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Abstract

This paper concerns the adaptation of reduced-order models during simulations of series of

elastoviscoplastic problems. In continuation with previous works, this paper aimed at extending the A

Priori Hyper Reduction method (APHR method) for nonlinear thermal problems to nonlinear mechanical

problems involving internal variables. This method is an a priori approach because full incremental

responses of detailed models are not forecasted in order to build reduced-order models. The recent

extension of the Hyper Reduction method to reduction of mechanical models involving internal variables

makes possible the reduction of degrees of freedom and the reduction of integration points. A multi-level

formulation is introduced to focus on the capability of the method to perform efficient parallel

computations to adapt reduced-order models.

Keywords: APHR method, POD, parallel computing, FETI, domain decomposition, viscoplasticity.

1 Introduction

Elastoviscoplastic models are widely used for fatigue life prediction or crack growth of metallic

components [1, 2, 3]. Usually, the constitutive laws are described in the framework of the irreversible

thermodynamic processes. The strain history is taken into account using internal variables. These variables

are the lump sum of the history of material changes. This approach has its roots in the works by Biot [4] ;

Ziegler [5]; Germain [6] or Halpen and Nguyen [7] and has proven its ability to cover a broad spectrum of

models in viscoelasticity, viscoplasticity, plasticity and also continuum damage mechanics. Examples of

such constitutive laws can be found in [8]. To simplify the presentation of the multi-level APHR method,

we consider small-displacement small-strain mechanical problems having unique solutions. According to

the framework of the irreversible thermodynamic processes, a constitutive law can be defined by a choice
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of: internal variables z, a free energy w(ε, z) and a pseudo potential of dissipation ϕ∗ [9] in case of

standard formulations. Some conjugated variables Z are associated to the internal variables z using a

definition of the dissipation. It turns out that the problems related to such mechanical models are nonlinear

and time dependent. The Finite Element (FE) method [33], implicit time integration scheme and the

Newton Raphson algorithm are usually used for approximately solving this kind of problem.

The development of large FE models increases the need of low order models created by model reduction

methods. The availability of Reduced Order Models (ROMs) can greatly facilitate the solution of series of

mechanical problems appearing in optimization problems for instance. The formulation of the

reduced-equations differs from the formulation of the detailed equations in the choice of the functional

space related to the primal state variables. Most of the time, the state variables are considered as a linear

combination of known fields. In case of an a posteriori approach, these fields are obtained by solving

detailed preliminary problems. In the framework of modal superposition method, these fields are the

eigenvectors related to the free-vibration problem. If the preliminary problems provide linearly

independent fields, then the coefficients of the linear combination are the reduced-state variables of the

ROM. On the contrary, one has to build a reduced-basis of the subspace spanned by the known fields. The

Proper Orthogonal Decomposition (POD) aimed to create such a basis from a set of time dependent fields.

The POD model reduction method has been used in a wide range of nonlinear incremental simulations and

optimization problems in fluid mechanics [10], in materials science [11, 12], in thermal science [13] and

real-time surgery simulation [14]. This method comes from the Karhunen-Loève expansion [15, 16]

developed for statistical analyses. A POD basis is an optimal basis of the state subspace spanned by

forecasted states possibly related to different simulations of the response of the detailed model. The

optimality of the POD has been stated in [17]. The snapshot POD proposed by L. Sirovich [18] had an

important contribution to the development of POD basis for the reduction of nonlinear incremental

problems. Some details about this method are given in Section 4. During the same period, P. Ladevèze

proposed a competitive decomposition method dedicated to elastoplastic models named the radial loading

decomposition (RLD) [19]. This decomposition is performed by the LATIN method [19] without solving

the full incremental detailed model. The LATIN method aims at building a linear problem to forecast the

response of the nonlinear detailed model. This linear problem is defined over the entire time interval.

Therefore, a time and space separated representation enables to define the decomposition of the forecasted

state evolution. Various LATIN algorithms were proposed to solve optimization problems [20, 21] and

multiscale problems [22]. The ***similarities*** between the RLD and the POD have been stated in [23].
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In practice, during the solution of a series of problems, the POD ROM tends to be less convenient as the

current problem differs from the preliminary problems. The main drawback of the classical POD and the

snapshot POD methods is the lack of an adaptive procedure in order to modify the ROM basis according to

an error indicator. A first adaptive procedure was proposed in [23] using the LATIN method. But the

non-incremental scheme used in the LATIN to build linear problems does not facilitate the extension of the

method to any mechanical constitutive law. An a posteriori error estimation and a basis adaptation have

been proposed in [24] for the reduction of nonaffine-parametrized linear elliptic partial differential

equations. This is an interesting approach since a series of nonlinear problems involves a series of

parametrized linear problems. But it is no easy task to extend this method to mechanical problems

involving internal variables. In most cases, the time is not a simple parameter of the partial differential

equations. These difficulties have led us to adopt an incremental approach. Different incremental adaptive

strategies were proposed to adapt the reduced-basis approximation: for nonlinear thermal problem [25],

for solving some transfer equations [26], for kinetic theory models [27], and for any known state evolution

[28]. These papers, excepted the last one, are related to the APHR method using Krylov subspaces in order

to extend the subspace spanned by the ROM basis. The recent advance on Hyper Reduction methods

proposed in [29] makes possible the extension of the APHR method to the nonlinear mechanical models

involving internal variables. But, the expansion using Krylov subspace was not retained. The Krylov

approach increases the number of balance residual evaluations. Therefore the computational time devoted

to residuals becomes too expensive in case of complex constitutive laws. We propose to extend the ROM

basis by using the solution of the FE equations over few time increments. As proposed in [30], a ROM

predictor accelerates the Newton-Raphson iterations related to the FE equations.

