. 

The HPF method 

In the HPF method6, a high pass filtering (HPF) is applied to the high 
spatial resolution image Ah in order to extract the high frequencies 

                                                           
6 P. S. Chavez Jr., S. C. Sides, and J. A. Anderson. Comparison of three different 
methods to merge multiresolution and multispectral data: Landsat TM and SPOT 
Panchromatic. Photogrammetric Engineering & Remote Sensing, 57(3), 265-303, 
1991. 
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representing the small structures between scales h and l. Then, these high 
frequencies are introduced in the multispectral image Bl by addition, which 
leads to the synthetic image B*h. The HPF filter is constructed by 
computing the second derivative of an apodisation function. 

In the case of the images taken by the system SPOT with a ratio l/h of 2, 
this filter is a Laplacian filter. It is applied to the high resolution image, and 
its results are added to the low resolution images. The filter is a 3x3 matrix, 
and the coefficients are: 







0  -1  0

-1  4  -1
0  -1  0

 [7.18] 

Refinements include an adjustment of the dynamics of the image Ah prior to 
the extraction of the high frequencies to adapt for the dynamics of Bl. This 
adjustment can be performed on the whole image or within the moving 
window. 

The method of Pradines 

In the method of Pradines7, the relative spatial distribution of the high 
resolution signal is injected into the low resolution spectral image for each 
low resolution pixel. In the SPOT case, the 20 m pixel XS is shared in four 
10 m pixels using the relative distribution observed in the image P for these 
four pixels (Fig. 7.4). 

The relative spatial distribution may be described in several ways. The basic 
equation of this method is 

B*kh = Ah Bkl / Al [7.19] 

where the ratio Bkl / Al applies to the pixel at scale l containing the current 
pixel at scale h. 

Several other authors have refined the method8. Good results are attained if 
the correlation between the images Al and Bkl is high. The results are often 
noisy because the pixels at scale l are processed independently. One may 
filter the resulting images B*kh but this limits the benefit of increasing the 

                                                           
7 D. Pradines. Improving SPOT image size and multispectral resolution. Earth 
Remote Sensing using the Landsat Thematic Mapper and SPOT Systems, 
Proceedings SPIE Conference, 660, pp. 78-102, 1986. 

8 See e.g., Liu J. G. and J. M. Moore. Pixel block intensity modulation: adding 
spatial detail to TM band 6 thermal imagery. International Journal of Remote 
Sensing, 19(13):2,477-2,491, 1998. 
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resolution. Another solution is to apply Equation 7.19 to interpolated 
images, that is 

B*kh = Ah B
interp

kh / <Ah>l/h [7.20] 

where <Ah>l is the average value of Ah performed on a moving window 
centered on the current pixel at resolution h and which size is the ratio l/h. 

Ah(j)
+ Bkl(i)

Bkh(j)

high-resolution
image Ah

low-resolution
images Bkl(i)

high-resolution
images Bkh(j)  

Figure 7.4. Principle of the method of Pradines 

The local correlation modeling method and the Price method 

These methods are similar and can be seen as an extension of the method of 
Pradines9 10. Compared to that of Pradines, they offer the possibility of 
reproducing local anti-correlation between the images Al and Bkl. A linear 
relationship is searched for between the moving windows centered on the 
current pixel at resolution l for both images Al and Bkl. Without entering 
details, the equations are 

B*kh = Binterp
kh + a (Ah – (Al)

interp
h) [7.21] 

where the coefficients a and b are computed by linear regression over a 
moving window of variable size (typically, 3x3 or 5x5 low resolution 
pixels): 

Bkl = a Al + b [7.22] 

                                                           
9 J. C. Price. Combining multispectral data of differing spatial resolution. IEEE 
Transactions on Geoscience and Remote Sensing, 37(3), 1199-1203, 1999. 

10 C. Diemer, and J. Hill. Local correlation approach for the fusion of remote 
sensing data with different spatial resolutions. In Proceedings of the third 
conference "Fusion of Earth data: merging point measurements, raster maps and 
remotely sensed images", Sophia Antipolis, France, January 26-28, 2000, Thierry 
Ranchin and Lucien Wald Editors, published by SEE/URISCA, Nice, France, pp 91-
98, 2000. 
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and where (Al)
interp

h is the image Al interpolated at resolution h. The image 
(Al)

interp
h has no high frequencies. 

The LMVM method 

The LMVM method is built with respect to the first property, like the 
previous ones. Once brought back to the resolution l, the (B*kh)l image 
reproduces the original mean of the image (Bkh)l. 

The principle of the method LMVM (local mean and variance matching) is 
to adjust locally the mean and the variance of the image A to the same 
quantities of the image B and then to replace locally the image B by the 
image A11. 

The equations apply to a moving window. The working resolution is h and 
the images Bk are interpolated. The size s of the window is user-defined and 
expressed in pixels at resolution h. Noting <Ah>s and stdev(Ah) respectively, 
the mean value and the standard deviation of Ah over that window, the 
equations are: 

B*kh = (Ah - <Ah>s)*stdev(Binterp
kh) / stdev(Ah) + <Binterp

kh>s [7.23] 

If stdev(Ah) = 0, then B*kh = <Binterp
kh>s. 

THE GENERAL SCHEME FOR MULTISCALE ANALYSIS 

It is difficult to sketch the general scheme for the application of the ARSIS 
concept. In the methods above-mentioned, the modeling of the missing 
information from the image A to the image B is performed on moving 
windows of these images themselves. It is possible to focus more on the 
modeling of the missing high frequencies, expressed by Fourier coefficients 
or wavelet coefficients or other appropriate spatial transform. 

Figure 7.5 presents the general scheme that applies on the case of use of a 
multiscale analysis. This case is used in the following for a better 
description of the ARSIS concept. Similar schemes can be drawn in other 
cases, where other tools or other strategies are used. 

Inputs to the fusion process are the modality A at high spatial resolution (Ah, 
resolution n°1) and the modality B at low spatial resolution (Bkl, resolution 
n°2). 

                                                           
11 S. De Béthune, F. Muller, and J.-P. Donnay. Fusion of multispectral and 
panchromatic images by local mean and variance matching filtering techniques. In 
Proceedings of the second conference "Fusion of Earth data: merging point 
measurements, raster maps and remotely sensed images", Sophia Antipolis, France, 
January 28-30, 1988, Thierry Ranchin and Lucien Wald Editors, published by 
SEE/URISCA, Nice, France, pp 31-36, 1998. 
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Three models appear in this scheme. The Multi-Scale Model (MSM) 
performs a hierarchical description of the information content relative to 
spatial structures in an image. An example of such a model for remotely 
sensed images is the combination of the wavelet transform and 
multiresolution analysis (see Chapter 5). When applied to an image, the 
MSM provides one or more images of details, that is the high frequencies, 
and one image of approximation, that is the lower frequencies. The first 
iteration of the MSM on the modality A gives one image of the structures 
comprised between the resolution n°1 and n°2 (details image) and one 
image of the structures larger than or equal to the resolution n°2 
(approximation image). The spatial variability within an image can thus be 
modeled. The Multi-Scale Model is built in such a way that it can be 
inverted (MSM-1) to perform a synthesis of the high-frequency information. 

The Inter-Modality Model (IMM) deals with the transformation of spatial 
structures with changes in modalities. It models the relationships between 
the details or approximation observed in the image A and those observed in 
the image B. This model may relate approximations and/or details for one or 
more resolutions and one or more modalities. 

The High Resolution Inter-Modality Model (HRIMM) performs the 
transformation of the parameters of the Inter-Modality Model with the 
change in resolution. This operation is not obvious since many works have 
demonstrated the influence of the spatial resolution on the quantification of 
parameters extracted from imagery. To our knowledge, no particular 
attention was paid to this point, except for the model ARSIS-RWM12 where 
a multiscale synthesis of the parameters of their model ΙΜΜ from 
resolution n°3 to resolution n°2 is performed. Otherwise, the High 
Resolution Inter-Modality Model is often set identical to the IMM. 

In this scheme, the operations are performed as follows. First, the MSM is 
used to compute the details and the approximations of image A (Step 1, Fig. 
7.5). The same operation is applied to image B (Step 2). The analysis is 
performed for several resolutions, up to n in Figure 7.5 - that is (n-1) 
iterations for the analysis of the image A and (n-2) iterations for that of Bkl. 
These analyses provide several approximation images and several images of 
details for A and B. 

                                                           
12 T. Ranchin, L. Wald L., and M. Mangolini. Efficient data fusion using wavelet 
transforms: the case of SPOT satellite images. In Proceedings of SPIE 1993 
International Symposium on Optics, Imaging and Instrumentation. Mathematical 
Imaging: Wavelet Applications in Signal and Image Processing. San Diego, 
California, USA, July 11-16 1993, vol. 2034, pp. 171-178, 1994. 
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Figure 7.5. General scheme for the implementation of the ARSIS concept 
using a multiscale model (MSM) and its inverse (MSM-1). See text for 
further comments 
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The approximations and the known details at each resolution are used to 
adjust the parameters of the Inter-Modality Model (Step 3). From the IMM 
is derived the High Resolution Inter-Modality Model (Step 4, at resolution 
n°2), which converts the known details of image A into the inferred details 
of image Bk (inferred details, Step 5). Finally, the inversion of the MSM 
(MSM-1) from resolution n°2 to resolution n°1 performs the synthesis of 
the image B*kh (Step 6). 

Figure 7.5 shows a case where the low resolution l (resolution n°2) is 
attained by the first iteration of the multiscale analysis applied to the high 
resolution h (resolution n°1). In the dyadic case, l = 2 h. This is not always 
the case by far. The scheme can be easily drawn for the general case, where 
the image Ah is at resolution n°1, the image Bkl at resolution n°p and the 
synthetic product B*kh at an intermediate resolution n°q. 

The scheme shown in Figure 7.5 applies to the case of sets A and B 
comprising several modalities. The scheme may apply to each modality of B 
separately. It may also apply to all modalities of B at the same time. In that 
case, the MSM is performed on each modality separately. Then, the multi-
modality aspects are taken into account by the models IMM and HRIMM 
(Steps 3, 4 and 5). Finally, the inverse MSM applies to each modality 
separately. 

Figure 7.6 details one possible scheme of the application of the ARSIS 
concept to the case of the SPOT imagery. The set of images is composed of 
a panchromatic image P at the spatial resolution of 10 m and three 
multispectral images XS1, XS2, XS3 at the spatial resolution of 20 m. 

The process is applied to each image XSi separately. Two iterations of the 
multiresolution analysis using the wavelet transform are applied to the 
original panchromatic image P and one iteration is performed on the 
original image XSi. 

Inter-modalities models are computed for the transformation of each 
panchromatic wavelet coefficient image CP

D
20-40, CP

V
20-40, and CP

H
20-40 into 

each wavelet coefficient image CXS
D

20-40, CXS
V

20-40, and CXS
H

20-40 (see 
proposed models below). Then, these models are applied to the wavelet 
coefficient images CP

D
10-20, CP

V
10-20, and CP

H
10-20 for the computation of the 

missing wavelet coefficient images CXS
D

10-20, CXS
V

10-20, and CXS
H

10-20. 
Finally, the synthesis step reconstructs the high spatial resolution image XSi 
(XSi-HR). 
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Figure 7.6. Application of the ARSIS concept to the SPOT imagery 

 

THE INTER-MODALITIES MODELS 

The inter-modalities model (IMM) is obviously a key point for an efficient 
synthesis. This model uses the available information to infer the missing 
details. The general form of the model is 

CBk
Z

h-l= f(CB
Z

n, CA
Z

n, Ah, Al, An, Bjl, Bjn...) [7.24] 

where 
• CBk

Z
h-l, etc. are the details of the modality k of the set B for the scales 

comprised between h and l; 
• Z = D, V or H if necessary, i.e. if the multiscale model is directional; 
• n denotes the successive resolutions of the iterative multiscale model for 

scales greater than l; 
• An the approximation of A at the resolution n and Bjn the modality j of 

the set B at resolution n. 

More than the tools selected to perform the multiscale analysis, the IMM is 
what makes the difference between the various methods. Good results 
depend upon the accuracy of the IMM. Many models can be proposed. For 
example, the model RWM takes into account the physics of both images 
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and the relationship existing between the wavelet coefficients images13. 
Some authors used neural networks applied to the known wavelet 
coefficients at several scales to infer the parameters of the model. The IMM 
can have various forms and may take into account more than one scale, as 
shown in the general equation. 

The simplest model (Model 1) is the identity model: 

CBk
Z

h-l= CA
Z

h-l for Z = D, V or H [7.25] 

and in the case of the SPOT system 

CXS
Z

10-20= CP
Z

10-20 for Z = D, V or H [7.26] 

Hybrid versions can be devised by adjusting the dynamics of the images Ah 
and Bkl prior to the multiscale analysis. The Model 1 is that implicitly used 
in the HPF and Pradines methods. It does not take into account the multi-
modalities differences in high frequencies information between the image A 
and the images Bk and gives poor results. This can be seen directly from the 
equations but also from experiments. The following models are more 
accurate. 

Assume that p is the ratio of two successive scales in the multiscale 
analysis. In the dyadic case, p=2. 

The following model (Model 2) is based on the adjustment of the means and 
variances of the details images computed between the scales (ph) and (pl). 
The parameters ak

Z and bk
Z are defined as: 

)(
)(

plph
Z

A

plph
Z

BkZ
k Cv

Cv
a

−

−=  

bk
Z = m(CBk

Z
ph-pl) - ak

Z m(CA
Z

ph-pl) for Z = D, V or H [7.27] 

where v and m denote the operators variance and mean of an image. 

The missing details are given by: 

CBk
Z

h-l = ak
Z CA

Z
h-l + bk

Z for Z = D, V or H [7.28] 

In the case of the SPOT system, where l=2h and if a dyadic multiresolution 
analysis is used (p=2): 

)(

)(

4020

4020

−

−= Z
P

Z
XSkZ

k
Cv

Cv
a  

                                                           
13 T. Ranchin, L. Wald L., and M. Mangolini. Op. cit. 
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bk
Z = m(CXSk

Z
20-40) - ak

Z m(CP
Z

20-40)  for Z = D, V or H [7.29] 

CXSk
Z

10-20= ak
Z CP

Z
10-20 + bk

Z 

In the case of the fusion of images with a ratio l/h of 4 and if a dyadic 
scheme is used for the multiresolution analysis, two wavelet coefficients 
images need to be synthesized. Then the equations for the Model 2 are: 

)(
)(

24

24

lh
Z

A

lh
Z

BkZ
k Cv

Cv
a

−

−=  

bk
Z = m(CBk

Z
4h-2l) - ak

Z m(CA
Z

4h-2l) 

CBk
Z

2h-l = ak
Z CA

Z
2h-l + bk

Z  for Z = D, V or H [7.30] 

CBk
Z

h-2h = ak
Z CA

Z
h-2h + bk

Z 

Let take the example of the space-borne system Landsat and the fusion of 
Landsat TM6 (60 m, thermal infrared band) with Landsat panchromatic 
band P (15 m). The images of the wavelet coefficients between 60 and 30 
m, and between 30 and 15 m should be computed. The equations are: 

)(

)(

12060

120606

−

−= Z
P

Z
TMZ

Cv

Cv
a  

bZ = m(CTM6
Z

60-120) - a
Z m(CP

Z
60-120) 

CTM6
Z

30-60 = aZ CP
Z

30-60 + bZ  for Z = D, V or H [7.31] 

CTM6
Z

15-30 = aZ CP
Z

15-30 + bZ 

Some authors use a hybrid Model 2 where the dynamics of the image Ah is 
stretched to have the same mean and variance as the image Bkl. Because the 
mean of any wavelet coefficient image is null (less than 10-3), and wavelet 
transform is linear, the results of the Model 2 and the hybrid Model 2 are 
very similar. Another variation results from the adjustment of the 
probability density function of Ah (expressed as the cumulative histogram) 
to that of Bkl. 

