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Non-linear Symmetry-preserving Observers on

Lie Groups

Silvere Bonnabel, Philippe Martin and Pierre Rouchon

Abstract

In this paper we give a geometrical framework for the desifjolservers on finite-dimensional
Lie groups for systems which possess some specific symmefitie design and the error (between true
and estimated state) equation are explicit and intrinsie.c@hsider also a particular case: left-invariant
systems on Lie groups with right equivariant output. Theotlieyields a class of observers such that
error equation is autonomous. The observers convergeljjoaedund any trajectory, and the global

behavior is independent from the trajectory, which remitidslinear stationary case.

. INTRODUCTION

Symmetries (invariances) have been used to design carsahd for optimal control theory
(61, 91, [7], [15], [12], [13]), but far less for the desigaof observers. [4] develops a theory
of symmetry-preserving observers and presents threeinearlobservers for three examples of
engineering interest: a chemical reactor, a non-holonaavicand an inertial navigation system.

In the two latter examples the state space and the group ahsyiy have the same dimension

arXiv:0707.2286v2 [math.OC] 5 Apr 2008

and (since the action is free) the state space can be iddntifib the group (up to some discrete
group). Applying the general theory to the Lie group case,deeelop here a proper theory of
symmetry-preserving observers on Lie groups. The advardagr [4] is that the observer design
is explicit (the implicit function theorem is not needed)dantrinsic, the error equation and its
first-order approximation can be computed explicitly, angl iatrinsic, and all the formulas are
globally defined. Moreover, this paper is a step further i@ symmetry-preserving observers

theory since [4] does not deal at all with convergence issndbe general case. Here using
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the explicit error equation we introduce a new class of ttajes around which we build
convergent observers. In the case of sedtidn Il a classstfdider convergent observers around
any trajectory is given. The theory applies to various systef engineering interest modeled as
invariant systems on Lie groups, such as cart-like vehitebrigid bodies in space. In particular
it is well suited to attitude estimation and some inertiatigation examples.

The paper is organized as follows: in section Il we give a ganeamework for symmetry-
preserving observers on Lie groups. It explains the gerferah of the observers [10], [8],
[5] and [4] based on the group structure of @Pand (resp.) SE), without considering the
convergence issues. The design, the error equation andsitfder approximation are given
explicitly. It is theoretically explained why the error egjion in the car example of [4] does not
depend on the trajectory (although it depends on the inplitgn we introduce a new class of
trajectories called permanent trajectories which extaedbtion of equilibrium point for systems
with symmetries: making a symmetry-preserving observeurad such a trajectory boils down to
make a Luenberger observer around an equilibrium point. Ndgacterize permanent trajectories
geometrically and give a locally convergent observer adloaimy permanent trajectory.

In section[Ill we consider the special case of a left-invarigystem with right equivariant
output. It can be looked at as the motion of a generalized bgidy in space with measurements
expressed in the body-fixed frame, as it will be explainedeictisn[Ill-A.1. Thus it applies to
some inertial navigation examples. In particular it allawsexplain theoretically why the error
eqguation in the inertial navigation example of [4] is autorous. A class of first-order convergent
observers such that the error equation is autonomous igederThis property reminds much of
the linear stationary case. We also explore the links betweght equivariance of the output
map and observability.

Preliminary versions of sectidnllll can be found in [2], [3].

[I. SYMMETRY-PRESERVING OBSERVERS ONLIE GROUPS
A. Invariant observer and error equation

Consider the following system :

9ot = fo,u) 1)

dt
Yy = h(x,u) (2)
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wherez € G, u € U = R™, y € Y = RP (the whole theory can be easily adapted to the case
wherel/ and) are smoothn and p-dimensional manifolds, for instance Lie groups), ghds
a smooth vector field od:. © € U is a known input (control, measured perturbation, constant
parameter, time etc.).