The multi-level APHR method provides state estimations by summing Finite Element corrections to ROM

predictions. The reduced-state variables of the ROM being global and the FE variables being nodal

unknowns, the proposed approximation is multi-level. If at the end of a time increment, the ROM

prediction is accurate enough, no Finite Element correction is performed. On the contrary, the results of

the FE correction make possible to adapt the ROM. When a FE correction has been performed an

approximate state evolution is known. Therefore we can apply the adaptive algorithm proposed in [28]

dedicated to known state evolutions. The mechanical state is taken into account to expand the subspace

spanned by the reduced-basis related to the ROM. To master the growth of the ROM, the adaptive

procedure involves a POD of the reduced-state variables. As a result of the Hyper Reduction method [29],

a specific spatial integration scheme is introduced when computing the reduced-state variables related to
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the ROM prediction. The constitutive equations are integrated over a Reduced Integration Domain (RID),

provided that this equations are local. The quality of the ROM prediction is evaluated thanks to the norm

of a truncated residue of the FE balance equations. The computation of the FE correction can be

performed using any classical incremental algorithm. It could be a classical Newton-Raphson algorithm or

a Newton-Raphson algorithm coupled with a parallel solver such as the FETI method [31] or a mixed

domain decomposition method [32].

The paper is organized in the following manner. Section 2 introduces the formulation of the mechanical

problem involving internal variables. The formulation of the equations related to the multi-level APHR

method is detailed in Section 3. Section 4 reports the numerical results elucidating the usefulness of the

proposed method for simplified sensitivity analysis. A modification of a parameter related to the material

behaviour and a modification of a geometrical parameter are considered. The results obtained with a

sequential solver and those obtained with the FETI parallel solver are discussed in this section. The

computational time savings are compared to those obtained with the snapshot POD. Section 5 is the

conclusion of this paper. Some indications about the ongoing work are given.

2 Formulation of the continuous model

The continuous model of concern is a parametrized mechanical model. We denote {p} the column of the

model parameters. These parameters can be related to design choices, material coefficients or loading

conditions. We consider a series of mechanical problems related to a series of parameter values

({p}α)
α=1...N

. ***The various models of the series are supposed to be similar. Therefore, we assume that

the potential geometrical modifications can be represented using an unchanged tessellation of the domain

with modified positions of vertices.*** We assume that displacements and strains are small. The stress

tensor σ is a nonlinear function of the strain history depending on the parameters {p}α:

σ = Σ(ετ , τ ≤ t; {p}α) (1)

where Σ is a formal operator that must be defined by constitutive equations.

The continuous medium is occupying a domain Ω({p}α). The nonlinear system is analyzed over a time

interval ]0, T ]. The displacement field at time t is defined on Ω({p}α) and it is denoted by u(., t, {p}α).

The boundary ∂Ω({p}α) of Ω({p}α) is denoted by ∂UΩ({p}α) ∪ ∂F Ω({p}α). On ∂UΩ({p}α), there is

the Dirichlet condition u(., t, {p}α) = 0 for all t. On ∂F Ω({p}α), there is a given force field F(., t, {p}α)
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depending on time t and parameters {p}α. The displacement field belongs to a function space V defined

by:

V =
{
u(., t, {p}α) ∈ H1(Ω({p}α)) | u| ∂UΩ({p}

α
) = 0

}
(2)

The statement of the mechanical problem is the following. We want to find an estimation of the

displacement field u ∈ V defined by the constitutive equations and the principle of virtual work:

∫

Ω({p}
α
)

ε(u∗) : Σ(ε(u) , τ ≤ t, {p}α) dΩ −

∫

∂F Ω({p}
α
)

u
∗ . F(x, t, {p}α) dΓ = 0 ∀ u

∗ ∈ V (3)

where u
∗ is a test function.

In cases of stable materials, the knowledge of the operator Σ is sufficient to find a solution of the

mechanical balance equations (3). According to the framework of the irreversible thermodynamic

processes, a constitutive law can be defined by a choice of: internal variables z, a free energy

w(ε, z, {p}α) and a pseudo potential of dissipation ϕ∗ [9]. Some conjugated variables Z are associated to

the internal variables z using the definition of the dissipation. The conjugated variables and the internal

variables are connected by the following equation of state:

Z = −
∂w

∂z
(4)

Complementary constitutive equations can be proposed without introducing a pseudo potential of

dissipation, provided that the Clausius Duhem Inequality is fulfilled ( the rate of entropy production must

not be negative):

ż = B(Z, {p}α) (5)

In case of standard formulation of the constitutive equations, the complementary constitutive equations are

deduced from the pseudo potential of dissipation ϕ∗(Z, {p}α) such that:

B(Z) =
∂ϕ∗

∂Z
(6)

The initial state of the material is defined by a given initial condition:

z|t=0 = zini (7)

The stress σ being one of the conjugated variables, the set of equations (4) to (7) defines the operator Σ.
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3 The multi-level method

3.1 Definition of function spaces

Three functional subspaces of V are introduced to facilitate the formulation of the proposed method. The

displacement field is forecasted by a ROM prediction and a FE correction. Due to the proposed adaptive

procedure the ROM is modified during the incremental treatment of the series of mechanical problems.

