
HAL Id: hal-00423757
https://minesparis-psl.hal.science/hal-00423757

Submitted on 12 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Three-dimensional characterization of strain localization
bands in high-resolution elastoplastic polycrystals
Fabrice Barbe, Romain Quey, Andrey Musienko, Georges Cailletaud

To cite this version:
Fabrice Barbe, Romain Quey, Andrey Musienko, Georges Cailletaud. Three-dimensional characteri-
zation of strain localization bands in high-resolution elastoplastic polycrystals. Mechanics Research
Communications, 2009, 36, pp.762-768. �10.1016/j.mechrescom.2009.06.002�. �hal-00423757�

https://minesparis-psl.hal.science/hal-00423757
https://hal.archives-ouvertes.fr


Three-dimensional characterization of strain localization bands
in high resolution elastoplastic polycrystals

Fabrice Barbe1,2,∗, Romain Quey3, Andrei Musienko4, Georges Cailletaud2

(1) INSA Rouen, Groupe de Physique des Matériaux, CNRS UMR 6634
76801 Saint Etienne du Rouvray, France

(2) Mines Paristech, Centre des Matériaux, CNRS UMR 7633
91003 Evry, France

(3) Ecole des Mines de Saint Etienne, Laboratoire PECM, CNRS UMR 5146
42023 Saint Etienne, France

(4) Material Strength Department, State Polytechnical University, 195251
St-Petersburg, Russia

fabrice.barbe@insa-rouen.fr
quey@emse.fr

andrei.musienko@mat.ensmp.fr
georges.cailletaud@ensmp.fr

(∗) Corresponding author: Fabrice BARBE
INSA Rouen, GPM UMR 6634, BP08, Avenue de l’Université
76801 Saint Etienne du Rouvray Cedex, France
tel: 33 2 32 95 97 60, fax: 33 2 32 95 97 04

Abstract
In crystalline materials, the experimental observation of the localization of plastic strains
in particular directions is generally restricted to the surface of a sample containing some
hundreds of grains, because of the difficulties underlying microstructural analysis. In
these conditions, the determination of the morphological characteristics of localization
can be limited by the poor statistical representativity of the domain of observation. The
purpose of this work is to extend the analysis of localization -localization bands or else-
to the three-dimensional elastoplastic strain fields of a high resolution representative
volume element of a polycrystal.
Keywords: Strain localization, Crystal plasticity, 3D polycrystal, Finite elements

1 Introduction

Elastoplastic strains in polycrystals are known to localize in the form of bands which
are oriented in the direction of maximum shear stress, i.e. at 45◦ with respect to the
uniaxial tension direction. Such bands can be observed at the surface of plastically
deformed polycrystals, either experimentally (Doumalin et al., 2000; Doumalin et al.,
2003; Gélébart et al., 2004; Héripré et al., 2007; St-Pierre et al., 2008) or by numerical
simulations (Cordier et al., 2005; Zeghadi et al., 2007; Osipov et al., 2008; Lebensohn
et al., 2009). They appear at the early stages of plasticity and can expand over
few grains with a width of the order of the grain size or less. Some features of
their morphology (orientation and length) have been determined in 2D by means of
point-to-point covariance analysis of strain fields measured by SEM microextensometry
(Doumalin, 2000; Doumalin et al., 2000; Doumalin et al., 2003): once segmented into
two classes corresponding to lower and higher strains, the strain field is considered as a
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two-phase medium whose morphology is analyzed in terms of covariance. The point-to-
point covariance provides the probability to find a given phase at two points separated
by a given vector; it thus enables to detect any periodic repetition of patterns in the
spatial distribution of field variables and more generally to determine the range of the
interactions between grains in a polycrystal.