In the Model 3 ak
Z and bk

Z are now computed using an adjustment between 
CBk

Z
ph-pl and CA

Z
ph-pl using either least square fitting or axis of inertia. The 

form of the model is still linear: 

CBk
Z

h-l = ak
Z CA

Z
h-l + bk

Z for Z = D, V or H [7.32] 

cov denotes the covariance operator. For the least square fitting the 
parameters ak

Z and bk
Z are given by: 
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)(

)cov(

24

24
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Z
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lh
Z

BkZ
k

Cv

C
a

−

−=  

bk
Z = m(CBk

Z
ph-pl) - ak

Z m(CA
Z

ph-pl) for Z = D, V or H [7.33] 

For the first axis of inertia (first principal component), these parameters are: 

)cov2

)()(

ph-plZ
Ak, Cph-plZ

Bk(C 

ph-plZ
AkCvph-plZ

BkCvz
ka

−
=  

 
)cov2

) ,cov(42)]()([

ph-plZ
Ak, Cph-plZ

Bk(C 

ph-plZ
AkCph-plZ

BkCph-plZ
AkCvph-plZ

BkCv +−
+  

bk
Z = m(CBk

Z
ph-pl) - ak

Z m(CA
Z

ph-pl) for Z = D, V or H [7.34] 

Several experiments showed that both adjustment methods provide similar 
results. They also demonstrated that the Model 3 gives better results than 
the Model 2. 

The Models 2 and 3 rely on the following assumptions: 
• for a given modality k, there is a strong linear relationship between the 

details of the image A and those of the image Bk for a range of scales 
[ph, pl], with p greater than 1; 

• this relationship also holds for the range of scales [h, l] and the 
parameters of the relation are exactly the same. That is the High 
Resolution Inter-Modality Model is identical to the IMM. 

These assumptions are less stringent than those imposed by the projection 
and substitution methods and by the relative spectral contribution. This 
partly explained the better results obtained by the methods developed within 
the concept ARSIS. 

Since the physics are taken into account, the models should apply to 
radiances, if applicable. However if one uses a linear model such as the 
Models 1, 2 or 3, and if the calibration law of the sensors is linear, identical 
results are obtained using directly digital counts (gray levels). 

The ARSIS concept is now better understood and is now employed in many 
applications. This concept is obviously a good framework for the 
development of accurate methods for the construction of high spatial 
resolution multispectral images, which are close to the images that the 
corresponding sensor would observe with the highest resolution. It is a good 
and open framework with still many places for the development of different 
cases of applications and approaches for implementation. 
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Different methods can be developed based on this concept, depending upon 
the multiscale description and synthesis model MSM, the Inter-Modality 
Model relating the content of both representations A and B and the High 
Resolution Inter-Modality Model transforming the parameters of the IMM 
when increasing the spatial resolution. Though all examples of models 
given above are dyadic cases, that is the ratio l/h is a power of 2, the ARSIS 
concept is applicable to any value of the ratio, provided one can find 
appropriate filters for the analysis and synthesis steps of the multiresolution 
analysis (see e.g. Fig. 7.2). 

A number of studies demonstrate the general superiority of methods 
belonging to the ARSIS concept over other families of methods. However, 
the achieved quality is not always satisfactory. Further investigations are 
needed to improve these methods or to design new ones that perform better 

There are several ways of improvement. One deals with the modeling of the 
content of the information. Several tools exist for the multiscale analysis 
and for the modeling of the high frequencies in the time-frequency domain. 
They have different properties and some may be more adapted than others, 
resulting in a better quality of the synthesized images 

The modeling of the inter-modality behavior of the small-size structures 
(high frequencies) is central in the ARSIS concept. The models IMM and 
HRIMM presently available are rather straightforward. Though they already 
produce satisfactory results, better than other methods, efforts should be 
made to improve them and finally provide better synthesized images. They 
are mostly based upon statistical adjustment of some properties representing 
the signal dynamics. Physical laws should be taken into account in these 
models. Efforts should be made on the HRIMM. Knowledge is mostly 
inexistent on this model. It is believed that the improvement in the IMM 
will benefit to improvements in the HRIMM. 

One possible improvement is to design methods and models that take into 
account all modalities simultaneously, as it is done in the two other groups 
of methods: the projection and substitution methods and the relative spectral 
contribution methods. Presently, methods are constructed for each modality 
separately, without considering the multi-modality aspect. 

ILLUSTRATION IN URBAN MAPPING 

In this section, airborne images are used to illustrate the fusion for the 
construction of multispectral images of highest spatial resolution. The 
method used is the ARSIS-RWM method. The urban area under concern is 
the oldest part of Marseille, France. 

Airborne images were acquired in 1993 by the CNES, the French space 
agency, to simulate the future satellite SPOT 5. The original images were 
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processed to simulate multispectral bands XS similar to those of the systems 
SPOT 1-3, with a spatial resolution of 5 m. 

The panchromatic image P (Ah) has a resolution of 2.5 m (Fig. 7.7). Many 
details can be seen. The old harbor is seen in the middle left in black tones. 
Docks are clearly visible, but boats are not discernible. The network of 
streets appear clearly though sometimes a street is masked by high 
buildings. One can distinguish vehicles. Blocks of houses are well defined; 
their inner courts are visible. 

 
Figure 7.7. Panchromatic image of the oldest part of the city of Marseille, 
France. The spatial resolution is 2.5 m.  CNES 1993 

In the middle of the upper part is a large building in clear tones, having an 
"L" shape. It is a commercial center; one can see some structural elements 
on the roof. A garden is enclosed in the interior of the "L". It is hardly 
visible in dark gray levels but some paths can be distinguished in white. 
This garden contains the oldest remains of the city founded by the 
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Phoenicians. A magnification of this sub-area is shown in Figure 7.9 (upper 
left). 

Analysis of such panchromatic images is very useful for urban mapping. 
However, several published studies reveal that image analysts find 
profitable to have also color composite along the panchromatic band. The 
color composite better displays vegetation and trees along the streets. They 
may also offer details in the black areas of the panchromatic image. A color 
composite has been built from the three original images XS with a resolution 
of 5 m and is displayed in Figure 7.8. In the old harbor, docks and boats are 
in blue. Streets are in blue as well as large buildings and bare soils. Blocks 
of houses are in green, vegetation is in red. The large red spot in the upper 
middle is the garden. The blue mass on its side is the commercial center.  

The color compositing is performed by a dynamic allocation of color codes 
to color classes respective to the frequencies of the triplets14. This permits a 
better exploitation of the information contained in the sets of images, and 
explains why the color composites may vary from one image to the other. 

Compared to the panchromatic image, the benefit of this color composite is 
obvious, even if at 5 m. The most striking feature is likely the enhancement 
of vegetation and it greatly helps the analysis. However, the spatial 
resolution is too low for urban mapping. Docks and boats are confused; 
trees cannot be individualized. 

Three multispectral images XS*1, XS*2 and XS*3 were synthesized at the 
resolution of 2.5 m by the means of the method ARSIS-RWM using the 
panchromatic image P. The color composite of these synthesized images is 
shown in Figure 7.8 (lower image). This image offers much more details 
than the color composite of the original images XS. Docks are more 
separate; streets are better defined and trees are better delineated. The color 
tables of both images are not the same, but the colors of both images are 
very close. This means that the statistical distributions of the spectra are 
very close between both images, which is expected. It demonstrates the 
quality of the transformation of the spectral content when increasing the 
spatial resolution. 

Compared to the panchromatic image, the use of color at this high 
resolution is highly profitable. Streets are more visible, because on the one 
hand of the various hues of the asphalt, and on the other hand of the trees 

                                                           
14 M. Albuisson. Codage trichrome et classification. In Outils micro-informatiques 
et télédétection de l'évolution des milieux : troisièmes journées scientifiques du 
réseau de télédétection de l'UREF, pp. 167-173. Presses de l'Université du Québec, 
Sainte-Foy, Québec, Canada, 444 p., 1993. 
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bordering them. Even boats are more distinguishable because they offer 
some colors that are not noticeable in the panchromatic image. 

A magnification of the commercial center and the garden area is shown in 
Figure 7.9. It helps in judging the quality of the fused product and the 
benefit of the fusion. The panchromatic image is in the upper left. The color 
composite of the original images XS is in the upper right. Comparing those 
two, one may see that the panchromatic image offers more structural details, 
owing to its better spatial resolution: see e.g., the structural elements on the 
roof of the commercial center, or the network of the streets. 

On the other hand, owing to its better spectral resolution and its multi-
modality properties, the color composite displays information that cannot be 
seen in the panchromatic image. Vegetation is an example of such 
information: it appears in red. The color composite shows the garden, the 
flowerbeds close to the old harbor (bottom left) at the entrance of the 
famous avenue "la Canebière" (ranging from lower left to middle right) and 
the trees along the large avenue on the right part, perpendicular to "la 
Canebière". Looking to both images, one feels the need of fusing both 
images to obtain a better description of the city. 

The color composite of the fused products is presented in the middle left in 
Figure 7.9. The colors are similar to those of the color composite of the 
images XS. It combines the high spatial resolution of the panchromatic 
image P with the spectral resolution of the images XS. 

The flowerbeds are better delineated. The trees along the avenue are better 
seen; the width of the streets can be assessed with more accuracy. This 
high-quality transformation of the spectral content of set of images XS when 
increasing the resolution allows the application of a classifier, automatic or 
not, in order to extract the roads and the buildings. Hence, these synthesized 
images can be used for classification, or for other methods that need to use 
the multispectral content provided by the whole set of images with the best 
spatial resolution available. 

Further processing may be performed on these synthesized images XS*. A 
Laplacian filter was applied to sharpen the contours. The resulting color 
composite is displayed in the middle right in Figure 7.9 and exhibits striking 
features. The elements on the roof of the commercial center are well 
delineated. Each tree appears individually and vehicles are visible. In the 
garden, the paths are clearly distinguished. The small spots in blue tones are 
the Phoenicians remains. This color composite can be compared to the 
photograph of the garden exhibiting the paths and the remains (lower left). 
The author took this photograph with his back towards the commercial 
center and looking to the West, i.e. the left side of the airborne image. 
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 (a) 
 

 (b) 

Figure 7.8. Color composites of the same area of Marseille. (a) Original 
images with a spatial resolution of 5 m.  CNES 1993 (b) Synthesized 
images with a spatial resolution of 2.5 m. 
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Figure 7.9. See text for more 
explanations. Upper left: 
panchromatic image. Upper right: 
original XS. Middle left: synthesized 
XS*. Middle right: sharpened 
synthesized XS*. Lower left: 
photograph by the author 
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The benefits of the fused products for the analysis and mapping of the 
center of the city is demonstrated through this example. The use of color 
images having a high spatial resolution permits clearly a more accurate 
interpretation of the features in the city. Furthermore, such fused products 
may be the object of further image processing techniques, without creation 
of visible artifacts. This is exemplified by the analysis of that part of the 
city, wherein remains of the old Phenician city are visible. It illustrates the 
capability of the synthetic images to support further image processing 
dealing with the high frequencies. 

 





8. ASSESSING THE QUALITY OF SYNTHESIZED IMAGES 

Previous Chapter presents several methods for the fusion of sets of 
multispectral images Bkl at a low spatial resolution l and sets of images Ah at 
a higher spatial resolution h but with a lower spectral content. These 
methods aim at synthesizing sets of multispectral images B*kh, which are as 
close as possible to the reality Bkh. The three properties that should be 
respected by the synthesized sets are listed in previous Chapter. 

Producers, i.e. providers of fused products, and customers, i.e. users of such 
fused products, may hesitate to select one of these methods or fused 
products. Commercial softwares often propose several different methods 
and it is not obvious for non -specialists to select one method or another for 
a given case. It follows that usually producers often use methods, which are 
not the most suitable for their customers. 

Several comparisons between methods have been published and are 
regularly published. However results poorly disseminate in the community 
and there is lack of knowledge among producers regarding these methods, 
their advantages and limits. The lack of standardization of protocols for 
comparison does not add to the clarity of the results. Some efforts have been 
made recently but a lot still remain. 

Behind the choice of a method lie needs for quality. Not neglecting aspects 
related to software complexity, implementation and maintenance and 
computation time and other constraints, the quality of a fused product is the 
driving cause for the selection of a method in industrial systems and 
production lines. 

Thus, the problem is twofold. Firstly, how to assess the a priori quality of a 
synthesized set of images Bh produced by a given fusion method? This may 
translate into: what is the typical quality one may expect by running a given 
method over given cases? The answer helps in selecting a method. 
Secondly, how to assess a posteriori the quality of a synthesized set of 
images effectively produced within a given industrial process? 

Quality assessment needs a protocol. We will see later that the same 
protocol may answer both questions: the a priori and a posteriori 
assessment of quality. Such a protocol and the associated quantification of 
the quality may help in 
• system requirements by providing a framework for users to better 

specify their needs for information; 
• information communication by allowing producers, customers and other 



 Data Fusion 144

persons from all backgrounds to communicate the usefulness of an 
image to perform a task; 

• and analysis by providing an instrument for developing other system 
performance tools or for assessing the effects of changes in the fusion 
methods or sensor design or image chain or production line on image 
quality. 

A protocol for quality assessment should have very clear objectives. The 
objectives of the protocol discussed hereafter are the assessment of the 
performances of the fused products with respect to the three properties 
listed in previous Chapter. The typical approach for the assessment of the 
quality by the means of visual analysis performed by a panel of 
investigators is also reported. Such an approach is tailored to the needs and 
objectives of a specific community of users. The actual spatial resolution of 
the fused product was assessed in this way in the military community. 

QUALITY ASSESSMENT NEEDS A REFERENCE 

Quality is assessed with respect to a reference image. In the case of the 
assessment of a method (a priori assessment of fused products), sets of 
actual multispectral images Bh at high resolution h are usually available. 
The fused products B*kh are made from the images Ah and Bkl and are 
compared to these references Bkh through a visual analysis or computation 
of similarities and discrepancies, in an automated way or not. 

WHAT TO DO IF NO REFERENCE IS AVAILABLE? 

Such a reference is not always available and should be created. This is the 
usual case of the assessment of a fused product (a posteriori assessment). 
One of the most common approaches to this shortcoming consists in 
interpolating low resolution images Bkl up to the high resolution h, and 
assuming that these images constitute the reference. In any case, are the 
interpolated images representatives of what would be observed by a similar 
sensor with a higher resolution, and these interpolated images cannot 
constitute a valid reference. It follows that this approach is not valid and 
should not be used. It is in itself a paradox: if interpolated images are 
assumed to be the reference, why should one bother with fusion methods? 

Other protocols try to avoid establishing images of reference, mostly by 
using some statistical quantities or features derived from the original data 
set and from the synthesized images. One example is the use of the 
histograms of the synthetic products, which are compared to the original 
ones. The histograms for images taken by the SPOT system over the city of 
Barcelona (Spain) are presented in Figure 8.1. These images are displayed 
and discussed in following Chapter. On the upper half are the histograms of 
the original images P and XS1. For the latter, the resolution is 20 m only: it 
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contains four times fewer pixels than P or the synthetic images XS*. For the 
comparison, the histogram of XS1 has been normalized to the others by 
multiplying the number of pixels by four. Though the resolution is increased 
by a factor of two relative to that of XS1, the histograms of the images XS*1 
synthesized by two different fusion methods are expected to be close to that 
of XS1 in shape. This is true for the histogram of the image XS*1RWM 
synthesized by the ARSIS-RWM method (lower right). Its highest 
frequency is close to four times that of the histogram of XS1. The modal 
values are the same and the shapes of both histograms are very similar. On 
the contrary, the histogram of the image XS*1P+XS synthesized by the P+XS 
method (lower left) is much closer to that of the image P, both in shape and 
in peak. It indicates the discrepancies between the actual image XS1(10 m) 
and XS*1P+XS and the spectral distortion induced by the P+XS method. 
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Figure 8.1. Comparison of histograms of original and synthetic SPOT 
images. Scene of Barcelona, Spain. (a) SPOT P, 10 m resolution; (b) SPOT 
XS1, 20 m resolution; (c) synthetic image (P+XS method), 10 m resolution; 
(d) synthetic image (ARSIS-RWM method), 10 m resolution. 