Therefore we introduce the superscript (n) which denotes the version of the ROM. Using the FE method

[33] we obtain the detailed model to be reduced. It involves mh degrees of freedom (qj(t, {p}α))j=1...mh
.

The component qj is a nodal displacement connected to the displacement field by the shape function Nj .

The FE model is deduced from the continuous model by using a subspace of V denoted Vh such that :

Vh = {u ∈ V |∃ {q} ∈ ℜmh ,

u(x) =

j=mh∑

j=1

Nj(x, {p}α) qj ∀x ∈ Ω({p}α)} (8)

We assume that the topology of the mesh does not depend on the geometrical parameters possibly involved

in {p}α. ***To study simple design modifications, only the position of some nodes of the mesh is

supposed to change. The list of elements and the list of nodes connected to each element remain

unchanged.***

The ROM is defined by a subspace of Vh denoted V
(n)
ROM such that:

V
(n)
ROM = {u ∈ Vh |∃ {a}

(n)
∈ ℜs ,

u(x) =

k=s∑

k=1

ψ
(n)
k (x) a

(n)
k ∀x ∈ Ω({p}α)} (9)

where (ψ
(n)
k )k=1...s are the shape functions of the ROM. They are deduced from the FE shape functions by

using a reduction matrix [A]
(n)

such that :

ψ
(n)
k =

j=mh∑

j=1

Nj(x, {p}α)A
(n)
jk ∀x ∈ Ω (10)

As proposed in [29] a RID is introduced to define the balance condition related to the ROM according to

the Hyper Reduction method. The basic idea is to select only few nodal balance equations of the FE model

in order to state the formulation of the balance condition of the reduced-order model. Therefore only few

elements contribute to this formulation. These elements are forming the RID. The most similar idea found

in the literature concerns the reduction of chemistry models [34], despite it is not applied on FE models. A

mathematical programming based approach provides a selection a few species and chemical reactions in

order to reduce the model.
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Let’s denote [Π] the rectangular matrix selecting the FE balance equations such that Πij is equal to one if

the degree of freedom number j is the ith selected degree of freedom. Else, Πij is equal to zero. A

truncated test function u
∗
Π can be associated to any test function u

∗ = N. {q}
∗

such that

u
∗
Π = N. [Π]

T
. [Π] . {q}

∗
(11)

Therefore the following property is fulfilled: if u
∗ ∈ Vh then u

∗
Π = N. [Π]

T
. [Π] . {q}

∗
∈ Vh. The RID

ΩΠ({p}α) is defined as the support of all the truncated test fields:

Ω({p}α) = ΩΠ({p}α) ⊕ ΩΠ({p}α) (12)

ΩΠ({p}α) =
{
x ∈ Ω({p}α) | ∀ {q}

∗
∈ ℜn , ‖u∗

Π(x)‖ + ‖ε(u∗
Π)(x)‖ = 0

}
(13)

where ||ε(u∗
Π)||2 = ε(u∗

Π) : ε(u∗
Π). The hyper reduced-balance condition is obtained using the space

function V
(n)
Π such that:

V
(n)
Π = { u ∈ V

(n)
ROM |∃ {a}

(n)
∈ ℜs ,u(x) =

j=n∑

j=1

Nj(x) qj ∀x ∈ Ω, with

{q} = [Π]
T
. [Π] . [A]

(n)
. {a}

(n)
} (14)

The hyper reduced-balance condition is the following:

∫

ΩΠ({p}
α
)

ε(u∗) : Σ(ε(u) , τ ≤ t, {p}α) dΩ −

∫

∂F ΩΠ({p}
α
)

u
∗ .F(x, t, {p}α) dΓ = 0 ∀u

∗ ∈ V
(n)
Π (15)

where ∂F ΩΠ({p}α) = ∂F Ω({p}α) ∩ ΩΠ({p}α). This equation involves s scalar equations, where s is the

size of the ROM. To obtain a well-posed reduced-problem, the number of selected FE balance equations

must be sufficient. It can’t be lower than the size of the reduced-basis. A methodology to build this

selection of equations is proposed in [29]. Obviously, if all the degrees of freedom are selected to build the

RID then the RID covers all the domain Ω({p}α). It is clear that the local computations related to such

balance condition are restricted to the RID. The equation (15) enables to forecast the reduced-state

variables related to the displacement field. The ROM shape functions being global, the displacement field

is globally forecasted. But to forecast the entire mechanical state, we must extend the estimated internal

variables from the RID to the entire domain. As proposed in [29] the APHR ROM have two bases, one

related to the displacements and one related to the internal variables. The second basis is denoted

(Υ
(n)
k )k=1...ξ. The column of the reduced-internal variables is denoted {b}

(n)
. The internal variables are

extrapolated from the RID to the full domain by fitting the reduced-internal variables inside the RID. The

detailed equations of this extrapolation procedure are given in the next section.
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3.2 The multi-level incremental algorithm