Such information can be a prevailing factor for the relevance of modellings based on
microstructural morphology: the size of the representative volume element, the depth
over which boundary conditions affect the local behavior, the distance over which fields
become uncorrelated, . . . and the degree of accuracy of the morphological features which
should be taken into account might depend on it. As current experimental techniques
cannot, to this day, give access to this kind of information concerning a large three-
dimensional polycrystal, it is proposed to extract this information from FE simulations
of high resolution 3D polycrystals, that provide full-field solutions for the elastoplastic
intracrystalline stresses and strains in a large number of grains. This numerical approach
has been proved to be successfull in reproducing the intracrystalline strain localization
experimentally measured on the surface of a multicrystal, provided that the mesh is fine
enough (Musienko et al., 2007; Héripré et al., 2007; Zhao et al., 2008). For the present
study of the localization in a 3D polycrystalline medium mimicking a real microstructure
with its random morphological nature, we resort to Voronoi tessellations of space and a
fine discretization of each Voronoi polyhedron into several tens of elements, so that local
fields inside each grain be accessible (Barbe et al., 2001a; Barbe et al., 2001b).

Section 2 recalls the principles of the numerical modelling and presents contour plots
of axial stress and strain. The process of computing the point-to-point covariance of a
segmented variable is described briefly in section 3. Then 2D and 3D covariance fields
are analyzed in section 4.

2 Numerical simulation

Data for the analysis of stress and strain intracrystalline localization in elastoplastic
polycrystals are obtained from FE simulations. The behavior of each integration point
of the FE mesh is described by a constitutive model which was first introduced in
(Méric et al., 1991). It has then been extensively used in several works which have
laid an important groundwork (Barbe et al., 2001a; Diard et al., 2005; Sai et al., 2006;
Osipov et al., 2008) and more particularly for the direct comparison of experimental and
simulated intracrystalline strain fields in (Musienko et al., 2007).

The constitutive model is based on the Schmid law: the plastic strain ε∼
g results from

the slip on the crystallographic slip systemsγs (eq. 1); the onset of slip and the slip rate
are determined in eq. 2 from the resolved shear stress τ s and the hardening variablesrs

and xs (isotropic and kinematic hardenings, respectively). Whereas τ s directly results
from the state of stress σ∼ and the Schmid tensorm∼

s (eq. 3, wheren−
s is the unit vector

normal to the slip plane and l−
s is the slip direction), the hardening variables follow

non-linear evolutions defined by classical phenomenological formulations of hardening
(eq. 4,5). The material parameters are those of a Ni-based alloy which has been under
consideration in (Barbe et al., 2001a); it has an FCC structure (slip on the {111} 〈110〉
octahedral slip systems).
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γ̇s = v̇s sign (τ s −xs ) ; ε̇∼
g =

∑
s

m∼
s γ̇s (1)

v̇s =

〈
| τ s −xs | −rs

K

〉n

with 〈x〉 = Max(x, 0) and vs (t = t0) = 0 (2)

τ s =σ∼ : m∼
s =

1

2
σ∼ :

(
n−

s ⊗ l−
s + l−

s ⊗ n−
s
)

(3)

xs = c αs ; rs = R0 + Q
∑

r

hrs

{
1− e−b vr }

(4)

α̇s = γ̇s − dαs v̇s with αs (t = t0) = 0 (5)

At the current state of the study, the polycrystalline domains of simulation, with
cubic shape, contain 13 × 13 × 13 = 2197 grains. According to previous analyses
in (Barbe et al., 2001b), any integration point at a distance lower than 2 Mean
Grain Size (MGS) from the polycrystal boundaries must be excluded from the analysis
to avoid any boundary effect. The remaining region at the centre is large enough
(9 × 9 × 9 = 729 grains) to provide representative properties of the polycrystalline
material at the mean polycrystal scale, as checked in the previously cited studies based
on the same modelling. As a major improvement regarding these previous studies,
the polycrystals microstructural morphologies are obtained from Voronoi tessellations
which are slightly modified prior to free meshing. This procedure, which enables a
rapid and robust meshing without local overrefinements, is implemented in the NePeR
software (NePeR, 2007; Quey and Barbe, 2007). The resulting meshes conform to
polyhedra boundaries, as illustrated on fig.1a. The polycrystals in this study, made
of 2197 grains, are discretized into 180000 tetrahedral quadratic elements, which leads
to an average of 82 elements per grain. This mesh density respects the conditions under
which local fields are unaffected by the type and number of elements (Barbe et al.,
2001c; Osipov et al., 2008). FE simulations are performed with the software Zset (Mines
Paristech, ONERA, nwnumerics.com, (Besson et al., 1998)) on a Linux cluster, using an
implicit method for the integration of the constitutive laws and a Newton type method
for the resolution of the non-linear problem.