This comparison of histograms is a fairly good estimator of image quality, 
and is easy to handle. However, the effect of the spatial resolution upon the 
statistical properties of an image should not be neglected. Several published 
studies demonstrate the non-preservation of statistical distribution with the 
change in spatial resolution. This non-preservation depends upon the 
observed type of landscape. The more energetic the high frequencies at 
scale h, the more dissimilar the statistical distributions at scales h and l. 
That means that we should not try to identify the statistical properties of a 
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synthetic product to those of the original image. Therefore, any protocol 
based upon the comparison of statistical quantities (e.g., histogram, 
cumulative distribution, entropy etc.) is not valid. 

Another approach found in the Earth observation domain is to compare 
land-use maps obtained after spectral (and possibly textural) classification 
of the fused products. This classification approach is valuable because land-
use mapping is often the goal of satellite image processing. These maps are 
compared either to the map obtained from original low-resolution data (e.g., 
SPOT XS), or to ground truth. In the first case, the same assumption as 
above is made, that is that some statistical properties are preserved through 
the increase in resolution. More generally, classification greatly reduces the 
content in information; this reduction decreases the discrepancies between 
fusion methods. In the classification process, pixel spectral values are 
aggregated with their spectral neighbors. Hence, a small difference between 
the synthesized and the actual spectra at a given pixel may have an impact 
on classification ranging from null to significant. Furthermore, the results of 
the classification depend upon the type of landscape, its diversity, its 
heterogeneity, the time of observation, the optical properties of the 
atmosphere, the sensor system itself (including the viewing geometry), the 
type of classifier (supervised, unsupervised), and the classifier itself. Hence, 
this approach may not reflect the overall performance of a fusion method 
and should be avoided. 

HOW TO CREATE A REFERENCE IMAGE? 

Several authors have proposed an approach to create a reference image. It 
calls upon a change in scales and is as follows: 
• two sets of images Al and Bkv are created from the original sets of images 

Ah and Bkl. The image Ah is degraded to the low resolution l (Al) and the 
images Bkl to the very low resolution v (Bkv) with v=l(l/h). If l=2h, then 
v=2l; 

• the fusion method is applied to the two sets of images, resulting into two 
sets of synthesized images B*kh at resolution h and B*kl at resolution l; 

• the original images Bkl serve as references. A comparison is performed 
between Bkl and B*kl by the means of visual analysis and analysis of the 
similarities and discrepancies; 

• finally, the quality observed for the fused products B*kl is assumed to be 
close to the quality that would be observed if a reference at resolution h 
were present. 

Such an approach alleviates the lack of "truth" images Bkh. This raises a 
question. How can the assessment of quality of the synthetic images be 
made at the highest resolution h based upon that made at the lowest 
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resolution l? In other words, how can one extrapolate the quality assessment 
made at the lowest resolution to the highest resolution? 

Intuitively, one thinks that, except for objects having a size much larger 
than the resolution, the error should increase with the resolution, since the 
complexity of a scene usually increases as the resolution is getting better 
and better. That is, one may expect the error made at the highest resolution 
h to be greater than that at the lowest resolution l. However, several recent 
works have demonstrated the influence of the resolution on the 
quantification of parameters extracted from satellite imagery. Many works 
dealt with clouds (here the parameter is the cloud coverage), or address the 
problem of resolution in weather prediction and climate models. Others 
study how the values of a geographical parameter (e.g., the number and 
surface of lakes or agricultural lots in a region) vary as a function of the 
resolution. Some mathematical models have been constructed to explain 
such these changes in rather simple cases. All these studies demonstrate that 
the quality of the assessment of a parameter is an unpredictable function of 
the resolution. It is a very complex function of the relative power of the 
high frequencies and of the very high frequencies, i.e. objects that are 
unresolved at the resolution h, and of the distribution of these objects within 
the pixel. The multi-modality aspect adds to this complexity. 

It follows that the quality of the synthetic images at the highest resolution h 
cannot be predicted from the assessments made with synthetic images at the 
lowest resolution l. However, we may rely on the results of several 
assessments performed at Ecole des Mines de Paris. They show that there is 
no clear relationship between the quality parameters obtained for the fused 
products B*kh and B*kl, or between B*kl and B*kv, as expected. Nevertheless, 
it has been often found that the quality was best at the resolution h 
(respectively l) relative to the resolution l (respectively v), and also that the 
ranking of a method relative to the others was the same at these resolutions. 
It does not prove that estimates should be better at the resolution h than at 
the resolution l. However, it seems reasonable to assume that the quality of 
the synthetic images at the highest resolution h is close to that at the lowest 
resolution l. 

A GENERAL PROTOCOL FOR QUALITY ASSESSMENT 

A protocol has been worked out, which is accepted by several professional 
organizations. It is simple to implement. It may become the standard 
approach agreed upon by all the producers of fused products whose scopes 
are in the frame of this discussion. It permits to alleviate the need for a 
reference image if not available and offers a complete checking of the three 
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properties1. It can be used in any case, whether a reference image is 
available or not, and for evaluating products as well as methods. The 
general frame is as follows: 
• the fusion method is applied to the original sets of images Ah and Bkl. It 

results into a new set of synthesized images B*kh at resolution h; 
• testing the first property: any synthetic image B*kh, once degraded to its 

original resolution l, should be as identical as possible to the original 
image B*kh. To achieve this, the synthetic image B*kh is spatially 
degraded to an approximate solution (B*kh)l of Bkl. If the first property is 
true, then (B*kh)l is very close to Bkl. The difference between both 
images is computed on a per-pixel basis. The fused products together 
with the difference image are visually compared to the original images 
Bkl in order to detect trends of error, if any. These trends may be related 
to the objects in the scene. Then some statistical quantities are computed 
to quantitatively express the similarities and discrepancies between both 
images; 

• testing the second property: any synthetic image B*kh should be as 
identical as possible to the image Bkh that the corresponding sensor 
would observe with the highest resolution h. The second and third 
properties refer to Bkh, an image that would be sensed if the sensor had a 
better resolution h. This image is the reference image and is not always 
available; otherwise, all the above-cited methods would not have been 
developed. If a reference Bkh is available, the comparison is performed 
between Bkh and B*kh, using the same means, techniques and statistical 
parameters as for the first property. If a reference Bkh is not available, a 
change in scale is performed as described in the previous section for 
creating a reference. The images to compare are now the original images 
Bkl and the fused products B*kl . The comparison is made exactly in the 
same way than in the case of the availability of a reference. It is assumed 
that the quality attained for this reference at the resolution l is similar to 
that that would be attained at the resolution h; 

• testing the third property: the multispectral set of synthetic images B*h 
should be as identical as possible to the multispectral set of images Bh 
that the corresponding sensor would observe with the highest resolution 
h. As above, if the set of images Bh is not available, the comparison is 
performed between the sets Bl and B*l. As for all the properties, the 
comparison is made by the means of visual analysis and computation of 
similarities and discrepancies. 

                                                           
1 L. Wald, T. Ranchin and M. Mangolini. Fusion of satellite images of different 
spatial resolutions: assessing the quality of resulting images. Photogrammetric 
Engineering & Remote Sensing, 63, 6, 691-699, 1997. 
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Depending upon the objectives of the assessment and of the available 
resources, the task of visual analysis will be more or less sophisticated and 
the computer analysis of the similarities and discrepancies will be more or 
less extensive. An example of experimentation for the assessment of several 
fusion methods is given in next Chapter. 

THE IMPORTANCE OF THE SELECTION OF THE TEST IMAGES 

The type of landscape or objects present within the image used to assess the 
quality of a synthesizing method has a strong influence upon the results. 
Obviously, if the objects of the scene are spatially homogeneous for scales 
ranging between h and l, any sound method will provide good results. In 
this case, the benefit of the fusion is questionable since interpolation 
methods and even duplication will lead to satisfactory results. 

Whatever the method, the more predictable the changes in signal with the 
scale, the better the quality of the final product. Hence, scenes whose 
objects are self-similar for scales between h and l should be avoided for test 
cases, since they do not enhance the properties of a method. 

Taking Earth observation as an example, over areas such as the ocean or 
large agricultural lots, which appear very homogeneous at, say, 20 m 
resolution, the error made in assuming that these areas are still 
homogeneous at, say, 10 m resolution, is small. On the contrary, urban areas 
or small agricultural lots are among the most difficult cases because they 
exhibit a large number of interwoven objects having different scales. 

The particular case of the SPOT images of the city of Barcelona was 
examined. Barcelona is a large city located in northeast Spain, on the 
Mediterranean coast. Its harbor is the busiest in Spain. The scene is mostly 
comprised of urban districts, highways and railroads. It also exhibits small 
agricultural lots and mountainous areas covered by typical Mediterranean 
vegetation. The images are shown in next Chapter where several fusion 
methods are compared (Figs 9.1 and 9.2). Such an urban area has been 
selected for illustrating the comparison because it is certainly the most 
difficult type of landscape to deal with according to our knowledge. Urban 
areas often point out the qualities and drawbacks of algorithms because of 
the high variability of information in space and spectral band, induced by 
the diversity of features in both size and nature. 

It was found that all information (100 percent), expressed as variance, of the 
homogeneous part covering the Mediterranean Sea, is borne by structures 
larger than 40 m for each of the three modalities. On the contrary, for the 
urban area, half the information (50 percent) is borne by structures having 
sizes less than 40 m. Urban areas do not possess self-similarity properties, 
though some parameters, such as the growth of city limits, can be 
approximated by fractal functions. In other words, structures observed at, 
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say, 10 m resolution, cannot be accurately predicted from their observations 
at lower resolution, say, 20 m. This is well-known by experienced image 
interpreters, and is also sustained by published mathematical evidence. The 
benefit of an image of a higher spatial resolution is the greatest in these 
cases. Hence, it is recommended that test images should mainly include 
such areas. Such cases also offer a large diversity of spectral signatures, 
which is helpful in judging the ability of a method to synthesize the spectral 
signatures during the change in spatial resolution. 

The spectral heterogeneity of a scene may be characterized by the spectral 
diversity of the set B of images relative to the maximum possible number of 
spectra Smax. A heterogeneity parameter he can be defined: 

he = S / Smax [8.1] 

where S is the number of spectra observed in the set B. If NP is the number 
of pixels of the images, then Smax = NP and 

he = S / NP  and 0 ≤ he ≤ 1 [8.2] 

The larger he, the more spectrally heterogeneous the scene. 

A threshold cannot be given for he, separating suitable test cases for 
inappropriate ones. Actually, this parameter is not robust enough. Assume a 
scene that offers the same number of spectra when its sizes are slightly 
reduced. It results in increasing he but the difficulty in synthesizing images 
remains the same. 

To avoid this problem, we define another quantity ho: 

ho = 104 / S [8.3] 

The larger ho, the more spectrally homogeneous the scene. Hence ho 
characterizes the spectral homogeneity of the set B. The larger the number 
of modalities, the smaller ho. For the case of the SPOT images with three 
modalities, the author found ho values less than 1.4 and most often 
comprised between 0.2 and 0.4 for urban areas. These areas are considered 
as the most difficult test cases. For the case of Marseille discussed in 
Chapter 7 (Fig. 7.8), ho=0.1. One of the most difficult cases encountered by 
the author is the color image (R, G, B) of the baboon. This image is well-
known in the community of researchers in image processing. It displays the 
very colored face of a mandrill and most of the information is contained in 
the very high frequencies. In this case, ho=0.04, i.e. the spectral 
homogeneity is dramatically low. ho decreases as the number of modality 
increases. A value of ho=0.01 was found for the case of a set of images 
taken in four spectral bands by the satellite SPOT-4. The landscape was 
made of several villages close each to the other surrounded by small 
agricultural lots and other vegetation patches exhibiting high frequencies. 
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This quantity ho can be used to discriminate between test cases that permit 
to assess the properties of a fusion method and others. The smaller ho, the 
more difficult the images to synthesize at a better resolution. A threshold of 
0.4 can be set up from experience. Appropriate test cases should exhibit ho 
values lower than this threshold. 

ASSESSMENT BY A PANEL OF INVESTIGATORS 

The visual analysis is a key to quality assessment. The objective comparison 
of the visual quality of multiple images is a difficult and lengthy task to 
handle. The human visual system is not equally sensitive to various types of 
distortion in an image. The perceived image quality is strongly dependent 
upon the observer and upon the thematic application. Standard protocols 
have been defined, in the field of television and image compression or Earth 
observation by airborne or space-borne instruments. 

Several investigators are gathered together to perform such an assessment. 
Several sets of fused products are shown to these investigators, who judge 
some well-defined aspects of the images with respect to well-established 
criteria. Then their notations are weighted and further processed to obtain a 
mean opinion score defining the quality of the result. When it comes to the 
assessment of the quality of a set of multispectral images, the mass of data 
becomes very large. This dramatically increases the difficulty in computing 
a quantitative picture quality scale. 

Such operations are relevant to the general problem of the assessment of the 
satisfaction of the customers regarding a given product. Similar 
experimentations are currently performed for industrial products. 
Conceptually, the assessment of fused products or of fusion methods is not 
different. Similar techniques for the selection of panels of users may be 
used, similar criteria may be employed, and similar mathematical 
procedures may be applied for the screening of the individual responses and 
the analysis of the results. 

The panel should comprise as much as possible investigators. These 
investigators may be either trained persons or unaware persons depending 
on the purpose of the test. The larger the panel, the better since statistics 
will perform better on a large panel. However, a large panel is more costly 
in many aspects than a smaller one. The investigators should view images 
and perform the requested analysis in the same conditions: same type of 
color monitor, same monitor calibration, same distance of viewing, same 
surrounding illumination etc. Such assessments operations are very heavy to 
manage and accordingly, they cannot be performed on a routine basis. 

The protocol of such experimentations is more or less the same and is as 
follows. A set of specifications is established regarding the quality of 
images. This set of specifications comprises a set of criteria to be respected 
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by the ideal product. Examples of criteria in the case of visual interpretation 
of images of scenes, natural or artificial, may be: 
• colors should be as close as possible from colors perceived by the 

human eyes; 
• objects of size T0 or more should be detectable; 
• objects of size T1 (T1>T0) or more should be identifiable; 
• objects of size T2 (T2>T1) or more should be subjected to analysis. 

A committee within the U.S. Government has established criteria for the 
interpretability of multispectral imagery in Earth observation, which may 
serve as references. Examples of such criteria are given in Table 8.1. 

Then one product is selected among a series of standard products. This 
product is called the reference product. Its performances with respect to the 
above-mentioned criteria serve as references against which are compared 
the subjective valuation of the panel of users. If the score of a fused product 
is better than that of the reference product, the fused product is said to be 
better or to offer better performances than the reference product. Here, a 
standard product may be the images BkhInterp resulting from an interpolation 
of the images Bkl from the resolution l to the resolution h. Another standard 
product may be a fused product produced by a well-known method (e.g., a 
projection and substitution method). 

Then a panel of investigators is selected. The investigators assess each fused 
product versus the defined criteria with respect to the reference product. For 
each criterion, each investigator gives a note. The scale often comprises five 
notes: much worse performances, worse performances, similar 
performances, better performances, much better performances. It may 
comprise more notes, e.g. ranging from 0 to 10 or 0 to 100. When the 
references are loosely defined or even absent, the scale is often reduced to 
four notes: 
• not satisfying (not relevant, not performant, not efficient), weak; 
• not much satisfying (not much relevant, not much performant, not much 

efficient), rather weak; 
• rather satisfying (rather relevant, rather performant, rather efficient), 

rather strong; 
• very satisfying (very relevant, very performant, very efficient), very 

strong. 