The multi-level approximation is the following:

u(x, t, {p}α) = u
(n)
ROM(x, t, {p}α) + δuh(x, t, {p}α) u

(n)
ROM ∈ V

(n)
ROM δuh ∈ Vh (16)

z(x, t, {p}α) = zROM (x, t, {p}α) + δz(x, t, {p}α) (17)

with zROM (x, t, {p}α) =

k=ξ∑

k=1

Υ
(n)
k b

(n)
k (t, {p}α) (18)

Using a numerical one-step time integration scheme, one can forecast different states of the system at

different instants. According to an incremental formulation, the mechanical state is assumed to be known

at time ti. The unknowns are the state variables at time ti+1. Several stages are introduced to forecast the

mechanical state over the time increment ]ti, ti+1]:

• stage one : the reduced-state variables related to the displacement field are forecast with δuh = 0

and δz = 0

• stage two : the internal variables are extended using the basis related to these variables

• stage three : an error indicator related to the accuracy of the ROM is evaluated

• stage four : if the ROM prediction is not accurate enough, then the FE correction (δuh, δz) is

computed

• stage five : if the FE correction has been performed, then the reduced-bases are adapted by using the

results of the correction stage (stage four).

If the ROM prediction is accurate enough, then no FE computation is performed. In practice, the

adaptation of the ROM is achieved only using few FE increments. Moreover, in case of nonlinear

equations or parallel computing, the iterative solver takes advantage of the prediction provided by the

ROM. The error indicator is the norm of a truncated residue of the FE balance equations. This is the

residue of the FE equations selected for the creation of the RID. At the end of stage four, a full state

estimation is known. Then the adaptive algorithm [28] devoted to known state evolutions can be applied.

The adaptation stage involves an expansion of the subspaces related to the ROM and a selection of the

most significant events using a POD of the reduced-state variables. The extension of the bases is provided

by orthogonal contributions extracted from the state corrections. During the adaptation of the ROM the

reduced-state variables related to the previous computations are updated. A norm of the load magnitude is

introduced to define a relative error indicator such that:

‖F‖
2

=

∫

∂F ΩΠ({p}
α
)

F(x, t, {p}α) . F(x, t, {p}α) dΓ (19)
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The detailed formulation of the five stages of the algorithm is given below.

Stage one, the unknown are the reduced-state variables {a}
(n)

(ti+1, {p}α) and the internal variables

zROM (x, ti+1, {p}α) over ΩΠ({p}α) such that:

∫

ΩΠ({p}
α
)

ε(u∗) : Σ(ε(u
(n)
ROM ) , τ ≤ t, {p}α) dΩ −

∫

∂F ΩΠ({p}
α
)

u
∗ . F(x, t, {p}α) dΓ = 0 ∀ u

∗ ∈ V
(n)
Π

(20)

Stage two, the unknown are the reduced-internal variables {b}
(n)

(ti+1, {p}α) and the internal variables

zROM (x, ti+1, {p}α) localized in ΩΠ({p}α) such that:

{b}
(n)

(ti+1, {p}α) = arg min{y} H({y}) (21)

H({y}) =

∫

ΩΠ({p}
α
)

∥∥∥∥∥zROM (x, ti+1, {p}α) −

k=ξ∑

k=1

Υ
(n)
k (x) yk

∥∥∥∥∥

2

z

dΩ (22)

zROM (x, ti+1, {p}α) =

k=ξ∑

k=1

Υ
(n)
k (x) b

(n)
k (ti+1, {p}α) ∀x ∈ ΩΠ({p}α) (23)

Stage three, evaluation of the error indicator ηROM related to the truncated residue {̃R}:

R̃j =

∫

ΩΠ({p}
α
)

ε(u∗) : Σ(ε(u
(n)
ROM ) , τ ≤ t, {p}α) dΩ −

∫

∂F ΩΠ({p}
α
)

u
∗ . F(x, t, {p}α) dΓ (24)

with u
∗ = Nj(x, {p}α) (maxζ Πζj) (25)

ηROM =
∥∥∥{̃R}

∥∥∥ (26)

Stage four, if ηROM < ǫR ‖F‖ then δuh(x, ti+1, {p}α) = 0 and δz(x, ti+1, {p}α) = 0, else these

corrections are such that:

∫

Ω({p}
α
)

ε(u∗) : Σ(ε(u
(n)
ROM + δuh) , τ ≤ t, {p}α) dΩ −

∫

∂F Ω({p}
α
)

u
∗ .F(x, t, {p}α) dΓ = 0 ∀u

∗ ∈ Vh

(27)

Stage five, if ηROM ≥ ǫR then the subspace V
(n)
ROM can be adapted by using δuh. We only consider the

residue related to the orthogonal projection of δuh into V
(n)
ROM . This residue is denoted δ⊥uh and it is such

that:

δ⊥uh(x, ti+1, {p}α) = δuh(x, ti+1, {p}α) − δ̂uh(x, ti+1, {p}α) (28)

δ̂uh(x, ti+1, {p}α) =

k=s∑

k=1

ψ
(n)
k (x) δa

(n)
k (ti+1, {p}α) (29)

{δa}
(n)

(ti+1, {p}α) = arg min{y}

∫

Ω({p}
α
)

∥∥∥∥∥δuh(x, ti+1, {p}α) −

k=s∑

k=1

ψ
(n)
k (x) yk

∥∥∥∥∥

2

dΩ (30)
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Then, an extended basis
(
ψ