Definition 1: Let G be a Lie Group with identityy and > an open set (or more generally a

manifold). Aleft group action(¢,),cc on X is a smooth map

(0, ) e G XX gy(§) € X
such that:

. G.(6) = forall ¢
. ¢g2 (‘bgl (5)) = ¢g2gl(£) for all 9179275'

In analogy one defines a right group action the same way exsapp,, (¢4, (£)) = ¢4,4,() for
all g1, g2, €. Suppose acts on the left od/ and) via ¢, : Y — U andp, : Y — ). Suppose
the dynamicsL{|1) is invariant in the sense of [4] where thaigraction on the state space (the

group itself) is made of left multiplication: for anye G, DL, f(x,u) = f(gx,,(u)), i.€:

Vi,geG f(Ly(w),dy(u) = DLy f(x,u)

where L, : z — gz is the left multiplication onG, and DL, the induced map on the tangent
space.DL, maps the tangent spackG|, to T'G|,,. Let R, : =z — zg denote the right
multiplication andDR, its induced map on the tangent space. As in [4], we suppodeltaa
outputy = h(z, u) is equivariant, i.efi(¢,4(z), ¥y(u)) = py(h(z,w)) for all g, z, u.

Definition 2: Consider the change of variablés = gz, U = 1,(u) andY = p,(y). The
system [(1){(R) is left-invariant with equivariant outpéitfor all ¢ € G it is unaffected by the
latter transformationZ X (t) = f(X,U), Y = h(X,U).

We are going to build observers which respect the symmetiefisinvariance under the group
action) adapting the constructive method of [4] to the Lieugr case.

1) Invariant pre-observersFollowing [14] (or [4]) consider the actioft,),cc Of G on X =
R* wheres is any positive integer. Ldtr, z) € G xR®, one can compute (at mostfunctionally
independent scalar invariants of the varialjles:) the following way:/(z, z) = ¢,-1(z) € R* .

It has the property that any invariant real-valued functim, =) which verifiesJ(gz, ¢,(2)) =

J(z, z) for all g, z, z is a function of the components &fz, 2): J(x, z) = H(I(x, z)). Applying
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this general method we find a complete set of invariantéeofi) € G x U:
Iz, u) = -1 (u) €U. 3)

Taken linearly independent vectof$V;, ..., W,,) in TG|. = g, the Lie algebra of the group
G. Definen vector fields by the invariance relation(z) = DL ,W; € TG|,,i = 1..n,z € G.
The vector fields form an invariant frame [14]. According & [

Definition 3 (pre-observer)The system4i = F(z,u,y) is a pre-observerof (I)-(2) if

F(z,u,h(z,u)) = f(z,u) for all (z,u) € G x U.
The definition does not deal with convergence; if moreawg@)—'2(t) — e ast — +oo for
every (close) initial conditions, the pre-observer is asyfaptotic)observer It is said to be is
G-invariantif (g2, 1y(u), 04(y)) = DLyF (2, u,y) for all (g, &,u,y) € G x G xU x Y.

Lemma 1:Any invariant pre-observer reads

ii = f(Z,u)+ DL; (Z L; (Va1 (u), pi-1(y)) Wz) (4)

where thel; are anydsmooth functions of thigilr arguments suchfQét); - (u), h(e, Vz-1(u))) =
0. The proof is analogous to [4]: one can Wil ;-1 (L& — f(&,u)) = > i, Fi (&,u,y) W; € g,
where theF!s are invariant scalar functions of their arguments. But aglete set of invariants of
Z,u,y is made of the components @f;-1(u), pz-1(y)), thusF; (2, u,y) = L; (Yz-1(u), ps-1(y)).
And whenz = z we havep;-1(y) = h(Z ™'z, z—1(u)) = h(e, ;-1 (u)) and theL;'s cancel.

2) Invariant state-error dynamicsConsider the invariant state-errgr = 'z ¢ G. It
is invariant by left multiplication ) = (gz)~'(g2) for any g € G. Notice that a small error
corresponds tg close toe. Contrarily to [4], the time derivative aof can be computed explicitly.
We recall R, denotes the right multiplication map @®. Since we have

. foranyg,, ¢, € G, DL, DL,, = DL,,,,, DRy DRy, = DR,,,,, DL, DR,, = DR,,DL,,

o T(E,1) = o1 (1) = g (u)

o pamr(h(@,u) = h(@ e, a1 (u) Writes -1 (y) = h(y™, a1 (1))

e 4p=4(z7'%)=DL,1 4% — DR; %2~ with 427! = —DL, 1 DR, 4z

the error dynamics reads

d

En = DL, f(e, Yn-1(u)) — DR, f(e,¥p-1(u))

+ DLy (Z Li (Y1 (w), h(n™, Yam— () m) . (5)
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The invariant errom obeys a differential equation that is coupled to the systejedtoryt —
(x(t),u(t)) only via the invariant term/(z,u) = v,-1(u). Note that wheny,(u) = u the
invariant error dynamics is independent of the state ttaigce(¢)! This the reason why we
have this property in the non-holonomic car example of [4].