Once the human analysis performed, the individual notations are screened. 
Apparent inconsistencies of the answers (e.g., an increase in resolution 
should likely lead to an increase in the quality of the identification of 
objects) are looked for. Biased answers are rejected as well as those 
resulting from misunderstanding of the instructions, criteria, objectives of 
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the task or protocol. Cross-analyses are performed on the set of scores to 
discover irregularities. Finally the individual notations are weighted and 
mean scores are obtained. They qualify specific aspects of the fused product 
and its overall quality. 

 
MS IIRS Level 1  

Distinguish between urban and rural areas.  
Identify a large wetland (greater than 100 acres).  
Delineate coastal shoreline.  
Detect major highway and rail bridges over water. 
Delineate extent of snow or ice cover.  

MS IIRS Level 2  
Detect multilane highways.  
Determine water current direction as indicated by color differences.  
Detect timber clear-cutting.  
Delineate extent of cultivated land.  
Identify riverside flood plains. 

MS IIRS Level 3  
Detect vegetation/soil moisture differences along a linear feature 
(suggesting the presence of a fenceline).  
Identify major street patterns in urban areas.  
Identify shoreline indications of predominant water currents.  
Distinguish among residential, commercial, and industrial areas within 
an urban area.  
Detect reservoir depletion.  

MS IIRS Level 4  
Detect recently constructed weapon positions based on the presence of 
revetments, berms, and ground scarring in vegetated areas.  
Distinguish between two-lane improved and unimproved roads.  
Detect indications of natural surface airstrip maintenance or 
improvements (e.g., runway extension, grading, resurfacing, etc.). 
Detect landslide or rockslide large enough to obstruct a single-lane road.  
Identify areas suitable for use as light fixed-wing aircraft (e.g., Cessna, 
Piper Cub, or Beechcraft), landing strips. 

Table 8.1. Example of criteria related to interpretability of multispectral 
images taken from the US Government2 

                                                           
2 Multispectral imagery interpretability rating scale. Reference Guide. Image 
Resolution Assessment and Reporting Standards (IRARS) Committee, U.S. 
Government. February 1995. 
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GROUND SAMPLE DISTANCE - RESOLUTION OF THE FUSED 
PRODUCT 

Image resolution has a significant effect on interpretability of images. It can 
be defined as a ground sample distance (GSD), that is the smallest distance 
that can be measured accurately by the analysts. The fused product intends 
to simulate what should be observed with a sensor having the best spatial 
resolution and one may expect the ground sample distance measured in the 
fused product to be greater than the claimed resolution h. 

In the course of the analysis, the investigators are asked to compare the 
GSD they measure on the fused product to that measured on the reference 
product. An effective ground sample distance (EGSD) is thus defined. 

Experiments made for the US Department of Defense3 by the means of 
panels of image analysts show that perceived image quality is proportional 
to the logarithm of the GSD. The effective ground sample distance can be 
roughly predicted as a function of the spatial resolutions h and l of the high 
and low resolution images: 

EGSD = l - 0.94(l-h) [8.4] 

where EGSD, h and l are expressed in meters. Another formulation was 
proposed 

EGSD = (1.103 h) - (0.004 h2) + (0.001 l2) + 0.37 [8.5] 

Equation 8.4 better fits the observations made. The relative gain in 
resolution is constant (equal to 0.94 times the difference l-h) for the 
resolutions that have been studied (h and l less than 30 m). Table 8.2 gives 
some values of EGSD computed from Equation 8.4 for several couples of 
resolutions (h, l). 

Table 8.2 shows that the effective distance EGSD is close to the spatial 
resolution h. The smaller the ratio l/h, the closer the EGSD to h. This 
similarity between h and EGSD demonstrates the benefits of the fusion of 
images. 

The values in Table 8.2 are indicative. The effective distance EGSD 
depends upon the fusion method employed to construct the products and of 
the properties of the sensors themselves, including the modulation transfer 
function, which may impact on the quality of the fused products, depending 
upon the methods. 

                                                           
3 J. Vrabel. Multispectral imagery advanced band sharpening study. 
Photogrammetric Engineering & Remote Sensing, 66, 1, 73-79, 2000. 
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l (m) h (m) EGSD (m) 

30 10 11.2 

20 10 10.6 

20 5 5.9 

4 2 2.1 

4 1 1.2 

2 1 1.1 

Table 8.2 Predicted effective ground sample distance (EGSD). 

COMPUTER-DERIVED MEASURES OF PERFORMANCES 

The general protocol is based upon visual analyses of the fused products 
B*kh (respectively B*kl) with respect to the original images Bkh (respectively 
Bkl) and upon the computation of the difference between the fused product 
and the original images on a per-pixel basis. Statistical quantities help in 
summarizing the similarities and discrepancies between the sets of images. 
Such measures of performances estimated from these differences offer the 
benefits of quantitative values and the advantage of being automated in the 
production lines. 

QUANTITATIVE ASSESSMENT FOR THE FIRST PROPERTY 

An important point here is the way the synthetic image B*kh is degraded to 
(B*kh)l. Some wavelet transforms have the ability to separate scales well, 
that is, to separate structures of small size from larger ones and, therefore, to 
simulate what would be observed by a lower resolution sensor. Many 
authors use an averaging operator on a window of 3 by 3 pixels or more. 
Such an operator does not have this ability in scale separation and is not as 
appropriate here. Other filtering operators should be used, some of them 
simulating a given modulation transfer function (MTF) of a sensor. 

A comparison was made at École des Mines de Paris (T. Ranchin, personal 
communication) on a few scenes using some operators, such as a sine 
cardinal (sinc) kernel truncated by a Hanning apodisation function of size 
13 by 13 pixels, a truncated Shannon function, a bi-cubic spline, a pyramid-
shaped weighted average, and the wavelet transforms of Daubechies (1988, 
regularity of 2, 10 and 20). It showed relative discrepancies between the 
results on the order of a very few per cent. In conclusion, there is an 
influence of the filtering operator upon the results, but it can be kept very 
small provided the operator is appropriate enough. 
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The quantities that are computed from the differences between the two sets 
of images are similar to the first and second sets of criteria described under 
the second property below. 

QUANTITATIVE ASSESSMENT FOR THE SECOND PROPERTY 

The synthetic image B*kh (respectively B*kl) is compared to the reference 
image Bkh (respectively Bkl) by means of some criteria described below. The 
numerical comparison should be made preferably in physical units and in 
relative values. Thus, different tests made over different scenes may be 
compared. A difference is computed between Bkh and B*kh (respectively Bkl 
and B*kl). After visual inspection, the difference image is reduced to a few 
statistical parameters, which summarize it. There are a large number of 
candidate parameters. We have computed many for several tens of cases. 
We have retained some whose definitions are well-known to engineers and 
researchers and which clearly characterize the advantages and 
disadvantages of a method. 

Two sets of criteria are proposed to quantitatively summarize the 
performance of a method in synthesizing an image in one spectral band. The 
first set of criteria provides a global view of the discrepancies between the 
original image Bkh and the synthetic one B*kh. (respectively Bkl and B*kl). It 
contains: 
• the bias, as well as its value relative to the mean value of the original 

image. Recall that the bias is the difference between the means of the 
original image and of the synthetic image. Ideally, the bias should be 
null; 

• the difference in variances (variance of the original image minus 
variance of the synthetic image), as well as its value relative to the 
variance of the original image. This difference expresses the quantity of 
information added or lost during the enhancement of the spatial 
resolution. For a method providing too many innovations (in the sense 
of information theory), i.e., "inventing" too much information, the 
difference will be negative because the variance of the synthetic image 
will be larger than the original variance. In the opposite case, the 
difference will be positive. In information theory, the entropy describes 
the quantity of information. However, we selected the variance 
difference because most researchers, engineers and practitioners are 
much more familiar with variance, and entropy and variance act quite 
similarly for our purpose. Ideally, the variance difference should be null; 

• the correlation coefficient between the original and synthetic images. It 
shows the similarity in small size structures between the original and 
synthetic images. It should be as close as possible to 1; 

• the standard deviation of the difference image, as well as its value 
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relative to the mean of the original image. It globally indicates the level 
of error at any pixel. Ideally, it should be null. 

The error at pixel level may be more detailed. The absolute value of the 
difference and the absolute relative error are computed at each pixel. The 
absolute relative error is the absolute value of the difference between the 
original and synthetic values, divided by the original value. Then the 
histogram of the absolute values of the difference and the histogram of these 
relative errors are computed. Both can be seen as probability density 
functions. Therefore, we can compute the probability of having at a pixel an 
error or a relative error (in absolute value) less than a given threshold. 

This probability denotes the error made at pixel level, and hence indicates 
the capability of a method to synthesize the small size structures. The closer 
to 100 percent the probability for a given error threshold, the better the 
synthesis. The ideal value is a probability of 100 percent for a null error, 
relative or not. Here, for reasons of computer precision, the lowest threshold 
"no relative error or null error" should be set to a very small value instead of 
zero. Values such as 0.001 or 0.001 percent can be used. 

QUANTITATIVE ASSESSMENT OF THE MULTISPECTRAL QUALITY (THIRD 

PROPERTY) 

Visual inspection may be made through color composites of, for example, 
the first three principal components of the set of images. Both color 
composites should agree visually. Most methods for color composites are 
using dynamical adjustment for color coding. If the sets of images are 
different, even slightly, then the color coding will be different for both 
composites and no comparison will be possible. 

Practically, we recommend the following approach. For each modality or 
spectral band k, the reference images Bk and the fused images B*k are 
juxtaposed into a single computer file. Here the set of reference images is 
that used to test the second property (i.e. the set Bh or Bl). The principal 
components analysis as well as the color coding are performed on this set of 
juxtaposed files. If the number of modalities is less than or equal to three, 
there is no need to perform a principal components analysis. A color 
composite is computed by the means of the first three components, which 
usually contain most of the information. This color composite is split in 
order to retrieve the composite of the reference images on the one hand and 
the composite of the fused products on the other hand. If more than one 
fused product is to be assessed for the same scene, the concatenation 
(juxtaposition) should be performed with all sets of fused products. This 
approach guarantees that the color composites are comparable. 

The color composites are displayed, simultaneously or alternatively, onto 
the screen and are compared to the reference composite and to the others. 
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The advantage of this visual assessment is that it does show trend in errors, 
if any, possibly related to features in the scene. The drawback of it is that it 
is a subjective assessment and also that this assessment may be limited 
either by physiological factors (e.g., color contrast perception by humans), 
or by technical factors (e.g., when a large number of modalities or spectral 
bands are present). In the latter case, and if the scene offers a large variety 
of objects, the color re-coding of the first three principal components 
reduces dramatically the differences between the sets of images B and B*, 
particularly if these differences are random, i.e., not related to specific 
features in the scene or to a spectral band or modality. 

A quantitative assessment can be made using the following three additional 
sets of criteria in order to quantify the performance of a method to 
synthesize the spectral signatures during the change in spatial resolution. 

The third set (numbered after the two sets described above for the second 
property) deals with the information correlation between the different 
spectral images taken two at a time. This dependence can be expressed by 
the correlation coefficients, with the ideal values being given by the set of 
reference images B. This is done for every pair among the N available 
modalities and the image A. As an example, for the case of the modality k, 
the correlation coefficient between each pair (Bk, Bj, j=1...N) and (Bk, A) is 
computed and compared to the correlation coefficient for each pair (B*k, 
B*j, j=1...N) and (B*k, A). The correlation coefficients found for the fused 
products should be as close as possible to the correlation coefficients found 
for the reference images. 

The fourth set of criteria partly quantifies the synthesis of the actual multi-
modality or multispectral n-tuplets by a method, where n-tuplet means the 
vector composed by each of the N modalities or spectral bands at a pixel. It 
comprises the number of different n-tuplets (i.e., the number of spectra) 
observed in the reference set B and in the synthesized set B*, as well as the 
difference between these numbers. A positive difference means that the 
synthesized images do not present enough n-tuplets; a negative difference 
means too many spectral innovations. 

The previous criteria do not guarantee that the synthesized n-tuplets are the 
same as in the reference set B. The fifth and final set of criteria assesses the 
performance in synthesizing the actual n-tuplets. It deals with the most 
frequent n-tuplets, because they are predominant in multispectral 
classification. For a given threshold in frequency, only the n-tuplets having 
a frequency (relative number of pixels) greater than this threshold are used. 
The threshold is set to e.g., 0.01 percent, 0.05 percent, 0.1 percent, and 0.5 
percent, successively. The greater the threshold, the lower the number of n-
tuplets, but the greater the number of pixels exhibiting one of these n-
tuplets. For each of the n-tuplets, the difference is computed between the 
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reference frequency and the one observed in the synthesized images. These 
differences are summarized by the following quantities: 
• the number of actual n-tuplets, the number of coincident n-tuplets in the 

synthesized images, and the difference between these numbers, 
expressed in absolute and relative terms; 

• the number of pixels in these n-tuplets, in absolute and relative terms; 
• and the difference between the above number of pixels for the reference 

and synthesized sets of images, in absolute and relative terms.  

This protocol has been applied to several cases. Its capabilities in 
characterizing the performances of methods and the quality of fused 
products have been demonstrated. The statistical parameters have proven 
their high value to summarize the similarities and discrepancies, still 
conveying enough details so that one may see at a glance the major merits 
and drawbacks of a method or of a fused product. 

A GLOBAL ERROR PARAMETER FOR DESCRIBING THE QUALITY 

There is a further need for a simple characterization of the quality of the 
product of the fusion process, which can be associated to each product and 
qualifies it. It would greatly help producers to select methods and improve 
their production lines, and customers to make their choice among products 
and to assess the impact of this quality on further processing. 

The protocol discussed in this Chapter computes the differences between 
the synthesized images and the actual ones. These differences are 
summarized by various statistical quantities, which characterize the 
performance in synthesizing images in a given modality and the multi-
modality signature, and especially the most frequent spectra. Published 
works often use statistical quantities, such as root mean square errors 
RMSE(Bk). On the contrary, biases and mean values are given seldom. 

These quantities as discussed before are very useful to fully understand the 
performances and properties of a method. However, experience shows that 
there are too many figures, which are of no help to the customers. There is a 
need for a quantity, which gives a quick insight of the quality. What we are 
looking for, is a number simple to understand which is a good indicator of 
the overall error of the fused product. The closer to 0 this number, the better 
the product. This quantity should fill three requirements: 

First requirement. It should be independent of units, and accordingly of 
calibration coefficients and instrument gain. Customers seldom consider 
calibration coefficients. Some fusion methods can be applied to unitless 
quantities or to radiances. Consequently, the quality parameter should be 
independent of units. 
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Second requirement. This quantity should be independent of the number 
of spectral bands under consideration. This is a sine qua non condition to 
compare results obtained in various conditions. 

Third requirement. This quantity should be independent of the scales h 
and l. This permits to compare results obtained in different cases, with 
different resolutions. 

The following quantity was proposed to globally characterize the quality of 
the fused product. It was called total error and is given by: 

Total error = )(
1

∑
=

N

k
kBRMSE  [8.6] 

It is actually the sum over the N modalities of the root mean square errors 
(RMSE) for each modality k. The RMSE is that computed by the means of 
the reference set of images used for the testing of the second property. (i.e. 
Bkh or Bkl). It is defined as  
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where i is the current pixel and NP is the number of pixels. It is also equal 
to: 

RMSE(Bk) = 22 )()( deviation  standardbias +  [8.8] 

This total error does not obey any of the three requirements. In particular it 
is sensitive to the changes from numerical counts to radiances. Another 
error was proposed4 in order to be able to compare errors obtained from 
different methods, different cases and different sensors. Let Mk be the mean 
value for the original spectral image Bk. Let M be the mean radiance of the 
N images Bk: 

M = (1/N) ∑
=

N

k
kM

1

 [8.9] 

The relative average spectral error RASE is expressed in percent and 
characterizes the average performance of a method in the considered 
spectral bands: 

                                                           
4 T. Ranchin, and L. Wald. Fusion of high spatial and spectral resolution images: 
the ARSIS concept and its implementation. Photogrammetric Engineering & Remote 
Sensing, 66(1), 49-61, 2000. 
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The RASE mostly obeys the first and second requirements. Shortcomings 
arise in the case of uncalibrated images in different modalities with very 
different dynamics in gray levels. Further, the RASE does not obey the third 
requirement. 