(n+1/2)
k

)
k=1...s+1

is built preserving the previous predictions such that:

ψ
(n+1/2)
k = ψ

(n)
k k ≤ s (31)

ψ
(n+1/2)
s+1 =

1

‖δ⊥uh‖
δ⊥uh (32)

a
(n+1/2)
k (τ, {p}α) = a

(n)
k (τ, {p}α) τ ≤ ti+1 k ≤ s (33)

a
(n+1/2)
k (τ, {p}β) = a

(n)
k (τ, {p}β) τ ≤ T k ≤ s β < α (34)

a
(n+1/2)
s+1 (τ, {p}β) = 0 τ ≤ T β < α (35)

a
(n+1/2)
s+1 (τ, {p}α) = 0 τ ≤ ti (36)

a
(n+1/2)
s+1 (ti+1, {p}α) = ‖δ⊥uh‖ (37)

A POD decomposition of the reduced-variables is performed to avoid a constant growth of the size of the

ROM. This POD consists in finding the vectors ({V }l)l=1...s+1
maximizing the following projection on

the forecast reduced-state variables:

λ
(n+1)
l =

∑β=α−1
β=1

∫ T

0

(
{a}

(n+1/2)T
(t, {p}β) . {V }l

)2

dt+
∫ tj+1

0

(
{a}

(n+1/2)T
(t, {p}α) . {V }l

)2

dt

‖{V }l‖
2

(38)

within the conditions ‖{V }l‖ = 1 and λl ≥ λl+1. The vectors ({V }l)l=1...s+1
are the eigenvectors of the

covariance matrix [C]
(n+1/2)

such that:

[C]
(n+1/2)

=

β=α−1∑

β=1

∫ T

0

{a}
(n+1/2)

(t, {p}β) . {a}
(n+1/2)T

(t, {p}β) dt

+

∫ tj+1

0

{a}
(n+1/2)

(t, {p}α) . {a}
(n+1/2)T

(t, {p}α) dt (39)

The covariance matrix takes into account the previous results to preserve the ability of the ROM to model

the related mechanical states. Then, the main events are selected using the following criteria:

[V ] =
[
{V }1 , ..., {V }

s̃

]
with λ

s̃
> ǫPOD λ1 and λ

s̃+1
≤ ǫPOD λ1 (40)

s̃ is the new size of the ROM. At last, the new ROM is a POD reduction of the previous ROM:

ψ
(n+1)
l =

k=s+1∑

k=1

ψ
(n+1/2)
k Vkl ∀l = 1...s̃ (41)

a
(n+1)
l (t, {p}β) =

k=s+1∑

k=1

a
(n+1/2)
k (t, {p}β) Vkl ∀l = 1...s̃ (42)

A similar adaptive procedure is performed to build (Υ
(n+1)
k , b

(n+1)
k )k=1...ξ using δzh(x, ti+1, {p}α). This

adaptation ends the treatment of the time increment ]ti, ti+1].
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At the end of each simulation, a last POD of the reduced-state variables is performed. The parameters of

the method are the RID and the coefficients ǫR and ǫPOD. The initial ROM

((ψ
(0)
k , a

(0)
k )k=1...s, (Υ

(0)
k , b

(0)
k )k=1...ξ) can be empty (s = 0 and ξ = 0). In such a case, the first increment

of the simulation starts with one full FE increment. The adaptive algorithm proposed in [28] being used,

the following property is fullfiled. In case of full integration (ΩΠ = Ω), the decomposition obtained at the

end of the incremental computation is the POD of a state prediction having an accuracy related to ǫR. The

proof of this property can be found in [28].

3.3 Parallel computing

The correction stage is a classic FE computation using an initial guess state. Therefore a classical domain

decomposition method can be used to solve this problem on a parallel computer. We chose to apply the

FETI method [31]. But any mixed method is also convenient [32]. The solution of stage four is provided

by a FETI solver coupled to a Newton-Raphson algorithm [36, 35].

A full parallel version of the multi-level APHR method is achieved by using the same domain

decomposition for all the stages. Each domain of the decomposition has its own contribution to the RID

and its own part of the global shape functions of the ROM. We use the single-program multiple-data

approach. Therefore each processor is forecasting the global reduced-state variables. But the computations

of contributions to reduced-residuals and to reduced-tangent stiffness matrices are distributed over all the

processors. Each processor is summing the contributions of all the other processors. The smaller the ROM

size the smaller is the amount of exchange between processors during stage one. Moreover, the POD of the

reduced-state variables is duplicated on each processor without any exchange of data between them.

