
HAL Id: hal-00408759
https://minesparis-psl.hal.science/hal-00408759

Submitted on 3 Aug 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design of graphite and the Polyhedral Compilation
Package

Jan Sjödin, Sebastian Pop, Harsha Jagasia, Tobias Grosser, Antoniu Pop

To cite this version:
Jan Sjödin, Sebastian Pop, Harsha Jagasia, Tobias Grosser, Antoniu Pop. Design of graphite and
the Polyhedral Compilation Package. GCC Developers’ Summit, Jun 2009, Montréal, Canada. �hal-
00408759�

https://minesparis-psl.hal.science/hal-00408759
https://hal.archives-ouvertes.fr

Design of Graphite and the Polyhedral Compilation Package

Jan Sjödin Sebastian Pop Harsha Jagasia

Open Source Compiler Engineering, Advanced Micro Devices, Inc., Austin, Texas, USA

jan.sjodin@amd.com, sebastian.pop@amd.com, harsha.jagasia@amd.com

Tobias Grosser

University of Passau, Passau, Germany

grosser@fim.uni-passau.de

Antoniu Pop

MINES ParisTech, Centre de Recherche en Informatique, Mathématiques et Systèmes, Paris, France

antoniu.pop@mines-paristech.fr

Abstract

Graphite is the loop transformation framework that was

introduced in GCC 4.4. This paper gives a detailed de-

scription of the design and future directions of this in-

frastructure. Graphite uses the polyhedral model as the

internal representation (GPOLY). The plan is to create

a polyhedral compilation package (PCP) that will pro-

vide loop optimization and analysis capabilities to GCC.

This package will be separated from GIMPLE via an in-

terface language that is restricted to express only what

GPOLY can represent. The interface language is a set of

data structures that encodes the control flow and mem-

ory accesses of a code region. A syntax for the language

is also defined to facilitate debugging and testing.

1 Introduction

The polyhedral compilation package (PCP) is an opti-

mization package that uses the polyhedral model as the

internal representation to perform program analysis and

transformations. Our goal is to define an optimization

framework with clear interfaces to simplify testing and

integration with GCC.

The polyhedral model can represent structured code

containing sequences, linear conditions, well behaved

loops, and affine memory accesses. The compilation

unit is a static control part (SCoP), which does not have

any side effects and all data accesses are statically deter-

mined to be linear. Array subscripts are limited to affine

expressions of induction variables and constants: this

restricts the data dependences to be regular, such that

the data flow can be represented by unions of convex

polyhedra. Scalar identifiers defined outside a SCoP are

called parameters. Parameters cannot be modified in a

SCoP. Parameters and arrays that are read inside a SCoP

are inputs. The output of a SCoP are the arrays that have

been modified and that are used after the SCoP.

In this paper, we will discuss the components of PCP

and how they interact. Figure 1 shows an overview

of PCP. GIMPLE is translated to the PCP language,

which is in turn translated to the polyhedral represen-

tation GPOLY. The PCP optimizers, guided by a set of

heuristics, exclusively work on the polyhedral represen-

tation to transform the code. These heuristics are based

on information about the architecture, which must be

provided by GCC in the form of a machine description.

To integrate PCP with GCC, there are four interfaces to

consider:

• Language interface - defines a small imperative

language used to represent a compilation unit.

• Polyhedral library interface - must be implemented

to provide basic operations on polyhedra. Several

polyhedral libraries exist and it is desirable to be

able to use different libraries.

• Machine description interface - specifies the sys-

tem the code should be optimized for.

• Transformation interface - allows GCC to specify

specific transformations.

1

Transformation HeuristicsTransformation Engine

PCP to GPOLY

Interface

Transformation

CLooG

CLAST

Transform

Cost Estimate

Operation

Cost Estimate

GOLY

Analysis Result

Machine ModelDependence Analyzer

GPOLY

PCP
Internal Polyhedral Representation

Polyhedral Library InterfaceGimple

Graphite Codegen

PCP

PCP Codegen

GIMPLE

PCP

Graphite SCoP Detection
Interface

Machine Description

Figure 1: Architecture of PCP and Graphite.

Finally, there are two more aspects of the framework:

PCP constructs can encode auxiliary information, and

PCP has an infrastructure for testing.

2 Language interface

The PCP language1 hides the internal representation

(GPOLY) such that it can evolve without breaking back-

ward compatibility with the translation to and from

GIMPLE. The PCP interface language is restricted to

express only what the polyhedral model can represent.

PCP is a simple imperative language that only expresses

communication between statements through array ac-

cesses and does not specify computations. Therefore the

number of types and control flow constructs are fewer

than in a general purpose programming language. Com-

putations are encoded as “black boxes,” or user state-

ments, that are parameterized with the reads and writes

to arrays. The control flow constructs are structured

loops and conditionals. PCP separates the identification

of the structured regions of a GIMPLE program from

the translation to GPOLY and clearly defines the infor-

mation passed between GCC and GPOLY. The language

constructs are relatively close to GIMPLE, which means

the translation becomes fairly straight forward once a re-

gion of code has been identified. In addition to the data

structures to represent the language, we have also de-

fined a syntax to parse and emit PCP code.