From this experience, another quantity is proposed. It is called ERGAS, 
after its name in French "erreur relative globale adimensionnelle de 
synthèse" that means relative adimensional global error in synthesis. 
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It is more robust than the RASE with respect to calibration and changes of 
units. It also obeys the second requirement. The ratio h/l takes into account 
the various resolutions. For the same error ERGAS, the mean value of the 
relative RMSE(Bk) increases as the ratio h/l decreases, since it is equal to: 
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For example, if h/l=1/2 and ERGAS=3, the mean value of the relative 
RMSE(Bk) is equal to 6 percent. If h/l=1/4, this mean value is equal to 12 
percent for the same ERGAS. This recognizes the increase in difficulty 
when synthesizing images with large differences in resolutions h and l. 

These various quantities were computed for several cases (see following 
Chapter). These cases comprise the application of various fusion methods 
on different sets of images acquired in various modalities with different 
scales h and l. The quality of each fused product was assessed as described 
in the previous pages. A global note was given to each product: bad or 
good. 

The total error decreases as the RMSE for each modality k decreases. It is 
very sensitive to changes in units and in number of modalities. There is no 
evident relationship between the total error and the global note of quality. 
The total error cannot represent in a simple way the overall quality. 

The relative average spectral error RASE behaves better. It offers a better 
tendency to decrease as the quality increases. It is independent of units 
provided they are the same for all bands. It is also independent of the 
number of bands provided the range of values for each band is constant. 



 Data Fusion 162

However, like before, there is evident relationship between the error RASE 
and the global note of quality. 

The error ERGAS exhibits a strong tendency to decrease as the quality 
increases. Thus, it is a good indicator of the quality. It behaves correctly 
whatever the number of bands is because it uses for each band the RMSE 
relative to the mean of the band. This definition makes also this quantity 
independent of the calibration or changes in units, allowing even changes 
from band to band. 

Figure 8.2 displays the error ERGAS computed for several cases. These 
cases have been sorted out in two categories: bad or good. The labeling was 
made by the persons providing the cases to the author. Though based upon 
the protocol above-mentioned and numerical parameters, it has obviously a 
subjective aspect in the absence of an accepted global error parameter. 
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Figure 8.2. The error ERGAS for several cases of fusion 

A striking feature in Figure 8.2 is the presence of a threshold. Cases of 
"good quality" exhibit values less than 3, or slightly greater, while the error 
ERGAS is larger than 3 for cases of "bad quality". 

The existence of this threshold means that the error ERGAS is a good 
candidate for being the desired global error parameter. A fused product of 
good quality should exhibit an error ERGAS less than 3. This threshold 
corresponds to a mean value of the relative RMSE of 6 percent if h/l=1/2 
and 12 percent if h/l=1/4 (Equation 8.12). 

The error ERGAS provides a quick and accurate insight of the overall 
quality of a fused product. It behaves better than the other quality 
parameters. Since the error ERGAS reflects the conclusions of the different 
authors relative to the methods, it may serve to broadly assess the quality of 
a method. Very similar values of the error ERGAS are found for different 
cases, which have been declared satisfactory by their authors. 
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A threshold of satisfaction may be set to ERGAS=3 for a product. Below 3, 
the global error is small and the product is of good quality. Well above 3, 
the global error is large and the product is of lower quality. The quality 
decreases as the error ERGAS increases. 

Further investigations on the error ERGAS, or an equivalent error, would 
make possible in a near future for producers of fused products to deliver a 
standardized assessment of the quality of their products. This would allow 
them to better design and improve their production chains, and would allow 
customers to better select the products and improve their efficiency. 





9. ANALYSIS AND COMPARISON OF THE DIFFERENT 

METHODS 

This Chapter presents a comparison of the most frequently used fusion 
methods for synthesizing multi-modality images with an improved spatial 
resolution. This comparison is performed by comparing the results attained 
by the various methods seen in Chapter 7. The quality is assessed by the 
means of the protocol described in Chapter 8. Several aspects are assessed: 
visual, performances in synthesizing individual spectral images and 
multispectral sets. These aspects are the most important with respect to the 
subsequent application of classification techniques on the synthesized multi-
modalities ensemble. 

Other aspects may have been considered, such as spatial gradients, forms 
and structures, both in each spectral band and in the multispectral set. Such 
aspects and the corresponding criteria are of high importance in several 
applications such as the automatic recognition of objects, features, networks 
and so on. They have not been considered here. Hints about the 
performances of each method vis-à-vis these more specific aspects may be 
drawn from the present discussion. 

Several comparisons of the fusion methods presented in Chapter 7 have 
been published. It is not always easy to draw firm conclusions from these 
studies because their conditions differ greatly. However, several of them 
followed the same protocol for quality assessment and the conditions of 
experimentation are well known. In addition, many efforts were spent at the 
Ecole des Mines de Paris to assess the quality of various methods in several 
different cases: various spectral bands, various spatial resolutions, various 
areas (though mostly urban areas), and various sensors. The various results 
can be gathered together, thus creating a large set of experiments, enlarging 
the basis of expertise and increasing the knowledge about these fusion 
methods. 

The conclusions drawn by such comparisons may lead to a selection of a 
particular method. Once implemented in an operational system, this method 
may reveal itself inappropriate or of lesser accuracy than expected. In this 
Chapter, the comparison of the methods is extended to some operational 
considerations. It is sometimes, if not often, difficult to obtain images Ah 
and Bkl acquired at the same time. The second part of this Chapter is 
devolved to the examination of the influence of the time lag between the 
dates of acquisitions of the images on the quality of the images synthesized 
by the various methods. 
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Two cases illustrate the findings of this Chapter. Both are taken in the 
domain of Earth observation. Nevertheless, the conclusions drawn in this 
Chapter are fully general. 

THE METHODS UNDER COMPARISON 

Eight methods were selected. They are relevant to the three groups 
discussed in Chapter 7. 

Projection and substitution group. The IHS (Intensity, Hue, and 
Saturation) method and the PCA (Principal Component Analysis) method 
were tested. The IHS method was only used in case of three images in the 
set B. 

Relative spectral contribution group. The Brovey transform and the 
CNES P+XS method were tested. It should be noted that the Brovey 
transform does not well represent this group because there is no adjustment 
of the mean value. Nevertheless, this method and its related "color 
normalized" method are often used, especially in the military domain. Their 
implementation often comprises an adjustment of the cumulative histograms 
of all images under concern Ah and Bkl. This creates spectral distortions that 
prevent their products from respecting any of the three properties. 
Nevertheless, the visual quality is often good. 

As usual the Brovey transform has been applied to the whole set B, 
including the modalities k that are not in the spectral ranges covered by the 
set A. Artifacts are created in the correlation between the image Ah and the 
images B*kh synthesized in these modalities. It also induces additional 
spectral distortions. The P+XS method was applied as described in Chapter 
7. Nearest neighbor resampling was applied in case of modality k outside 
the spectral ranges of the set A. 

ARSIS concept group. The High-Pass Filtering (HPF) method and three 
methods making use of wavelet transform: Model 1, Model 2 and RWM 
were selected. For the last three methods, the mathematical tools are those 
described in Chapter 5, except for the non-dyadic cases where filter-banks 
close to wavelets were employed. 

Additionally, an interpolation was used, in order to assess the benefits of the 
fusion and to check whether it is worth to implement or use one of these 
fusion methods relative to a much simpler procedure, for which there is no 
fusion at all. The interpolation method was based on the nearest neighbor 
technique (duplication technique), or bicubic function or spline function. 
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THE PROTOCOL FOR ASSESSMENT 

The protocol described in previous Chapter is followed to assess the quality 
of the results of the different methods. More than thirty sets of images were 
processed at the École des Mines de Paris using several methods among the 
eight above-listed. Comparisons were made between the various products 
and conclusions were drawn. In addition, results from published works were 
incorporated. 

Most images were acquired by space-borne sensors. Spatial resolution 
ranges from 1 to 120 m. Systems under concern are the SPOT 1 to 4 
systems, the Landsat 5 system and the Ikonos system. Airborne images 
were also used; the spatial resolution ranges from 0.8 to 10 m. Most of the 
observed landscapes were urban areas. A few color images (R, G, B), such 
as the famous baboon image, were also processed. In that case, one of the 
channels (e.g., R) was selected as the high resolution image Ah and the 
others were degraded to twice the original pixel size. 

Modalities cover the optical spectrum, from blue to thermal infrared. The 
ratio of resolutions h/l ranges from 1/2 to 1/12. 

To assess the first property, the image B*kh synthesized at the resolution h 
for the modality k were filtered for high frequencies before resampling to 
degrade the resolution down to the resolution l: (B*kh)l. They were then 
compared to the original images Bkl. The filtering function was a sine 
cardinal (sinc) kernel truncated by a Hanning apodisation function of size 
13 times 13 pixels at the resolution h. 

To test the second and third properties, the Ah and Bkl images were degraded 
to the resolutions l (image Al) and v = l (l/h) (image Bkv), respectively. Then, 
the images B*kl were synthesized at the resolution l for comparison with the 
original images Bkl. The degradation was performed as for the first property. 

The comparison between the synthesized images (B*kh)l and the original 
images Bkh, or between B*kl and Bkl, was achieved by a visual inspection on 
the one hand, and by performing a difference pixel per pixel on the other 
hand. The discrepancies were analyzed and synthesized in five sets of 
criteria, which deal respectively with: 
• each modality k in a global way; 
• the statistical distribution of errors at pixel level for each modality k; 
• information correlation between the different modalities; 
• the multispectral aspect, that is the error in synthesizing spectral 

signatures (multi-modality signature); 
• the synthesis of the most frequent spectral signatures. 
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THE ILLUSTRATION CASE 

Images taken by the satellite SPOT illustrate the comparison. This case 
permits the application of all the methods. It is difficult enough and general 
enough to enhance the properties of each method. 

The images were acquired on 11 September 1990, over the city of 
Barcelona, which is a large city located in northeast Spain, on the 
Mediterranean coast. Its harbor is the busiest in Spain. The sub-scene used 
for the comparison is mostly comprised of urban districts, highways and 
railroads. It also exhibits small agricultural lots and mountainous areas 
covered by typical Mediterranean vegetation. 

Figure 9.1 displays an extract showing the western, newest districts of the 
city. The upper left part shows the panchromatic image SPOT P acquired at 
a spatial resolution of 10 m. 

A highway crosses the area from the northeast to the southwest. South of it, 
is a stadium with a gymnasium. North of the highway, a series of parallel 
elements can be seen; they are close to a very large building. Actually, these 
elements are made of vegetation or bear vegetation, as it appears in the 
color composite in Figure 9.2 where vegetation is in red. Without the set XS 
of multispectral images, they would have been mistaken as small-elongated 
buildings. This demonstrates the usefulness of color in image analysis on 
the one hand and the benefit of fusion for the synthesis of images on the 
other hand. In the upper left corner is the foot of the hill covered by sparse 
vegetation. Large avenues can be seen. Other streets are discernable. 

The image XS1 is displayed in the upper right part of Figure 9.1. It has been 
magnified by a factor of two, since its original resolution is 20 m. Lower 
left is the synthetic image obtained by the P+XS method (XS*1P+XS). The 
image XS*1RWM synthesized by the ARSIS-RWM method is in the lower 
right part. 

The image XS1 exhibits fewer details than the image P. It appears more 
blurred. The correlation between both images is very high. Nevertheless, 
one may note some differences in contrast between objects of large size in 
both images, due to the change in resolution and the difference in spectral 
bands. 

The parameter ho of spectral homogeneity has a value of 0.02. As an 
average, each triplet (spectrum) in this set B is borne by 5.7 pixels. These 
values are very low and mean that this set B is spectrally heterogeneous; it 
has a large number of triplets and the spatial distribution of these triplets 
shows high spatial frequencies. It is a difficult case for synthesis. 
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Figure 9.1. SPOT images of the city of Barcelona.  CNES SPOT-Image 
1990. Upper left: panchromatic image (resolution: 10 m). Upper right: 
image XS1 (green-yellow). Lower left: synthetic image XS*1P+XS. Lower 
right: synthetic image XS*1RWM. 

Table 9.1 gives some statistics and numbers for the set B. The mean values 
and the standard deviations are given in radiances and in gray levels. The 
calibration factor permits to convert gray levels into radiances and 
reciprocally. For a spectral band k, the radiance Rk is linked to the digital 
count (gray level) DCk by the calibration factor ak: 

Rk = DCk / ak 

The mean radiances in the three images XSk are similar. However, the 
standard deviations are different; that of the image XS3 is low compared to 
the others. It means that the dynamics of the images are very different. This 
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causes a problem to some methods, especially the IHS and Brovey methods. 
As assumed by the P+XS method, the sum of the mean values of the images 
XS1 and XS2 expressed in radiances is twice the mean value of the image P. 
This is not true at all in gray levels. 

This Table also reports on the correlation between the images Bkl (XSk) and 
Al (P) for each modality k. The image P is highly correlated to the images 
XS1 and XS2 and only weakly to the image XS3. This conflicts with the 
constraints of success for the methods within the projection and substitution 
group. 
 

 XS1 XS2 XS3 P 
Mean 58 48 55 53 

Standard-deviation 12 15 9 15 
Calibration 
coefficient 1.2181 1.22545 1.29753 1.39198 

Mean value in gray 
level 71 59 71 74 

Correlation 
coefficient with P 0.97 0.97 0.35 1.00 

Table 9.1. Mean radiances, standard deviations, and calibration 
coefficients of original images (in W.m-2.sr-1.µm-1). Mean values in gray 
levels. Correlation coefficient between the original spectral bands and the 
image P resampled at 20 m. 

When comparing images, one must pay attention to the contrast table (look-
up table) because it acts as a filter (together possibly with the printer) 
between the information and the human observer. In the case of the SPOT 
system, the radiances observed in the bands P, XS1, and XS2 are similar for 
a spectrally neutral target. In the particular case shown in Figure 9.1, the 
calibration factors are very similar for the bands P and XS1, and, thus, so 
are the digital counts. It follows that the same look-up table can be applied 
to each image in Figure 9.1 and that they can be visually compared. 

Beyond demonstrating the interest of merging images having different 
spectral and spatial resolutions, the visual inspection clearly shows the 
major properties of the two fusion methods. Details are highly visible in the 
image XS*1P+XS. This image is at times sharper than the image P: local 
contrasts are too much reinforced. The extreme values are also reinforced: 
the white areas are whiter, compared to the image P, and the dark areas are 
darker. This image is convenient to interpret but it is so similar to the image 
P that one may feel that the synthetic image XS*1P+XS does not correctly 
convey the spectral information that would be observed in the spectral band 
XS at a resolution of 10 m. 
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In the image XS*1RWM, on the contrary, the local contrasts are maybe too 
smooth. The high frequencies are not sharp enough; the actual spatial 
resolution is likely greater than 10 m. Gray tones are very similar to the 
image XS1, which denotes a good synthesis of the spectral content when 
improving the spatial resolution. 

COMPARISON OF THE METHODS 

The comparison is carried in two major phases: the visual analysis and the 
quantitative analysis. Each phase comprises the analysis of the synthesized 
product with respect to the three properties. The visual phase comprises 
another step, which is the visual assessment of the product B*kh. 

VISUAL ANALYSIS 

The visual assessment of the product B*kh aims at checking that the fused 
product is in conformity with what is expected. The actual image Bkh is not 
available for comparison but someone of experience may judge the major 
drawbacks and benefits of a fused image (see e.g., the discussion about Fig. 
9.1). In order to do that, one may use the original images Ah and Bkl, or 
Binterp

kh to guide the analysis. 