***This method was implemented in the existing Finite Element Analysis software Z-set

(www.nwnumerics.com). We modified the linear solver and we extended the data structure of the

nonlinear solver ZeBuLon. The new data structure involves the reduction matrix [A]
(n)

the reduced state

variables {a}
(n)

and the index of the ROM version n for the reduced-bases related to displacements and

internal variables. The reduction matrix contains nodal values for displacement basis vectors. It contains

Gauss point values for internal variable basis vectors. The reduced integration scheme is activated by

changing the list of the elements of the mesh.***
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4 Numerical results

4.1 The elastoviscoplastic constitutive law

This section aimed to compare the multi-level APHR method, the snapshot POD method, and the FE

method. A classic and simple elastoviscoplastic example is considered in order to facilitate the

reproduction of the presented results by the reader. The strain tensor is split into the elastic strain tensor

and the plastic strain tensor:

ε = εp + εe (43)

The accumulated plastic strain p is defined by:

p =

∫ t

0

√
2

3
ε̇

p
τ : ε̇p

τ dτ (44)

Two internal variables homogenous in strain are used: the plastic strain tensor εp and a tensor ξ related to a

kinematic hardening such that:

z =

{
εp

ξ

}
, ‖z‖

2
z = εp : εp + ξ : ξ (45)

The free energy is assumed to be of the following form (isotropic elasticity):

w(ε, εp, ξ) =
1

2

(
E

1 + ν
(ε− εp) : (ε− εp) +

ν E

(1 − 2ν)(1 + ν)
((ε− εp) : I)2

)
+

1

2
c ξ : ξ (46)

in which E is the Young modulus, ν is the Poisson ratio and c is a scalar coefficient. c is the first parameter

of the mechanical model. The conjugated variables associated to the internal variables are the stress tensor

and the kinematic hardening tensor Ξ such that:

σ = −
∂w

∂εp
, Ξ = −

∂w

∂ξ
(47)

We then obtain the following state laws:

σ =
E

1 + ν
εe +

ν E

(1 − 2ν)(1 + ν)
(εe : I) I , Ξ = −c ξ (48)

The yield surface is defined by the function f :

f(σ, Ξ) =
(
(σD − Ξ) : (σD − Ξ)

)1/2
−Go (49)

in which σD is the deviatoric part of the stress tensor: σD = σ − 1
3 (εe : I) I. The complementary

constitutive equations are provided by a standard formulation. The pseudo potential of dissipation is such

that:

ϕ∗(σ,Ξ) =
K

θ + 1

〈
f(σ, Ξ)

K

〉θ+1

+

(50)
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Hence, we obtain the normality rule:

ε̇p =
∂ϕ∗

∂σ
= ṗ

σD − Ξ

((σD − Ξ) : (σD − Ξ))
1/2

(51)

ξ̇ =
∂ϕ∗

∂Ξ
= −ε̇p (52)

ṗ =

〈
f(σ, Ξ)

K

〉θ

+

(53)

The initial conditions are: ξ|t=0 = ε
p
|t=0 = 0.

4.2 The series of mechanical problems

The system of interest for sequential computations, is a square plate (80 mm x 80 mm x 5 mm, E = 98000

MPa, ν = 0.3, Go = 330 MPa) with a hole in the middle (radius r). The system of interest for parallel

computations, is a square plate (320 mm x 320 mm x 5 mm, E = 98000 MPa, ν = 0.3, Go = 330 MPa)

having 16 holes in it (radius r). In the text below, we refer to the first model as sequential model (SM) and

to the second one as the parallel model (PM). Due to the symmetry of both domains and boundary

conditions, only one 8th of the plates are modelled. The boundary conditions are shown on Figure 1.

A series of three simulations is considered. The variable parameters of the models are the radius r and the

material coefficient c:

{p}
T

= {r, c}

The three simulations are related to {p}
T
1 = {r1, c1}, {p}

T
2 = {r1, c2}, {p}

T
3 = {r2, c1} using r1 = 20

mm, r2 = 22 mm, c1 = 35000 MPa, c2 = 28000 MPa. ***To represent the modification of the holes

radius by preserving the elements of the mesh, the radial position of the nodes of the mesh is changed such

that:***

if di < r̃
1

di + ∆di
=

1

r̃
+

(
1

ri
−

1

r̃

) (
1
r2

− 1

r̃

)

(
1
r1

− 1

r̃

) (54)

if di ≥ r̃ ∆di = 0 (55)

where di is the distance between the closest hole center and the node number i and r̃ = 40mm ***(r̃ must

be greater than the hole radius and smaller than the distance between the hole and the closest external

boundary of the domain). Using the mapping defined by equations (54) and (55), the smaller the radius

modification the smaller the distances between the new Gauss points and the old Gauss points are. The

meshes have always the same number of Gauss points and the same number of nodes. Therefore the

transfer of the reduced-bases is straightforward. The reduction matrices related to the reduced-basis

remain unchanged. We just take into account node position modifications.***
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The maximum accumulated plastic strain is reached at point Q shown on Figure 1 for PM. The σ22 − ε22

curve related to the point Q is shown on Figure 1 for PM. An implicit Euler scheme and a

Newton-Raphson algorithm have been chosen for the solution of the nonlinear time dependent equations.

The time interval is regularly split into 151 time steps. The SM model involves 3,200 linear hexahedral

elements, 332,800 scalar internal variables and 19,926 degrees of freedom related to nodal displacements.

The PM model involves 51,200 linear hexahedral elements, 5,324,800 scalar internal variables and

312,942 degrees of freedom related to nodal displacements. Four subdomains have been used to perform

the domain decomposition related to the FETI method. These domain decomposition is shown on Figure 1.

The simulations have been performed using the ZeBuLon code [37] and the very efficient DSCPACK

linear solver [38] for sequential simulations.

4.3 Usual strategy using the snapshot POD

The first FE simulation related to {p}1 is used has preliminary problem in order to create the snapshots.