3) Invariant first order approximationfFor n close toe, one can set irl {5) = exp(e£) where
¢ is an element of the Lie algebgaande € R is small. The linearized invariant state error

eguation can always be written in the same tangent spaap to order second terms in

af O

%g:[g, Flesbams ()] = e s () ey s (W)

where [,] denotes the Lie bracket gf ¢ is viewed as a function ofg, ), and% denotes the
partial derivative ofC; with respect to its second argument. The g&ifigv, -1 (u), h(e, ¥, (u))
can be tuned via linear techniques to achieve local connemye

B. Local convergence around permanent trajectories

The aim of this paragraph is to extend local convergencdtsearound an equilibrium point
to a class of trajectories we call permanent trajectories.

Definition 4: A trajectory of (1) is permanent ifl (z(¢), u(t)) = I is independent of.
Note that adapting this definition to the general case of sgtry¥preserving observers [4] is
straightforward. Any trajectory of the system verifi€s(t) = DL, f (e, -1 (u(t))) thanks to
the invariance of the dynamics. Itis permanent(if(¢), u(t)) = ¥, (u(t)) = @ is independent
of t. The permanent trajectory(t) is then given byz(0) exp(tw) wherew is the left invariant
vector field associated tfi(e, u). Thusz(t) corresponds, up to a left translation defined by the
initial condition, to a one-parameter sub-group.

Let us make an observer around an arbitrary permanent toajeclenote by(z,.(t), u,(t))
a permanent trajectory associateduto= wf;l(t)ur(t). Let us suppose we made an invariant

observer following[(4). Then the error equatidn (5) writes

d

=1 = DLy f(e, (W) = DRy f (e, @)+ DL, (Zc (", -1 () W) (7)
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since vy, -1 (u) = -1 (Y, -1(u)) = -1 (a). The first order approximationl(6) is now a time

invariant system:

d 0 0 oL; Oh
¢ = 6 st = e mGte m = (Gt hte ) e )

Let us write¢ and f(e,u) in the frame defined by th&/;'s: ¢ = Y7 ¢&¥W,. and f(e, u) =
> n_1 [*Wy. Denote byC*: the structure constants associated with the Lie algebta @it/;, ;] =
> n_1 CEW,. The above system reads:

d ~
€= (A+LO% ®)

where

(Z W - | e g u)”

Co(aL, oh
o= (Guenen) . o= (Gen)

1<k<p

where (z1,...,z,) are the local coordinates arourddefined by the exponential map: =
exp(> i, z;W;). If we assume that the pai4, C') is observable we can choose the poles of
A+ LC to get an invariant and locally convergent observer aroumd @ermanent trajectory
associated tai. Let W (z) = [Wi(x), .., W, (z)]. It suffices to take:

d

-8 = f(&,u(t)) + W(2)Lps: (y(1)) (9)

Examples: In the non-holonomic car example of [4], permanent trajeesoare made of

lines and circle with constant speed. In the inertial navtgaexample of [4],¢,-1(u) =

qrwxqg! . . .
, a trajectory is permanent if x w * ¢~* and ¢ x (a + v x w) * ¢~
gx(a+vxw)*xqg!
are independent af Some computations show that any permanent trajectorysread

q(t) = exp (%t) % qo

v(t) = qp ' * (()\Qt + 7T +exp (—%t) « [ % exp (%t)) * (o

where(), T andI' are constant vectors d&3, \ is a constant scalar ang is a unit-norm
guaternion. Theses constants can be arbitrarily chosemcd;i¢he general permanent trajectory

corresponds, up to a Galilean transformation, to an helatonotion uniformly accelerated along
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the rotation axis when # 0; when \ tends to infinity and? to 0, we recover as a degenerate

case a uniformly accelerated line. Whgnr= 0 andI” = 0 we recover a coordinated turn.