Each following step deals with one of the three properties. For the first 
property, images (B*kh)l are compared to the corresponding actual images 
Bkl. For the second and third properties, images under concern are B*kl and 
Bkl. For these three properties, the set of images Bkl is the reference and the 
synthetic products should resemble these images as much as possible. 

Firstly, each synthesized image B*k (i.e., (B*kh)l or B*kl) is visually screened 
with various look-up tables to explore its properties. Then the image B*kh is 
scrutinized together with the images Ah and Binterp

kh to refine the findings. 
The look-up table is adjusted as mentioned above for the case in Figure 9.1. 
This permits a comparison between any synthesized image and the original 
images A and Bk and between all synthesized images for a given modality k. 
The same operation is performed with the images B*kl, Al and Bkl. 

Finally, color composites are built using three images B*k (i.e., (B*kh)l or 
B*kl). Principal component analysis may be performed to construct the three 
components entering the color compositing. These color composites are 
analyzed separately and then are compared to the corresponding color 
composites made from the images Binterp

khl or from the actual images Bkl. 

For the comparison, one should allocate the same color code to the same 
spectrum in both sets of images B and B*. Here, dynamic allocation of color 
codes was performed using median-cut or similar technologies. The 
operation should apply to the ensemble of the sets B and B*, and not to each 
set individually. 
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A last comparison is made between the original set B and all the sets B* 
synthesized by each method. Figures 9.2 and 9.3 display these color 
composites B*l at the resolution 20 m for the methods IHS, PCA, P+XS and 
ARSIS-HPF, Model 1 and RWM. The color composite of the original 
images XS is shown in both images in the upper left corner to facilitate 
comparisons. Also displayed is the color composite made from the 
interpolated images B*lDup. The color coding is the same for all images: 
comparisons of colors can be made. These color composites are useful to 
assess the third property. Each color composite should be identical in terms 
of colors and details to the actual color composite in the upper left corner. 

The contrast-adjusted images B*k (i.e., (B*kh)l or B*kl) obtained by the 
various methods are visually fairly close and of satisfactory quality, except 
for the HPF and the duplication images. Details, or high frequencies 
structures, are more or less enhanced according to the fusion method. The 
dynamics in gray levels or radiances are also satisfactory; some methods 
induce bias, others reinforce the extreme values. 

Of course, the images resulting from the duplication or the interpolation 
techniques exhibit fewer high frequencies than the other images. There is no 
fusion at all, and there is no innovation in terms of high frequencies, in 
dynamics, or in spectra. The color composite B*lDup (Fig. 9.2, lower left) 
offers less details than the actual color composite Bl (Fig. 9.2, upper left). 
The contours are less sharp. The colors are very similar, the tones are the 
same but there is a lack in intensity and saturation compared to the original. 
While the original images Bkl are defining the ideal values for the products 
(B*kh)l and B*kl, the interpolated images (B*khDup)l and B*klDup give the 
bottom line for the quality of a fused product. If a fusion method offers 
lower quality than the interpolation, then fusion is useless or the method is 
inappropriate. 

The images synthesized by the IHS and PCA methods look nicely. They 
present sharp details, which are coming from the image Ah. Close 
examinations demonstrate that such enhancements become a drawback in 
the case of objects whose signal in the modality k is uncorrelated or anti-
correlated to that in the image A. 

Adjusting the contrast table for each image accommodates for linear 
changes in statistical distribution, and especially mean and variance. For the 
Brovey and IHS methods and at times the PCA method, these parameters 
are strongly modified relative to the original Bkl images. Hence, when the 
look-up table is adjusted to accommodate all the fusion products and the 
original images, such drawbacks clearly appear. The dynamics of the gray 
levels, and hence the spectra, of the products synthesized by these methods 
are very different from that of Bkl or Binterp

kh. 
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This clearly appears in Figure 9.2. The images B*klIHS synthesized by the 
IHS method exhibit a bias similar in the three bands compared to the 
original images Bkl. This would result into a lower intensity in the color 
composite (upper right). The variances of the synthesized images are much 
lower than the variances of the original images. The dynamics in each 
colored band (R, G, B) is low, there is not much variability in color tones 
and high frequencies are missing. 

On the contrary, the color composite B*lPCA synthesized by the PCA method 
(middle left) is visually close to the original composite. Details are there, at 
times too sharp. Colors are very similar globally but large differences may 
appear when looking closely to groups of pixels. 

Images synthesized by methods belonging to the projection and substitution 
group do not respect any of the three properties, except if the correlations 
between the images Bkl and Al are very high, for all modalities. 

The images B*Brovey and B*P+XS are visually satisfactory. High frequencies 
are present and the contours are sharp. This is the main reason why such 
techniques (relative spectral contribution) are usually employed when the 
visual interpretation of fused products is an important topic. The contours in 
these images may be at times sharper than the images Ah or Al themselves. 
The extreme parts of the statistical distribution of radiances or gray levels 
may be more frequent than in the original distributions: the dark areas 
appear darker, and the white ones whiter than in the original images. 

The Brovey method adapts the statistical distributions of gray levels of the 
images Bkl and Ah so that they are similar. This induces very large 
differences between the statistical distributions of values of the synthesized 
images and the actual ones. This prevents the Brovey method from 
respecting any of the three properties. In the specific case shown in Figure 
9.2, the bias is so large that the color composite made with the color coding 
of the actual composite exhibits a very few tones and is mostly dark. 

The comparison of the color composite made from the images B*klP+XS with 
the actual one does not reveal drawbacks. They are very close one to each 
other in details and in colors. Actually, some noticeable differences may be 
found in some parts, but they are few. They are due to the changes made in 
the statistical distributions of the values. 

The images synthesized by the HPF method are usually of poor quality for 
the visual aspects. They contain too many high frequencies: the contours are 
enforced in an excessive manner. The first property is not always respected, 
though it should be by principle. The two others are much less respected 
because there is too much high frequencies innovations in the synthesized 
images. This is fully illustrated in Figure 9.3 (upper right). Too many 
artifacts are introduced in the image. The details are so enhanced that the 
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image is useless for visual interpretation. Globally, the colors are similar to 
those of the actual composite (upper left): this illustrates the respect of the 
first property. However, the differences in high frequencies are very large; 
close examination of pixels, or groups of pixels, shows large differences 
between the two color composites. 

The images synthesized by the other methods within the ARSIS concept are 
satisfactory for the visual aspects, as illustrated in Figure 9.2 (lower half). 
These methods are inherently built to respect the first property, with 
reservations regarding the degradation process as discussed in previous 
Chapter, and therefore the synthesized images are equal to the actual images 
for the medium and low frequencies. 

The introduction of high frequencies and its quality depends upon the Inter-
Modality Model. The contours in the images synthesized by the Model 1 are 
at times too sharp: the high frequencies are those found in the image Ah. As 
for the Model 2 and RWM, the high frequencies are at times not sharp 
enough; the actual spatial resolution is likely greater than the resolution h. 
The statistical distributions of values of the synthesized images and the 
actual ones are close: there is no bias and the variances are fairly similar. 

The synthesis of the spectra in the course of the improvement of the spatial 
resolution is usually satisfactory. The color composites are very close to the 
actual ones. In Figure 9.3, the composite made using the Model 1 exhibits 
more details than that made using the model RWM. As for the colors, the 
differences are small and quantitative assessments of the differences are 
necessary to distinguish between these methods. The methods within the 
ARSIS concept perform quite well, except the HPF method. 

Whatever the method, good quality can be reached only if the images Bkl 
and Al are well geometrically aligned. A difference of one pixel in co-
registration leads to unsatisfactory results. Actually bad co-registration is 
the major cause of unsatisfactory results for the methods within the ARSIS 
concept group. For the others, the effect of the bad co-registration is the 
same but the major cause of bad quality lies in their very construction. 

As a whole, one may conclude that most fused products are of better quality 
than are the interpolated images and that fusion is worthwhile. This is not 
always the case for several methods, including the IHS, Brovey and HPF 
methods. 
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Figure 9.2. Original (upper left, © 
CNES SPOT-Image 1990), IHS 
(upper right), PCA (middle left), 
P+XS (middle right) and 
duplication (lower left). Sizes of the 
image are 512 x 512 pixels. 
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Figure 9.3. Original (upper left, © CNES SPOT-Image 1990), HPF (upper 
right), Model 1 (lower left) and RWM (lower right). 

 

QUANTITATIVE ASSESSMENT OF THE FIRST PROPERTY 

The details of the quantitative comparison further demonstrate that the IHS, 
PCA, Brovey and P+XS methods do clearly not satisfy the first property. In 
these methods, the synthesis of the image B*kh is influenced by the high 
resolution image Ah and the other images Bkl for the modalities j≠k. This 
influence is irrespective of the size of the structures, that is that the large 
structures observed in these images Ah and Bjl are partly included in the 
synthesized image Bkh. A mathematical analysis of these methods clearly 
shows that the influence of Ah and of the images Bjl on the synthesized 
image B*kh does not disappear when reducing the resolution from h to l. 
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These comments can be extended to any method belonging to the projection 
and substitution group or to the relative spectral contribution group, 
including the generalized methods. 

The methods built within the ARSIS concept are by essence built to satisfy 
this first property, with reservations regarding the degradation process as 
already said. However, the HPF method does not always satisfy this 
property, mostly because the Laplacian filtering is inappropriate in most 
cases to extract the high frequencies and only them. 

These quantitative findings substantiate the conclusions already drawn from 
the visual analysis. 

QUANTITATIVE ASSESSMENT OF THE SECOND PROPERTY 

Compared to the first property, it was found that the testing of the second 
and third properties better enhances the qualities and drawbacks of a 
method. This is why an emphasis is put on these two properties. For the 
second property, statistics are computed, which summarize the differences 
between the original Bkl images and the synthesized B*kl images. They 
provide a global view of the quality of a method to synthesize each 
individual image Bk. Some of these parameters are reported in Tables 9.2 
and 9.3 for the illustrating case. Also reported are the values for the pure 
interpolation (here duplication in this specific case). 

Some methods perform better than others do; only a few provide 
satisfactory results. The IHS method often exhibits a noticeable bias (the 
difference between the mean values of the images Bkl and B*kl). This bias 
may be partly overcome by a priori equalization of the dynamics of the 
images Bkl and Al. This would also reduce the differences in variance, and 
more generally would provide better results if the correlation between the 
images Bkl and Al were large. This equalization step is made at the expenses 
of the physical significance of the images. This remark also holds for the 
PCA and the HPF methods. The IHS method introduce either too much high 
frequency signal in the synthesized image (the variance is too low), or on 
the contrary not enough. This depends upon the scene and upon the mutual 
correlation between bands and the variance in each band. The introduction 
of high frequencies will be either too large or too low, and sometimes 
satisfactory. This is true for the other parameters under examination for this 
second property. 

In the case illustrated in Table 9.2, the bias between the actual images XSk 
and the synthesized images XS*kIHS is large. The standard deviation of the 
differences is acceptable. The IHS method does not introduce enough high 
frequency information. The difference in variance is positive and large 
(Table 9.3), especially for the image XS3, which is only weakly correlated 
to the high resolution image P, while the two other images are highly 
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correlated. The images XS*1 and XS*2 are well correlated with the actual 
images, but this is not the case of the images XS*3. This is in full agreement 
with the analysis of the equations of the method. 
 

 XS1  XS2  XS3  

 Bias 
Standard-
deviation 

Bias 
Standard-
deviation 

Bias 
Standard-
deviation 

Duplication 0 % 7 % 0 % 9 % 0 % 7 % 
IHS - 10 % 8 % - 10 % 8 % - 10 % 11 % 
PCA - 4 % 7 % - 6 % 10 % 1 % 6 % 
Brovey 64 % 10 % 64 % 17 % 65 % 13 % 
P+XS 1 % 7 % 1 % 6 % 0 % 7 % 
HPF 1 % 36 % 0 % 43 % 0 % 38 % 
Model 1 0 % 4 % 0 % 5 % 0 % 8 % 
Model 2 0 % 4 % 0 % 5 % 0 % 7 % 
RWM 0 % 3 % 0 % 4 % 0 % 5 % 

Table 9.2. Some statistics on the differences between the original and 
synthesized images for the three bands. The bias and the standard deviation 
of the differences are relative to the mean value of the image XSk. The 
relative root mean square error (RMSE) is equal to the square root of the 
quadratic sum of the relative bias and the relative standard deviation. 

 
 XS1  XS2  XS3  

 
Diff. in 

variance 
Correl. 
coeff. 

Diff. in 
variance 

Correl. 
coeff. 

Diff. in 
variance 

Correl. 
coeff. 

Duplication 7 % 0.94 5 % 0.96 11 % 0.91 
IHS 22% 0.92 14% 0.96 55 % 0.78 
PCA - 47 % 0.98 - 51 % 0.98 8 % 0.92 
Brovey 70 % 0.97 77 % 0.98 81 % 0.69 
P+XS - 35 % 0.97 - 19 % 0.98 11 % 0.91 
HPF - 420 % 0.66 - 267 % 0.71 - 57 % 0.48 
Model 1 - 4 % 0.98 - 5 % 0.99 - 17 % 0.89 
Model 2 - 3 % 0.99 - 3 % 0.99 - 5 % 0.92 
RWM 5 % 0.99 3 % 0.99 9 % 0.95 

Table 9.3. Some statistics on the differences between the original and 
synthesized images for the three bands. The difference between the actual 
variance and the estimate is relative to the actual variance. The correlation 
coefficient is computed between the actual image XSk and the estimate 
XS*k.  

The same comments hold for the PCA method. The PCA method performs 
slightly better than the IHS method as a whole. The bias is usually less than 
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that of the IHS products. The PCA method also behaves better for the 
modalities that are not well correlated with the images Al. Nevertheless, it is 
far from being satisfactory. 

A large bias is usually found for the fused products synthesized by the 
Brovey method. This is due to the very construction of the synthesized 
image B*klBrovey, which, briefly, written, is equal to the image Bkl, multiplied 
by the ratio of n times the band Al and the sum of the n images Bjl for the 
modalities j≠k. Since the method does not request the computation to be 
made in radiances, a difference in mean between the images Bkl, Bjl and Al 
may induce a strong bias for all synthesized images. The other methods of 
the same group impose the equality of the mean values (i.e. a null bias). The 
relative error at pixel level in reconstructing the original image is usually 
large (see e.g., the standard deviation in Table 9.2). The equations of the 
method also imply that the variance of a synthesized image B*kl is a 
combination of the variances of all other images Bjl(l/h), and of the image Al. 
It follows that the variance of the B*kl image strongly differs from that of 
the original image Bkl. In Table 9.3, the variance of B*kl is too small by a 
relative amount of 70 - 80 percent. The correlation between the actual 
images Bkl and the synthesized images B*kl is high as far as the correlation 
between the Bkl and Al images is high. This is illustrated in Table 9.3 by the 
comparison between the results attained for the images XS*1 and XS*2 on 
the one hand, and the image XS*3 on the other hand. 

The P+XS method is unbiased by construction, as are the methods of the 
spectral relative contribution group (but the Brovey method). The standard 
deviation of the differences is usually acceptable (see e.g., Table 9.2). As 
already mentioned, it introduces too much signal from the Al image into the 
B*kl images. This translates in a large amount of additional variance 
compared to the actual images (see Table 9.3 for images XS1 and XS2). This 
method reduces to duplication for the images acquired in spectral bands not 
covered by the high-resolution band. Accordingly, the variance of these 
images is too low: there is no fusion and no addition of signal from another 
sources (see Table 9.3 for image XS3). 