These snapshots are the displacements forecast by the FE model at the end of each time step. According to

the snapshot POD method the POD basis (φk)k=1...γ is such that:

φk(x) =
∑

i

u(x, ti, {p}1) dik (56)

{d}k maximize µk (57)

µk =

∫ T

0

(∫
Ω

u(x, t, {p}1).φkdΩ
)2
dt∫

Ω
φk . φk dΩ

(58)

The key point about the snapshot POD is the reduction of the size of the eigenproblem related to the

maximization of µk by using a linear combination of the snapshots. The POD basis is used to performed

the reduced-simulations related to the parameters {p}2 and {p}3. A fixed functional space is therefore

introduced to define the POD ROM. This subspace is denoted VPOD. It is such that:

VPOD = {u ∈ Vh |∃ {a} ∈ ℜs ,

u(x) =

k=s∑

k=1

φk(x) ak ∀x ∈ Ω({p}α)} (59)

The reduced-state variables {a} and approximated FE internal variables are defined by the constitutive

equations and a classical Galerkin procedure:

∫

Ω({p}
α
)

ε(u∗) : Σ(ε(u) , τ ≤ t, {p}α) dΩ −

∫

∂F Ω({p}
α
)

u
∗ . F(x, t, {p}α) dΓ = 0 (60)
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∀ u
∗ ∈ VPOD with u ∈ VPOD (61)

for α ∈ {2, 3} (62)

The constitutive equation being solved over the entire domain, no reduced-basis is required to forecast the

internal variables. A prediction of these variables is provided at each integration point of the mesh.

4.4 Comparison of five strategies

The purpose of this section is the evaluation of the capability of the ROMs to forecast the modification of

the maximum accumulated plastic strain pmax at point Q. The reference values are provided by the FE

simulations for each α in {1, 2, 3}. Therefore the reference strategy consists in three FE simulations. The

second strategy is related to the snapshot POD. It involves a preliminary FE simulation and two

reduced-simulations using a fixed POD basis as presented in the previous section. The third strategy

introduces the adaptive procedure without Hyper Reduction. The three simulations (α ∈ {1, 2, 3}) are

performed using the multi-level APHR method with ΩΠ = Ω, ǫPOD = 10−7, ǫR = 0.01 for the first

simulation (α = 1) and ǫR = 0.1 for the last simulations (α ∈ {2, 3}). The fourth strategy introduces the

Hyper Reduction method. The third strategy is restarted by changing the reduced-integration domain ΩΠ.

This domain is fixed during the treatment of the three simulations (α ∈ {1, 2, 3}). The RIDs related to the

SM and PM models are shown on Figure 1. ΩΠ involves 1,083 and 16,640 elements respectively for SM

and PM. The fifth strategy is reproducing the fourth using less accurate criteria to adapt the ROM. The

parameter ǫR have been set equal to 1 during the last simulations (α ∈ {2, 3}). These five strategies are

denoted respectively FE strategy (FES), POD strategy (PODS), A Priori strategy (APS), accurate APHR

strategy (AAPHRS) and fast APHR strategy (FAPHRS).

The size of the ROMs are reported in Table 1. These results are very similar. During the third simulation

(α = 3), the ROM adaptations produced by APS and AAPHRS increase the size of the ROM. The ROM

version correspond to the accumulated amount of FE increments used to extend the APHR ROM. The

amount of FE increments related to each series of simulations is shown in Table 2. Each FE increment

involves several solution of linear FE problem. The amount of full size linear problems which have been

solved is reported in Table 3. Thanks to the initial prevision provided by stage one of the multi-level

APHR method the savings related to the amount of global linear problems is bigger than the savings

related to the amount of full FE increments. One can observe in Table 2 that only few FE increments were

used to adapt the APHR ROMs.
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The five strategies are compared considering various computational times and the accuracy of the maximal

accumulated plastic strain. Each series of simulations is performed using the same computer in case of

sequential computation or the same set of processors in case of parallel computations. The duration of

parallel simulations is given by the processor having the longest computational time. The quality of each

simulation is reported in Table 4. The computational time related to each simulation and the total

computational time related to each strategy are reported in Table 5. The computational time savings for PM

are in good agreement with savings related to the amount of global linear problems. It is not the case for

SM because local computations have a greater impact on computational time in case of small size problem.

The Hyper Reduction method has a bigger contribution to the computational time savings in such a case.

Let’s consider the full series of simulations. Computational time saving must be considered depending on

the expected accuracy of the simulations. If the most accurate results are expected then the FE strategy

must be used. But APS is also very convenient in such a case and less expansive than FES. Due to the

adaptive procedure, APS is the most accurate strategy using a ROM. If the required level of error is 30%,

then all the results can be considered. In such a case, the fastest strategy is FAPHRS. But if the required

level of error is lower than 10%, then PODS and FAPHRS are failing to provide convenient results for the

third simulation (α = 3) of the series. In such a case the computational savings provided by PODS and

FAPHRS can’t be considered. Therefore, the fastest strategy is AAPHRS.

The Hyper Reduction method produces error amplifications. As mentioned in [29], the bigger the RID the

smaller are the error amplifications. By increasing the size of the RID the AAPHRS strategy can tends to

APS strategy. By decreasing the parameter ǫR the FAPHR strategy can tends to APHRS.

Let’s consider now each simulation one by one. The maximum computational time saving is 76 % for SM

and 97 % for PM. These results are provided by the multi-level APHR methods in case of FAPHRS.