[1l. L EFT INVARIANT DYNAMICS AND RIGHT EQUIVARIANT OUTPUT
A. Invariant observer and error equation

1) Left invariant dynamics and right equivariant outpu@onsider the following system:

d

580 = f(z.%) (10)

y = h(z) (11)

where we still haver € G, y € Y, and f is a smooth vector field oid:. Let us suppose
the dynamics[(10) ideft-invariant (see e.g [1]), i.e¥g,z € G f(Ly(z),t) = DL, f(x,1).

For all ¢ € G, the transformationX (t) = gz(t) leaves the dynamics equations unchanged:
4X(t) = f(X(t),t). Asin[1] letw, = DL,-1 4z € g. Indeed one can look at any left invariant
dynamics onZ as a motion of a “generalized rigid body” with configuratigpaseG. Thus one
can look atw(t) = f(e,t) as the “angular velocity in the body”, wheteis the group identity
element (Whereaﬁ)Rfl%x is the “angular velocity in space”). We will systematicallyite

the left-invariant dynamicg_(10)

Ex(t) = DL,w(t) (12)
Let us suppose thdt : G — Y is aright equivariant smooth output map. The group action
on itself by right multiplication corresponds to the trasrshations(p,),cc on the output space

Y:forall z,g € G, h(zg) = py(h(x)) i.€

h(Ry(x)) = pg(h(x))

Left multiplication corresponds then for the generalizedyto a change of space-fixed frame,
and right multiplication to a change of body-fixed frame. llftae measurements correspond to
a part of the state expressed in the body-fixed frame, they are affected by agehahbody-
fixed frame, and the output map is right equivariant. Thustiie®ry allows to build non-linear
observers such that the error equatioraigonomousin particular forcart-like vehiclesand
rigid bodies in spacdaccording to the Eulerian motion) witmeasurements in the body-fixed

frame (see the example below).
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2) Observability: If the dimension of the output space is strictly smaller thiae dimension
of the state spacelim y < dim g) the system is necessarily not observable. This comes fnem t
fact that, in this case, there exists two distinct elementndz, of G such thati(z,) = h(z,). If
x(t) is a trajectory of the system, we hafe:(t) = DL,w,(t) and because of the left-invariance,

g1x(t) and gox(t) are also trajectories of the system:

0u(1) = DLyen(t), - (ga(1)) = DLyyaor(t)

But sincen is right equivarianth(g,2(t)) = p)h(91) = pa@)h(g2) = h(g22(t)). The trajectories
g1x(t) and gox(t) are distinct and for alt they correspond to the same output. The system is
unobservable.

3) Applying the general theory of sectign IfThere are two ways to apply the theory of
section[dl. i) The most natural (respecting left-invariahcloes not yield the most interesting
properties: let/ = R x ) and let us look a{u;,us) = (¢, h(e)) as inputs. For aly € G let
Py(t, h(e)) = (t, pg-1(h(e))). Define a new output maff (z, u) = h(x) = p.(h(e)) = ps(ug). It
is unchanged by the transformation introduced in definfictinceH (X, U) = pya(py-1(u2)) =
H(z,u) for all g € G. (10)-(11) is then a left-invariant system in the sense dhd®n [2, when
the output map i1 (z, u). i) Let us rather look atu,(¢) as an input u(t) = ws(t) € U, where
U = g =R" is the input space. Let us define for glthe mapy, : G — U the following way

b, = DL, DR,

It meansy, is the differential of the interior automorphism @t And the dynamics (10) writes

%x = F(x,u) = DL,u and can be viewed as a right-invariant dynamics. For:ajl we have

indeed:
4
dt
(¢g)gec @and (p,),ec areright group actions since for alf;, go € G we havey,, o ¢y, = y,,,

Ry(x) = DRyDLwy(t) = DL, DLyDLy1DRyw,(t) = DLg,@)1g(ws(t)) = F(Rg(x), ¥g(u))

and py, o pg, = pg.gr- Thus we strictly apply the general theory[of I, exchangihg roles of
left and right multiplication.

4) Construction of the observer3aken linearly independent vecto($l;, ..., W,) in TG|. =
g. Consider the class of observers of the form

T8 = DLon(t) + DRA(Y Lipas ()17 (13
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where thel,;'s are smooth scalar functions such tifati(e)) = 0. They are invariant under the
transformations defined above in section lT-A.3-ii).