The HPF method is rather disappointing. All the contours are enforced but 
excessively. It induces a low bias, but the standard deviation of the 
differences is very large (approximately 40 percent in Table 9.2). The 
amount of energy associated to the high frequencies injected by this 
filtering technique is too large, and the amount of excessive variance is 
huge (up to 420 percent in Table 9.3). The correlation between the 
synthesized and original images is very low for all modalities and clearly 
indicates the weak similarities between the actual images and the 
synthesized ones. 
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The best results are attained by the methods using the wavelet transform. 
All methods offer approximately the same level of quality. The bias is zero 
and the standard deviation is usually small. Almost all pixels exhibit a 
relative error less than 10 - 20 percent in the synthesis. The fused products 
are usually close to the ideal values. The quality is at times not acceptable. 
A fine analysis reveals that it comes mostly from inaccurate geometrical 
alignment and then from the inappropriateness of the models that are unable 
to represent the relationship between the high frequencies (more exactly the 
wavelet coefficients) of the various modalities and the change of this 
relationship with the change in spatial resolution. 

The Model 1 exhibits lower quality for images that are not correlated with 
the high resolution band Al. In this model, the high frequencies of the Al 
image, expressed in wavelet coefficients, are added to the Bkl image, 
possibly after histogram equalization. The low correlation coefficient 
between the Bkl and Al images denotes a poor similarity in small size 
structures. Accordingly, the Al wavelet coefficients do not represent the 
actual corresponding Bkl wavelet coefficients. It results that the synthesized 
variance is larger than the actual one (Table 9.3 for image XS3) and that the 
correlation coefficient between the actual images and the synthesized 
images are not high enough. Finally, it should be noted that the results are 
better for the bands spectrally covered by Al. The two other models, Model 
2 and RWM, are capable of producing satisfactory results for all bands. 

QUANTITATIVE ASSESSMENT OF THE THIRD PROPERTY 

The performances of each method in synthesizing the multispectral 
information, i.e. the set Bl, have been studied. The differences between the 
sets Bl and B*l are quantitatively analyzed and the findings substantiate the 
visual analysis of the color composites. 

All methods, but those making use of the wavelet transform, increase the 
correlation between the images B*kl and Al, compared to the existing 
correlation between the images Bkl and Al. This provides a first indication 
that the multispectral character of the synthetic images provided by these 
methods may be only partly verified. 

The Brovey method is not able to synthesize in an acceptable way the 
multispectral character. It flattens out the spectral diversity of a scene: the 
number of spectra found in the set B*l is much lower than the actual 
number. On the contrary, the HPF method synthesizes too many spectra 
(about twice more). This is due to the large amount of energy found in the 
high frequencies of the synthesized images, as already noted. As expected, 
the interpolation method exhibits fewer spectra than the original 
(approximately half) because of the high spectral heterogeneity of the scene 
under study associated with large amount of energy in high frequencies. 
Large changes occur in the statistical distribution of spectral signatures 
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when changing the spatial resolution. The IHS method performs from bad to 
good, depending upon the case. The other methods perform from correctly 
to very satisfactory (Models 2 and RWM). 

Of major importance are the performances of each method in synthesizing 
the most frequent actual spectra. Consider the spectra that have a frequency 
of at least 0.01 percent relative to the total number of pixels. The total 
number of pixels that are bearing these most frequent spectra is a large 
amount of the total number of pixels in the image: these spectra are 
predominant in the multispectral character of the set B. Hence synthesizing 
them accurately is of primary importance in classification purposes or true 
color visualization. The sets of images exhibiting large spectral 
heterogeneity combined with most of the energy in the high frequencies do 
not possess predominant spectra. This is the case of the set of images (R, G, 
B) of the baboon, whose multispectral character is very difficult to 
synthesize. 

Table 9.4 illustrates these performances for the case of Barcelona. Each 
spectrum (here, a triplet) under consideration is borne by at least 26 pixels 
in the image (0.01 percent of the total number of pixels). The total of pixels 
that are bearing these predominant triplets amounts here to 22 percent of the 
total number of pixels in the image. These most frequent, or predominant, 
spectra are those causing the colors coding in the color composites shown in 
Figures 9.2 and 9.3. 

For each of these spectra, one looks whether it is present or not in the set of 
synthesized images B*l. Then the number of pixels bearing this spectrum in 
the synthesized set of images is compared to the corresponding number in 
the original set of images Bl. The differences are summed up for all the 
spectra, giving the difference with original. A difference equal to zero 
means that all the predominant spectra are the same than in original images 
and that they are borne by the same number of pixels. 

Very bad performances are observed for the IHS method. It is usually 
unable to retrieve most of the predominant spectra. In the case of Barcelona 
(Table 9.4), the set B*l of synthesized images only exhibit less than half of 
the most frequent triplets (43 percent). The performances are even worse for 
the number of pixels bearing these triplets. About 90 percent of the pixels 
are missing. It means that the predominant triplets are not correctly 
synthesized by the IHS method and even for those it retrieves, they are not 
correctly allotted to the pixels: this would induce large errors in cartography 
after classification. If all predominant triplets were representing one unique 
geographical feature, the surface retrieved from the synthetic set B* would 
be reduced by 90 percent compared to the actual one. 

The performances of the Brovey method are bound to the non-respect of the 
mean values in its construction. This creates large bias in all images B*kl, 
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which impedes the Brovey method from retrieving any of the most frequent 
spectra. If the dynamics in gray levels of all images Bkl(l/h) and Al are 
adjusted prior to the fusion, this creates spectral distortions and there is no 
chance to retrieve the predominant spectra. This method should be avoided 
if the multispectral character of the set of images B is of importance. 
 

 Number of 
predominant 

triplets 

Difference with 
original (ideal: 0) 

(in percent) 

Number of 
pixels 

Difference with 
original (ideal: 0) 

(in percent) 
Original 1 675  60 372  
Duplication 1 675  0 (0 %) 61 916  -1 544 (-3 %) 
IHS 721  954 (57 %) 6 961  53 411 (88 %) 
PCA 1 673  2 (0 %) 52 186  8 186 (14 %) 
Brovey 0  1 675 (100 %) 0  60 372 (100 %) 
P+XS 1 671  4 (0 %) 35 864  24 508 (41 %) 
HPF 1 675  0 (0 %) 28 849  31 523 (52 %) 
Model 1 1 675  0 (0 %) 53 876  1 996 (3 %) 
Model 2 1 675  0 (0 %) 60 002  370 (1 %) 
RWM 1 675  0 (0 %) 60 195  177 (0 %) 

Table 9.4. Some statistics on the performances in the synthesis of the 
multispectral character. Number of the triplets borne by at least 26 pixels 
(0.01 percent of the total number of pixels) for each method and the 
difference with the actual value. Number of pixels bearing these triplets for 
each method and the difference with the actual value. 

The other methods provide results that are more satisfactory. This means 
that each of these methods is capable of synthesizing the predominant 
spectral signatures. If an unsupervised classification is made by using only 
the spectral signatures, without additional morphological features or other 
information, these methods will provide more or less the same number of 
classes close to the actual one. The best performances are found for the 
interpolation methods and those belonging to the ARSIS concept group. 
This can be explained by their respect of the first property. Because the 
most frequent spectra are borne by many pixels, which are forming regions, 
the frequencies observed for the corresponding pixels are ranging from high 
to medium or even low. Thus, a possible inaccuracy in the synthesis of the 
high frequencies in the images B*kl does not prevent the synthesized images 
to exhibit these most frequent spectra since the latter are also present at 
lower frequencies, i.e. in the set of images Bl(l/h). 

However, while the predominant spectra are correctly synthesized, the 
corresponding number of pixels differs from original for most of the 
methods. The HPF method retrieves a few of the total number of pixels 
belonging to these predominant classes because of the too large amount of 
energy it introduces in the high frequencies. In the case of Barcelona, only 
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half of the pixels are found. If cartography is at stake, it follows that the 
resulting map may be inaccurate, except if, by chance, class aggregation 
processes overcome this drawback. The P+XS method is also inaccurate: 
too many pixels are missed. This comes from the enhancement of the high 
frequencies, as for the HPF method but with a much more limited extent. 

The performances of the PCA method are varying. It may perform better 
than the above-mentioned methods but is usually of low accuracy. For the 
reasons mentioned above, the interpolation method obtains good results, 
better than many methods. This is fully illustrated in the case shown in 
Table 9.4. This seriously poses the question of the expected benefits of the 
fusion of images in some cases where classification techniques will provide 
results wherein high frequencies are of low importance.  

The Model 1 usually obtains good results, while the RWM and the Model 2 
achieve the best results of all methods. These results are most often 
excellent. All the spectra are exactly retrieved and the numbers of retrieved 
pixels carrying one of these spectra in the original and synthesized images 
are close to each other. In the example in Table 9.4, less than 1 percent of 
the total number of pixels is missing. This ensures on the one hand a good 
classification, and on the other hand a good accuracy in mapping from this 
classification.  

GLOBAL ERROR IN THE ILLUSTRATION CASE 

The global errors summarize the various parameters seen above in the 
quantified assessment of quality. Three of them have been seen in Chapter 8 
and are reported in Table 9.5 for the illustration case of Barcelona. These 
global errors are the sum of the root mean square errors for each modality, 
the RASE (relative average spectral error) and the ERGAS (relative 
adimensional global error in synthesis, in French "erreur relative globale 
adimensionnelle de synthèse"). 
 

 Sum of RMSE RASE ERGAS 
Duplication 12.2 7.5 3.8 
IHS 21.6 13.4 6.7 
PCA 13.6 8.6 4.4 
Brovey 105.2 65.1 32.5 
P+XS 10.7 6.7 3.3 
HPF 62.6 38.6 19.5 
Model 1 9.3 6.0 3.0 
Model 2 8.1 5.2 2.6 
RWM 6.5 4.1 2.0 

Table 9.5. Global errors for each method for the illustration case 
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The values of these global errors are in agreement with the discussion 
above. Recall that an error ERGAS less than 3 denotes a good quality. The 
three global errors give the same ranking for the methods. The greatest 
global errors are found for the Brovey method. Then come the HPF method, 
the IHS and PCA methods and the duplication method. The P+XS comes 
next and is close to good quality. The other methods within the ARSIS 
concept group provide good quality results. They are close to each other, the 
best results being attained by the model RWM. 

In Figure 9.4 are reported the errors ERGAS found for the various fused 
products obtained by the application of the different methods to the 
different cases. The errors for the methods belonging to the projection and 
substitution group and for the Brovey method have not been reported here; 
only were kept the most performing methods. The errors for the Model 1 
cases have not been reported either, because these cases are too few. 
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Figure 9.4. Relative global adimensional error ERGAS for the various 
cases and methods. 

As expected, most images produced by interpolation methods are of low 
quality: the ERGAS is greater than 3 in all cases but one. These methods are 
not calling upon fusion at all and their results are the baseline against which 
the fused products are to be compared to demonstrate the benefits of the 
fusion process. The errors ERGAS associated to the products of the HPF 
method are always greater than 3 and are larger than those reached by the 
interpolation methods. There is no benefit at all in using such a method. The 
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same is true for the projection and substitution methods (not shown in 
Figure). 

The P+XS products exhibit ERGAS that are often greater than 3. They are 
similar to those of the interpolation methods. This comes from the 
enhancement of the high frequencies in the P+XS products, which induces 
large root mean square errors. However, the visual quality of the P+XS 
products should not be neglected, especially when compared to the 
interpolated products, provided the sets of images A and B are 
contemporary. 

The best results are produced by the methods using the wavelet transform. 
Many cases exhibit an ERGAS less than 3 for the ARSIS-Model 2 products. 
In the other cases, it is close to 3. The results attained by the ARSIS-Model 
RWM are better, though at times values much greater than 3 can be reached 
denoting an unacceptable quality. A fine a posteriori analysis of such cases 
reveals that the geometrical alignment performed by the providers of images 
is not accurate enough. Evidently a local shift of one pixel or more between 
the images Al and Bkl has a strong influence upon the synthesis of the high 
frequencies and affects all methods, except the interpolation methods of 
course. Other cases of bad quality evidence the inaccuracy or 
inappropriateness of the models in the ARSIS concept to convert the 
wavelet coefficients representing the high frequencies of one modality (Ah) 
into another one (Bkl). The test case of the baboon is such a case. 

CONCLUSIONS ON THE METHODS 

From the previous section, the methods were ranked according to their 
results with respect to the three properties listed in Chapter 7; they are 
briefly discussed from the worst to the best. This ranking is based on an 
average. 

Brovey method, color normalized method 

The Brovey transform is not relevant at all, mostly because there is a strong 
bias error due to its very construction. There is no constraint on the mean 
values. The same conclusions hold for the "color normalized" method. 
There is also a strong spectral distortion induced by the equations of the 
method. The constraint on the mean values may be set up through the 
appropriate adjustment of the gray levels of the images Al and Bkl. The bias 
would disappear but the spectral distortion would increase. Such methods 
will never reproduce the spectral content in an accurate way, except in rare 
cases. 
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HPF method 

As a possible implementation of the ARSIS concept, better results were 
expected from the HPF method. This method often leads to disappointing 
results. Too much variance is introduced in the synthesis and this leads to an 
excessive enforcement of contours as well as to a low correlation coefficient 
between synthesized and original, or actual, images. The quality of the 
synthesis of the predominant spectra is bad: though usually all these spectra 
are retrieved, a large amount of the pixels carrying these spectra are 
missing. 

IHS method 

The IHS method often produces nice-looking results but not always. The 
results are of poor quality: the bias is usually high and the correlation 
coefficient between the original, or actual, and synthesized images is low. 
Furthermore, it strongly distorts the spectral content of the synthesized 
images and the synthesis of the multispectral character of the set B with the 
change in resolution is of low quality. 

PCA method 

The PCA method also produces nice-looking results. It can apply in a more 
general fashion compared to the IHS method; it is not limited to three 
modalities as inputs. It usually performs better. The bias is small, but too 
much structures of the high resolution image Ah are injected into the low 
resolution images Bkl. The synthesis of the predominant spectra is often 
acceptable. Accordingly, it may be recommended instead of the IHS.  

These projection and substitution methods deliver products of inconstant 
quality. Using the ERGAS error, this quality is often bad, if not always. 
This study and several other authors find that the results achieved by such 
methods are inferior to the results obtained by the relative spectral 
contribution methods. 

Interpolation method 

The interpolation methods provide fairly good results though they do not 
call at all on the high resolution image Ah. Of course, these products do not 
exhibit as much details as the others do. However, if the similarities with 
the actual observations or the multispectral properties of the fused products 
are at stake, one may legitimately prefer an interpolation technique to the 
above mentioned methods, especially when considering the extra resources 
requested. 

The performances of the interpolation methods constitute the baseline 
against which the performances of the other methods should be compared. 
If the synthesizing method performs better than the interpolation methods, 
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the fusion is worthwhile. Otherwise, it is not and this regards the Brovey, 
HPF, IHS and PCA methods. 

P+XS method 

Belonging to the relative spectral contribution group of methods, the P+XS 
method performs better than the projection and substitution methods. 
Though it is limited in itself to the processing of the images provided by the 
SPOT system, it is a very good example of the generalized relative spectral 
contribution methods. Results are usually not satisfactory. Of course, it 
performs like duplication or interpolation for the modalities that are not 
encompassed by the modalities of set of images A. For the other modalities 
the results are not good. It introduces too many high frequency signals in 
the synthesized images. It is sensitive to the time lag between the two sets 
of images A and B. Finally, the frequencies of occurrence of the 
predominant spectra are badly synthesized. However, the effective visual 
enhancement performed by the P+XS method may be recognized. 

Model 1, Model 2 and RWM methods 

The three methods using the ARSIS concept with wavelet transform provide 
similar results, which are of good quality and fairly close to the ideal values. 
ARSIS Model 1 (identity) does not perform so well for the modalities, 
which are not encompassed by the set of high resolution images A. 

ARSIS Model 2 and RWM methods perform the best. They achieve good 
quality products. The quality of the synthesis of the predominant spectra is 
usually impressive; it depends upon the complexity of the scene with 
respect to the spectral heterogeneity in combination with the high 
frequencies. Another striking feature compared to the other methods is that 
they are capable of achieving good results for all modalities, including those 
which are not encompassed by the set of high resolution images A, to a 
certain extent of course. All published comparisons show that the ARSIS 
concept, combined with the wavelet transform and the multiresolution 
analysis leads to the best presently achievable results. 