1We refer to both the package and the language as PCP.

In this section we describe the PCP language. The ex-

amples use the syntax that has been defined in the lan-

guage specification2. The reason for having a textual

language interface is to simplify testing and debugging.

If there is no simple way to read and understand a piece

of code, the debugging becomes a lot harder.

The syntax for the external language should be easy to

read and write by humans and should not contain am-

biguities. The expressiveness of the external language

must not only be able to express all legal constructs, but

also allow illegal constructs for negative tests.

Annotations and tests can be encoded in the language

through optional arguments. Optional arguments en-

code extra information that is not needed to express the

meaning of the program, but that is needed for other rea-

sons. By specifying a standard syntax to allow parsing

optional arguments, the parser can provide an AST for

them. To eliminate ambiguities, such as operator prece-

dence, and allow for a simple syntax for annotations,

we use a functional (prefix) form for all language com-

ponents.

2.1 Types

There is only one scalar type: arbitrary precision inte-

ger3 is used for array indexing, loop bounds, and linear
conditions. The type is implicit and there is no syntax

2http://gcc.gnu.org/wiki/PCP
3http://gmplib.org/

2

for it. The only types that must be specified are array
types. Arrays types are defined by a list of constants
or parameters that define the size of each dimension. If
the list is empty, the type stands for a scalar type, for
example:

// Types:

myType <- array(10, 10)

myScalarType <- array()

2.2 Expressions

An expression is a linear combination of constants, pa-

rameters, and loop induction variables. Parameters are

declared as inputs to a SCoP and never written inside

the SCoP.

// Parameter example:

myParameter <- parameter()

//Expression example:

+(*(4, N), *(2,i), *(4,4))

2.3 Array accesses

def and use define memory writes and reads. Each

def/use takes a base array and a list of linear expres-

sion subscripts. A maydef encodes a possible write of

a memory location, which may be used if there is control

flow inside a user statement:

// Array access example:

use(A, i, j)

def(B, +(i,j), k)

maydef(C, i)

2.4 Statements

Statements are the constructs that modify the machine

state, either control flow or memory. User statements

define computations that read and write arrays, but have

no other side effects. The user statement consists of a

unique name. The arguments to a statement completely

define the memory operations done by the statement.

The order of the arguments is maintained throughout the

compilation. The access functions of uses and defs

may be rewritten during the PCP transformations:

// User statement example:

mystmt(def(B, i, j), use(A, -(i,1), -(j,1)))

The copy statement copies data from source to destina-

tion. The copy statement is a separate construct from

the user statement, which allows PCP to introduce these

non-computational memory operations. This construct

may be used for “fan-out” communication patterns, as

in array privatization.

// Copy statement example:

copy(def(B, i, j), use(A, j, i))

The guard statement executes the body if the condition

evaluates to true. There are two kinds of comparison

operators: eq (equality) and ge (greater than or equal)

// Guard example:

guard(eq(i, N))

{

// Body

}

The loop statement takes four arguments. First a vari-

able declaration for the induction variable. Second, an

expression that defines the initial value of the induction

variables. Third, a boolean expression that determines

when the loop exits. Fourth, the stride (increment) of

the induction variable after each iteration. The loop

implicitly defines the induction variable. The induction

variable can only be accessed inside the loop body.

// Loop example:

loop(i <- iv(), 1, ge(N, i), 1)

{

// Body

}

2.5 SCoPs

A SCoP is the compilation unit. It has a set of inputs

and outputs. The inputs are scalar values (parameters),

which are invariant in the SCoP, and arrays, which can

be modified. Outputs are arrays that have been modified

and will be used after the SCoP.

// SCoP example:

scop(inputs(B, C), outputs(A), parameters(N))

{

// Scop body

}

3

2.6 A complete example

Below is a small fragment of C code. Assume that the

arrays A, B, and C have type double[1000][1000], and

that N is a parameter.

for (int i = 0; i < N; i++)

{

A[i][0] = 0;

for (int j = 1; j < 100; j++)

A[i][j] = A[i][j-1] + B[j][i] + C[j-1][i-1];

}

The C code corresponds to the following PCP code:

N <- parameter()

arrayType <- array(1000, 1000)

A <- variable(arrayType)

B <- variable(arrayType)

C <- variable(arrayType)

scop(inputs(B, C), outputs(A), parameters(N))

{

loop(i <- iv(), 0, ge(N,i), 1)

{

stmt1(def(A, i, 0))

loop(j <- iv(), 1, ge(100, j), 1)

{

// userStmt maps to the add and assignment

stmt2(def(A, i, j),

use (A, i, -(j, 1)),

use(B, j, i),

use(C, -(j, 1), -(i, 1)))

}

}

}

2.7 Annotations

Profile Info
Manager

Location Info.
Manager

(Compiler)
User Application

Intermediate
Representation

....