The polycrystals are subjected to uniaxial tension up to a total imposed axial strain
of the order 1 %. Their lateral boundaries are left free of mean stress; they are also
imposed to remain parallel to their initial positions, such as to induce a boundary effect
similar, in average, to the one which would be exerted by surrounding grains of the
medium from which the considered polycrystal is extracted. The obtained axial stress
and axial strain contour plots are presented on fig.1b,c. The main following classical
features can be noticed: both stress and strain are heterogeneous at the scale of grains
as well as inside grains; strain localization regions do not systematically correspond to
stress localization regions and their patterns do not seem to be the same; strain seems
to localize in the form of bands oriented at 45◦ with respect to the tension direction
(vertical, on the figure).

3 Statistical treatments

Given a field variable, say axial strain ε(X− ) where X− = (x1, x2, x3) is the position vector

in the polycrystal frame, and an associated threshold εt, the strain field is first segmented
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Figure 1: Strain and stress fields in a high resolution polycrystal submitted to 0.5 %
uniaxial tension. (Left: a) Polycrystal morphology and mesh (2197 grains freely meshed
into 180000 tetrahedral elements). (Middle: b) axial strain; (Right: c) axial stress.
Colors on the online version.

into two sets of points: those where ε < εt and the others, forming point clouds that will
be denoted phase B = {X− / ε(X− ) ≥ εt}. The 3D visualization of these points does not

provide particular information on the localization of higher strains: they form more or
less large connex regions in the polycrystal space which seem to be equiprobably present
and to propagate in different directions. The axial stress shows the same features. So,
the characterization of stress and strain localization based on direct visualization of
segmented variables can only be qualitative.

We thus resort to a morphological analysis, the point-to-point covariance, which
enables the characterization of two-phase materials or any binary medium. It is defined
according to a vector h− and corresponds to the probability that a point and its translated

according to h− belong to the same phase. Let fB(X− ) be the characteristic function of

the phase B.

fB(X− ) =

{
1 if X− ∈ B
0 else

Following the formulation of point-to-point covariance in a continuous space, in a discrete
space as the one provided by the set of integration points of the polycrystal, the
covariance Sεt(h−) of B is written as a function of the translation vector h−:

Sεt(h−) =
1∏3

i=1(L− hi)

3∑
i=1

L−hi∑
xi=0

fB(X− )fB(X− + h−)

where h− = (hi)i=1,3, L is the length of the edge of the cubic aggregate. The sum∑3
i=1

∑L−hi

xi=0 corresponds to the sum over all the points within the range [0, L − h1] ×
[0, L−h2]× [0, L−h3] i.e. to the volume average over the intersection set {X− }∩{X− +h−}.
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4 Analysis

The obtained covariance field exhibits a central symmetry over h− = 0− since a translation

according to h− or −h− leads to the same intersection set. Taking MGS as the length

scale, the covariance is defined in the range [−13, 13] × [−13, 13] × [−13, 13] since the
polycrystals under concern in this work contains 13× 13× 13 grains. In order to make
a qualitative comparison with the experimental characterizations of (Doumalin, 2000;
Doumalin et al., 2003) on a two-phase material and on a zirconium alloy under tension,
the covariance field of axial strain is first visualized in two perpendicular planes of the
translation space (h1, h2, h3) which include the tensile axis (x3): (h1 = 0) in fig. 2a and
(h2 = 0) in fig. 2b. For both plots, high values of covariance appear close to the centre of
the translation space: at h− = 0−, the probability of finding the same phase B is maximum