The conclusion is that only a very few methods achieve satisfactory results 
(Model 2, RWM). The fusion process is very often worthwhile if one of 
these two methods is employed. However, the quality reached by these 
methods is not always satisfactory. Further investigations are needed to 
improve these two methods or to design new ones that perform better. There 
are two ways of improvement. One deals with the modeling of the content 
of the information within a modality. Several tools exist for the 
multiresolution analysis and for the modeling of the high frequencies in the 
time-frequency domain. They have different properties and some may be 
more adapted than others, resulting in a better quality of the synthesized 
images. The second way is expected to bring definite improvements. The 
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modeling of the inter-modality behavior of the small-size structures (high 
frequencies) is central in the ARSIS concept. The models presently 
available are rather straightforward. Though they already produce 
satisfactory results, better than other methods, efforts should be made to 
improve them and finally provide better synthesized images. They are 
mostly based upon statistical adjustment of some properties representing the 
signal dynamics. Physical laws should be taken into account in these 
models. In addition, further work should verify that these two methods and 
others of equivalent quality, or better, could enter a production system 
delivering fused products with a controlled quality. 

INFLUENCE OF THE TIME LAG BETWEEN THE TWO SETS OF IMAGES 
ON THE QUALITY OF THE FUSED PRODUCTS 

The images Ah and Bkl may not have been acquired at the same time. Hence, 
changes may be observed between the image A and the image Bkl that are 
only due to this time lag. These changes should be taken into account by the 
synthesis method in order to avoid to introduce artifacts in the synthesis of 
the image B*kh. This section discusses the performances of the methods with 
respect to that problem. The analytical analysis is illustrated by a specific 
case. Another illustration was also provided in Chapter 7 for the IHS 
method. 

ANALYTICAL ANALYSIS 

Assume two instants t and t0. Assume that images Bkl of the set B have been 
acquired at time t0 and the image Ah at instant t. Assume that one may write: 

Ah(t) = Ah(t0) + ∆Ah [9.1] 

By reporting this equation in the equations of Chapter 7, the influence of the 
time lag on the synthetic images B*kh produced by a method can be 
assessed. This influence will be characterized by the difference: 

∆B*kh = B*kh(t0, with Ah(t0)) - B*kh(t0, with Ah(t)) [9.2] 

where B*kh(t0, with Ah(t)) denotes the image synthesized from the images Bkl 
at time t0 and Ah at time t. 

For the generalized relative spectral contribution method, this difference is 
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This equation shows that the time lag has an influence on all scales. The 
difference is proportional to the difference ∆Ah and thus may be very 
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important. The same comments hold for the projection and substitution 
methods. 

The influence is a bit more complicated to express for the methods within 
the ARSIS concept. It depends upon the number of scales used for the 
multiresolution analysis and the complexity of the inter-modality model to 
infer the missing wavelet coefficients. Anyhow, the influence is limited to 
the scales that are involved in the fabrication of the model. In the simplest 
case (the Model 1 and the HPF method), the influence is limited to the 
range of the highest frequencies [1/l, 1/h] under the form of a difference in 
the wavelet coefficients CB*k

Z
h-l: 

∆CB*k
Z

h-l = C∆A
Z

h-l [9.4] 

where C∆A
Z

h-l are the wavelet coefficients for the scales between h and l. 
Thus, the time lag will introduce high frequencies artifacts in the 
synthesized images. The frequencies that are less than 1/l will remain 
unchanged (first property). Other models may take care of such artifacts and 
decrease their influence. 

The conclusion of this analysis is that the influence of the time lag on the 
fused products strongly depends upon the performances of the method 
under concern with respect to the first property. This property is "any 
synthetic image B*kh once degraded to its original resolution l (image 
(B*kh)l), should be as identical as possible to the original image Bkl". The 
greater the similarity between Bkl and (B*kh)l, the lower the influence of the 
time lag. Except the HPF method, the methods belonging to the ARSIS 
concept group respect this first property better than the others and thus offer 
results of better quality with respect to the time lag. 

EXAMPLE OF THE THREE GORGES DAM 

The Three Gorges Project in China is the largest water conservancy project 
ever built in the world. Figure 9.5 is a color composite image made from 
images taken by the satellite SPOT. The Yangtze River is flowing from left 
(West) to right; it appears in blue-green. The river is enclosed in steep relief 
(Fig. 9.6). The dam is constructed in the elbow of the river. The northern 
bank is equipped with a pass for large ships; this pass is clearly visible in 
Figure 9.5. 

The reservoir is of a canyon and river-like reservoir with a total length of 
about 600 km and average width of 1.1 km (Fig. 9.6). It is less than twice 
the width of natural alluvial channel and the storage capacity of the 
reservoir is 39.3 billion of cubic meters with the normal pool level (NPL) at 
175 m. 

The Three Gorges Project is a multi-purpose hydro-development project, 
producing comprehensive benefits mainly in flood control, power 
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generation and navigation improvement. The Yangtze River is the major 
axis of circulation for goods and people in this region and has an essential 
role in the economy of central China. It experiences dramatic flooding. In 
summer 1998, 4,000 persons were killed and around 230 millions 
inhabitants were affected. 

The preparation of the Three Gorges building site started in 1993. The 
detection of geological problems as faults, landslides and rockfalls, that can 
affect the riverbanks, is of tremendous importance for evaluating 
environmental and human impacts of the future reservoir. The geological 
survey has been entrusted to the Chengdu University, which selected remote 
sensing as a mean for studying the upstream geological impact of this 
project. 

Satellite images from the SPOT system were used to achieve the geological 
survey. The detection of geological hazards is performed by a photo-
interpretation of color composites of such images. Photo-interpreters are 
able to locate the active faults and the landslides. The geologists working on 
the dam site were very satisfied with the possibility of analyzing fused 
products with a resolution of 10 m instead of the original images XS at 20 
m. The benefits were on the accuracy of the detected lineaments (lower rate 
of false detection) and on comfort (easy to do, less time consuming). 

Yang et al. explored the influence of the time lag between the days of 
acquisition of the images SPOT P and XS for different fusion algorithms1. 
Their findings are reproduced here with their permission to illustrate the 
analytical analysis. 

The set of data available is comprised of three panchromatic images SPOT 
P from 1990, 1997 and 1998 and a multispectral image SPOT XS from 
1998. The comparison of the three panchromatic images (Fig. 9.7) shows 
that over these years, significant changes have taken place on both sides of 
the Yangtze River at the dam site. 

                                                           
1 W. Yang, F. Cauneau, J.-P. Paris and T. Ranchin. Influence of landscape changes 
on the results of the fusion of P and XS images by different methods. In Proceedings 
of the third conference "Fusion of Earth data: merging point measurements, raster 
maps and remotely sensed images", Sophia Antipolis, France, January 26-28, 2000, 
Thierry Ranchin and Lucien Wald Editors, published by SEE/URISCA, Nice, 
France, pp 47-56, 2000. 
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Figure 9.5. Color composite of the synthetic images XS*RWM (resolution 10 
m). The original images XS were taken in November 1998. 
 

 

Figure 9.6. Artist view 
of the Three Gorges 
Project (note the steep 
relief) 
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Figure 9.7. Extract of a 
panchromatic image of the Three 
Gorges site in 1990 (upper left), 
1997 (upper right) and 1998 
(lower left).  CNES SPOT-
Image 1990, 1997, 1998. 

One may follow the construction of the dam in Figure 9.7. The upper left 
image SPOT P was taken in 1990 before the beginning of the construction 
in 1994. The upper right image was taken in 1997. Compared to the image 
of 1990, the south bank of the elbow moved slightly southwards. Large 
human settlements are visible in the left part (clear tones). On the north 
bank, the pass for ships is almost completed. An artificial island was created 
in the stream. A bridge and several roads were built. In 1998 (lower left 
image), the pass is completed and the artificial island has grown. 

Each of these images P is fused with a set of spectral images XS acquired in 
1998 at the same time than the image P1998. Figure 9.8 displays the image 
XS1 (green-yellow band) at a spatial resolution of 20 m. The structures are 
very similar to those observed in the image P1998. They differ from those 
observed in the image P1997 especially in the mainstream of the river. 
Finally, they strongly differ from those in the image P1990. Because of the 
very large changes observed over the years, this area and these sets of 
images are well suited to a case study of the influence of landscape changes 
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on the results of the algorithms. Fusing images with such differences in 
structures is a challenge. 
 

 
Figure 9.8. Original XS 1 image of the Three Gorges Dam, China, acquired 
in November 10, 1998 (resolution 20 m).  CNES SPOT-Image 1998.  

Three algorithms were scrutinized: the high-pass filtering (HPF) algorithm, 
the model RWM within the ARSIS concept (ARSIS-RWM) and the P+XS 
algorithm. They were applied to the three following sets of images: 
• images XS acquired in 1998 (playing the role of the images Bkl) and P 

acquired in 1990 (P1990) (playing the role of the image Ah); 
• images XS acquired in 1998 and P acquired in 1997 (P1997); 
• images XS acquired in 1998 and P acquired in 1998 (P1998). 

Nine (three sets of images times three methods) synthesized multispectral 
images at 10 m were obtained. Actually, the IHS algorithm was also used. 
However, regarding the objectives of the study, the images synthesized by 
the IHS algorithm offered more or less the same characteristics than the 
fused images produced by the P+XS algorithm. For the sake of the 
simplicity, the images output by the IHS algorithm are not discussed here. 
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In a first phase, the influence of the time lag between the images P and XS 
was assessed for each method separately. It was assumed that the images 
XS* synthesized at a resolution of 10 m using the panchromatic image taken 
in 1998 best represent the reality for 1998. For each method, they served as 
a reference; the other images synthesized using either the image P1990 taken 
in 1990 or the image P1997 taken in 1997 were compared to that reference. 
This comparison was made by skilled geologists. For each method, 
conclusions were drawn regarding the influence of the time lag with respect 
to their objectives in geological interpretation. Then comparisons between 
methods were made. 

In a second phase the quality of each set B* was assessed following the 
protocol discussed in previous Chapter. To test the second and third 
properties, all the images P were degraded to 20 m and all images XS to 40 
m. This protocol produces two sets of images for each method. Comparison 
was made between the original sets of images B and the synthesized sets B* 
for each method. Quality parameters were computed as discussed in 
previous Chapter. 

The visual inspection over the site of the dam of the resulting images for the 
two first sets of images, achieved with the HPF and the P+XS methods, 
demonstrated the failure of these methods when the time acquisition of the 
images are different. On the contrary, the algorithm based on the ARSIS 
concept is able to fulfil the objectives of the end-users. 

This is illustrated by the case of the band XS1 (green-yellow). For each 
method, the images synthesized with the help of the images P1990, P1997 and 
P1998 are presented. 

The HPF method 

Figure 9.9 displays the images XS*1 synthesized by the HPF method at a 
spatial resolution of 10 m. It focuses on the dam area, where most of the 
noticeable changes occur. The upper left image is the synthetic image 
XS*1HPF 1990 obtained from the images XS1 and P1990. The upper right image 
is obtained using P1997, and the lower left using P1998. 

The image synthesized from the images XS1 and P1998 is considered as the 
best achievable result, since both were acquired simultaneously. The high 
frequencies in this image (lower left) are very similar to those in P1998 and 
are enhanced too much: the image XS*1HPF 1998 is too sharp. The set of 
images XS*HPF 1998(20 m) synthesized at the resolution 20 m exhibits an 
error ERGAS of 7.6 when compared to the original set XS (Table 9.1). This 
confirms the low quality of the synthesized set XS*HPF found by the 
geologists. 
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Figure 9.9. HPF images 
synthesized from XS1 and P1990 
(upper left), XS1 and P1997 (upper 
right), XS1 and P1998 (lower left). 

The image XS*1HPF 1990 synthesized at the resolution of 10 m by the means 
of P1990 exhibits large structures that are similar to those of XS1. The first 
property is respected at least for the low and medium frequencies. However, 
many high frequency artifacts were introduced, which render this image 
useless for analysis. One may notice in the mainstream in the elbow the 
trace of the south bank that moved a bit southwards between 1990 and 1997 
(Fig. 9.7). 

The information added to the image XS1 is extracted from the image P by 
application of a Laplacian filter. The modification of the landscape between 
1990 and 1998 was tremendously important and the introduction of a non-
contemporary information gives the impression of a superimposition of two 
images. 

The image XS*1HPF 1997 is of better quality. It is still suffering from the 
addition of high frequency artifacts: it cannot be used for geological 
interpretation. These findings are sustained by the error ERGAS, which is 
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equal to 28.2 for 1990 and 26.9 for 1997 (Table 9.1). The quality of the 
HPF product is already low when the images XS and P were acquired 
simultaneously and decreases notably as the time lag increases. 

Case Method ERGAS 
 HPF 14.8 
XS and P1990 P+XS 8.7 
 ARSIS-RWM 1.5 
 HPF 14.1 
XS and P1997 P+XS 7.5 
 ARSIS-RWM 1.6 
 HPF 7.6 
XS and P1998 P+XS 3.8 
 ARSIS-RWM 1.5 

Table 9.1. Relative global adimensional error ERGAS for the various cases 
when synthesizing images XS* at a resolution of 20 m. 

The P+XS method 

Figure 9.10 displays the images XS*1 synthesized by the P+XS method at a 
spatial resolution of 10 m. The upper left image is the synthetic image 
XS*1P+XS 1990 obtained from the images XS1 and P1990. The upper right 
image is obtained using P1997, and the lower left using P1998. 

The best achievable result (lower left) is obtained for contemporary images. 
It is of medium quality. The P+XS method usually enhances the high 
frequencies; this image is not well suited for interpretation. 

The striking feature is provided by the display of the image XS*1P+XS 1990 
(upper left), whose structures are identical to those of P1990. The dam that is 
visible in the original image XS1 disappeared during the synthesis! This is a 
dramatic illustration of the Equation 9.3, as is also the image XS*1P+XS 1997 
(Fig. 9.10, upper right). Both images cannot be used for the analysis of the 
geological features. 

The sets of images XS*P+XS(20 m) synthesized at a resolution of 20 m 
exhibit errors ERGAS of respectively 18.5, 16.1 and 3.8 for respectively 
P1990, P1997 and P1998. This confirms the medium to low quality of the fused 
products. It also demonstrates the dramatic sensitivity of such algorithms to 
the time lag. 
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Figure 9.10. P+XS images 
synthesized from XS1 and P1990 
(upper left), XS1 and P1997 (upper 
right), XS1 and P1998 (lower left). 

The ARSIS RWM method 

Figure 9.11 displays the images XS*1 synthesized by the ARSIS-RWM 
method at a spatial resolution of 10 m. The upper left image is the synthetic 
image XS*1RWM 1990 obtained from the images XS1 and P1990. The upper 
right image is obtained using P1997, and the lower left using P1998.  

The best achievable result XS*1RWM 1998 is of high quality. Geologists were 
very satisfied with this product and used it to achieve the geological 
interpretation of the site. Actually, the three images look very similar 
though differences appear when analyzing the images on a computer screen. 
The influence of the time lag is kept very low by the method RWM, which 
is capable to deal with non-contemporary images. The stability of the results 
is confirmed by the error ERGAS, which is close to 1.5 in the three cases. 
Of course, detailed analyses demonstrate that the best results were achieved 
with contemporary images, for which benefits of the fusion are at their 
most. 
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Figure 9.11. XSRWM images 
synthesized by the ARSIS-RWM 
method using XS1 and P1990 (upper 
left), XS1 and P1997 (upper right), 
XS1 and P1998 (lower left). 

Whatever the couples of images P and XS used, the images synthesized by 
the ARSIS-RWM method were acknowledged by skilled geologists as 
given the most exploitable results for interpretation of geological features. 
The synthesized images are still exploitable for further processing such as 
classification processes or interpretation of geological features and faults. 
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