5) State-error dynamicsThe error (invariant by right multiplication) i& > n = (2z7!) =
Lz(z~1). The error equation is aautonomoudifferential equation[(14) independent from the
trajectoryt — xz(t) (as in the linear stationary case):

= DR, L )W) (14)

=1

It can be deduced fronil(5) or directly computed usthg= DL;(427)+ D,L;(27')4: and

e DyLi(z71)4% = DR,-1(4%) = DR, DL; w,(t) + DR,~1DR; >, Li(ps—1(y))W; =

DR,-1DL; wy(t) + DR, > " Li(ps—1(y))W;

e DLy(427')= —DL;DR,-1DL,1i& = —DL; DR,1w; = —DR,-1 D L;wy(t)

o Li(pi-1(y)) = Li(ps—1(h(2))) = Li(h(n™)).

6) First order approximation:\We suppose that is close toe. Let¢ € g such that) = exp(e€)
with ¢ € R small. We have up to second order terms in

=2 (Gr engyee) w
Let us define a scalar product on the tangent sgae¢ e, and let us consider the adjoint

operator of Dh(e) in the sense of the metrics associated to the scalar prod@het.adjoint
operator is denoted byDh(e))” and we takeL(y) = K(Dh(e))T(y — h(e)). The first order
approximation writes

{ =—K Dh" Dh¢ (15)

and for K > 0, admits as Lyapunov functiofi¢||?> which the length of¢ in the sense of the

scalar product.

B. A class of non-linear first-order convergent observers

Consider for[(ID)E(T1) the following observer§t = D L;w,(t)+ DRz [, [Li(p; ' (h(x)))]Wi]
where the.l;’s are smooth scalar functions such that(h(e)) = 0. Using the first order
approximation design, také,, ..., £, such that the symmetric part (in the sense of the scalar
product chosen off'G|.) of the linear mag — — > | (%ﬁhi (h(e)) % (e)€) W; is negative. When
it is negative definite, we get locally exponentially corgeat non-linear observers around any

system trajectory.
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IV. BRIEF EXAMPLE: MAGNETIC-AIDED ATTITUDE ESTIMATION

To illustrate briefly the theory we give one of the simplesample: magnetic-aided inertial
navigation as considered in [11], [3]. We just give the sys&uations, the application of the
theory to this example being straightforward. It is necassa order to pilot a flying body to
have at least a good knowledge of its orientation. This hddsnanual, or semi automatic or
automatic piloting. In low-cost or “strap-down” navigatigystems the measurements of angular
velocity & and acceleratio@ by rather cheap gyrometers and accelerometers are couhfigte
a measure of the earth magnetic fighd These various measurements are fused (data fusion)
according to the motion equations of the system. The esbmatf the orientation is generally
performed by an extended Kalman filter. But the use of extéri¢iman filter requires much
calculus capacity because of the matrix inversions. Thentation (attitude) can be described
by an element of the group of rotations 8Q which is the configuration space of a body fixed
at a point. The motion equation are

%R — R(& x ) (16)

where
« R € SO3) is the quaternion of norm one which represents the rotatibithwvmaps the
body frame to the earth frame,
. J(t) is the instantaneous angular velocity vector measusedyboscopes andd x -) the
skew-symmetric matrix corresponding to wedge product with
If the output is the earth magnetic field measured by the magnetometansthe body-fixed
framey = R~ B ([5]), the output is right equivariant. The output has disien 2 (the norm of
y is constant) and the state space has dimertsidinus the system is not observable according
to section I[[-A.2. This is why we make an additional assuomtas in [11], [3]. Indeed the
accelerometers measure= %17"‘ R™'G where %U is the acceleration of the center of mass of
the body and? is the gravity vector. We suppose the acceleration of théeceri mass is small
with respect to| G | (quasi-stationary flight). The measured output is thus (yg,ys) =
(R'G, R'B). One can apply the theory as described in secfion II-A G:JIA.3}i).
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V. CONCLUSION

In this paper we completed the theory of [4] giving a generaimework to symmetry-

preserving observers when the state space is a Lie groupob$ervers are intrinsically and

globally defined. By the way, we explained the nice propsrté the error equation in two

examples of [4]. In particular we derived observers whichvesge around any trajectory and

such that the global behavior is independent of the trajgchs well as of the time-varying

inputs for a general class of systems.
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