It turns out that the best results concerning the accuracy or concerning the computational time are provided

by the multi-level APHR method. APS is less efficient than AAPHRS and FAPHRS. The Hyper reduction

technique is very useful to perform fast simulations. The proposed method enables us to choose between

accurate simulations or fast simulations. Moreover, one can observe that during the first simulation

(α = 1) APS, AAPHRS and FAPHRS are more efficient than the FES while the PODS is necessary less
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efficient than FES. This makes the multi-level APHR method very efficient for parallel computing.

5 Conclusion

No preliminary finite element solution is needed to build APHR bases. The multi-level APHR method can

be considered as a new efficient solver. Even without knowing an initial ROM, the multi-level APHR

method is more efficient than FE method. The extension of this solver to parallel or sequential iterative

solver is straightforward. This extension has been performed using a parallel FETI solver. Obviously the

better initial ROM the faster is the multi-level APHR simulation. Accurate simulations can be performed

without using Hyper Reduction. The Hyper Reduction of the equations provides significant computational

time savings. Fast simulations can be performed using Hyper Reduction without ROM adaptation. The

multi-level APHR method enables to choose gradually between fast or accurate simulations by changing

two inputs: the RID and the parameter ǫR. The best computational saving shown in this paper is 97%. This

method is very efficient in case of series of simulations related to modifications of the mechanical model.

***We addressed in this paper simple geometrical modifications by moving some nodes of the mesh. More

complex geometrical changes involving remeshing techniques can be certainly taken into account provided

that mesh transfer operations are applied to the reduced-basis. The better the reduced-bases are transferred

from the previous mesh to the new mesh, the better the quality of the initial ROM will be. Anyway, as

mentioned above, if the quality of the transferred ROM (the initial ROM of the new simulation) is too bad,

the proposed adaptive algorithm will add the convenient corrections during the new simulation.***

The ongoing works are related to the reduction of models involving damage growth, finite strains and life

duration predictions. The case of large number of simulations involved in the series of problems needs

deeper research. The extent of the efficiency of the multi-level APHR method remains an open question.

***The APHR method should be very efficient to simulate smooth nonlinear state evolutions. For

instance, in case of contact problems (with or without friction), if the contact zones jump from a place to

an other at each time increment and if this process is very sensitive to the parameters of the model

(stochastic evolution), we can’t expect the APHR method to be efficient. But if the contact areas have a

smooth evolution in time, the APHR method should be efficient.***
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Figure 1: SM and PM models

Table 1: Size of ROMs

α = 1 α = 2 α = 3

for SM

PODS 6 6

APS 6 6 7

AAPHRS 6 6 8

FAPHRS 6 6 6

for PM

PODS 7 7

APS 6 6 9

AAPHRS 6 7 7

FAPHRS 6 6 6
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Table 2: Amount of full FE increments

α = 1 α = 2 α = 3 Total Saving

for SM

FES 151 151 151 453 0%

PODS 151 0 0 151 66%

APS 78 7 33 118 74%

AAPHRS 67 0 24 91 80%

FAPHRS 67 0 0 67 85%

for PM

FES 151 151 151 453 0%

PODS 151 0 0 0 66%

APS 78 9 29 116 74%

AAPHRS 54 0 3 57 87%

FAPHRS 54 0 0 54 88%

Table 3: Amount of global linear problems

α = 1 α = 2 α = 3 Total Saving

for SM

FES 256 257 292 805 0%

PODS 256 0 0 256 68%

APS 78 9 58 145 82%

AAPHRS 71 0 55 126 84%

FAPHRS 71 0 0 71 91%

for PM

FES 248 247 282 777 0%

PODS 248 0 0 248 68%

APS 78 11 51 140 82%

AAPHRS 63 0 4 67 91%

FAPHRS 63 0 0 63 92%

Table 4: Relative error between the approximate and the FE maximal accumulated plastic strain

α = 1 α = 2 α = 3 maximum

for SM

PODS < 0.5% < 0.5 % 26% 26%

APS < 0.5% < 0.5 % < 0.5 % < 0.5 %

AAPHRS < 0.5% < 0.5 % 9 % 9 %

FAPHRS < 0.5% < 0.5 % 29 % 29 %

for PM

PODS 2% < 1 % 17% 17%

APS 2% < 1 % < 1 % 2 %

AAPHRS 2% 3 % 6 % 6 %

FAPHRS 2% 4 % 26 % 26 %
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Table 5: Computational times

α = 1 α = 2 α = 3 Total Total CPU Saving Maximum CPU Saving

for SM

FES 601 s 603 s 719 s 1923 s 0% 0%

PODS 671 s 362 s 335 s 1368 s 29% 53%

APS 583 s 389 s 589 s 1561 s 19% 35%

AAPHRS 419 s 143 s 476 s 1038 s 46% 76%

FAPHRS 418 s 144 s 168 s 1038 s 62% 76%

for PM

FES 27 067 s 25 740 s 28 661 s 81 468 s 0% 0%

PODS 27 587 s 1 524 s 1 542 s 30 655 s 62% 95%

APS 9 914 s 2 685 s 6 878 s 19 477 s 76% 90%

AAPHRS 10 376 s 751 s 2 995 s 14 112 s 83% 97%

FAPHRS 10 376 s 724 s 732 s 11 832 s 85% 97%
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