and Sεt(0−) takes the value of the volume fraction of the phase B (here, 0.5). For small

distances h, Sεt remains high with a spherical symmetry; this short distance isotropic
localization is the consequence of local interactions independent of the microstructure, as
in any FE simulation with fine enough mesh. With h from 1 up to 3, the highest values
of Sεt are distributed according to a cross with branches oriented at 45◦ with respect to
the tension direction (vertical) and the smallest values appear at 0◦ and 90◦ angles to the
tension direction. Similar characterizations can be made concerning equivalent strain or
the accumulated plastic strain. This indicates that localization of highest strains will
more probably happen in the form of bands, 2 or 3 MGS long and oriented at 45◦ to the
tension axis, which is consistent with experimental observations of Doumalin et al on a
two-phase material and a zirconium polycrystal. Furthermore, axial strain is unlikely
to localize in bands parallel or perpendicular to the tensile direction. For h > 3, the
distributions of Sεt differ from one plane to the other, which means that the isotropy
of the problem, though it is accurately respected at the mean polycrystal scale, reaches
its limits at the local scale, as soon as the analysis of the interactions between grains is
performed above 4 MGS. This limit can evidently be extended with larger polycrystals,
but it is not in the scope of this paper. As h is increased, the size of the intersection
set of points decreases, thus directly affecting the statistical representativity for the
estimation of the covariance. For this reason and as however local fields are influenced
by the boundary conditions on a depth of the order of 2 or 3 MGS, any analysis for
h ≥ 10 should be avoided with this size of polycrystal.

In fig 3a, a 3D visualization of the covariance field is performed by means of
isointensity surfaces corresponding to values of covariance above the one that distinctly
delimits the cross in the 2D visualizations, taken at 0.24. Decreasing the value of Sεt

from its maximum 0.5, the shapes of the isointensity surfaces vary from a sphere to
kind of a hourglass and then takes the shape of a three-dimensional cross whose eight
branches are the diagonals of a parallelepiped with a length of the order of 3 MGS,
thus no longer respecting an axial symmetry. As nothing at this state enables to ensure
the statistical representativity of the strain patterns for h ≥ 3, the interpretation of
the geometry of this eight-branches cross would require great care. The hourglass-like
shape of isointensity surfaces is however confirmed in fig 3b, where the covariance field is
obtained by ensemble averaging over three covariance fields obtained from three different
2197-grains polycrystals. This shape is characteristic of an equiprobable localization of
the highest strains in all directions at a 45◦ angle from the tension direction.
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Figure 2: Covariance of segmented axial strain for translations in all the directions of
two planes containing the tensile axis (x3): (h1 = 0) (Left: a) and (h2 = 0) (Right: b).
The length scale of the axis are given in terms of mean grain size. Colors on the online
version.

Figure 3: Isointensity surfaces of covariance of segmented axial strain in the three-
dimensional translation space: from a single 2197-grains polycrystal (Left: a) and
obtained by ensemble averaging over three 2197-grains polycrystals (Right: b). In both
cases selected, covariances are superior to 0.24. Colors on the online version.

6



5 Conclusion

The characterization of the three-dimensional distribution of highest strains in an
elastoplastic polycrystal has been performed by means of point-to-point covariance of
segmented strain field which was computed in a polycrystal with high intracrystalline
resolution. It has shown the propensity for strains to localize equiprobably along bands
2 or 3 MGS long and oriented at around 45◦ with respect to the tensile direction. As to
this day experimental investigations can hardly provide measures which are statistically
representative of three-dimensional localization, this work constitutes the first step ever
towards any such detailed and systematic 3D characterization. Future work will extend
the analysis to different loadings and materials computed on larger polycrystals and,
besides, should refine the characterization as in (Doumalin et al., 2003) by resorting to
a correlation function based on real values of strains instead of segmented values.
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