Annotations

Analysis Info

Optimizer

Figure 2: Annotation framework.

Annotations are used to represent auxiliary information

that is needed for the compilation process. These can be

added to any object in the language. Annotations should

be handled by a generic framework, which will allow a

compiler to track the information as the code is trans-

formed. During the code generation, the annotations are

added to the generated AST. Figure 2 shows the com-

munication among the different components.

Annotations consist of a tag and a list of annotation ar-

guments. An annotation argument can be a scalar value,

an identifier, a string, or an annotation.

// Annotation example:

A <- variable(array() | myannotation())

2.8 Test framework

The test infrastructure, as illustrated in Figure 3, takes

text files containing PCP code as input. The input is

parsed and dispatched to different components to per-

form the tests. Tests are specified either using annota-

tions in the code or as a flags to the tester. For exam-

ple, assume that the tester contains a test that checks if

two statements in a loop can be distributed. This kind

of test would test the dependence analysis. Assume

that the associated annotation with the test is called

distributable. This is an example of how a test

case could be specified:

for(i <- iv(), 1, ge(N, i), 1, 1

| distributable(stmt1, stmt2))

{

stmt1(def(A, i), use(B,i))

stmt2(def(C, i), use(D,i))

}

Another example would be a check for loop fusion:

loop1 <- for(i <- iv(), 1, ge(N, i), 1, 1)

{

stmt1(def(A, i), use(B,i))

}

loop2 <- for(j <- iv(), 1, ge(N, i), 1, 1

| fusable(loop1))

{

stmt2(def(C, j), use(D,j))

}

If a test fails, the file name and line number where the

annotation occurred is reported along with any diagnos-

tic why it failed.

It is undesirable to use C or FORTRAN source code

for unit testing since GCC is unlikely to be capable of

producing all possible test cases. In addition, the test

cases become unreliable because any of the passes be-

fore PCP may change and therefore modify the input

4

PCP

Report Generator

Text

OUTPUT

PCP

PCP Codegen

CLAST

CLooG

Transformation Engine

GPOLY

PCP to GPOLY

INPUT

PCP (Text)

PCP Parser

PCP

PCP Tester

PCP

PCP

PCP Emitter

PCP Interpreter
Test Result

Execution Result

PCP (Text)

GPOLY

Figure 3: Test infrastructure.

to PCP. Test cases can be automatically extracted from

C/Fortran code by using the PCP emitter to dump the

SCoPs that are identified by Graphite. The emitter can

also be used during debugging to produce reduced test

cases that later can be added to the test suite.

The kinds of tests that are needed are both syntactic and

semantic. Syntactic tests use simple string compare to

check against the expected output. Semantic checks can

be done both statically by analysis or dynamically by

using an interpreter to execute the code. Since the actual

computation is not represented in PCP, the result of the

execution is the trace of memory accesses. Execution

tests would mostly be used to verify the correctness of

a transform by interpreting the code before and after the

transform and comparing the trace results.

3 Translation of GIMPLE to PCP and back

Translating a region of GIMPLE to PCP requires the fol-

lowing steps:

1. Identify single-entry/single-exit (SESE) control re-

gions in the CFG that can be represented in PCP

and, thus, in the polytope model. This includes an-

alyzing the control flow, loop structures, and induc-

tion variables and checking that all expressions for

loop bounds, if-conditions, and array indexes are

linear. A SCoP is defined in a context and is com-

posed of a set of statements.

2. Detect relations between the parameters.

3. Detect natural loops based on the CFG or on the

SESE structured program tree4.

4. Identify the GIMPLE statements that will map to

user statements. The statements that compose the

SCoP are also called black boxes. A black box is

a SESE region of the SCoP that describes a calcu-

lation. As we saw in the previous sections defining

the PCP language, the only part exposed to PCP

are the data references contained in the black box.

As the name suggests, the scalar computations con-

tained in a black box are hidden. A black box can

contain a large set of statements, function calls, or

irregular control flow, as long as the black box does

not have side effects that are escaping the memory

definitions and uses. A black box can be defined to

encapsulate a part of the program that should not be

transformed by PCP. Therefore, for efficiency rea-

sons, one may want to use this mechanism to turn

a part of a PCP program into a black box whenever

the complexity of the polyhedral code generation is

too high. Currently a black box is a basic block.

5. Construct PCP code.

3.1 Translation of PCP to GPOLY

The translation of PCP to the polyhedral model requires

computing the iteration domain and the schedule for

each statement in a SCoP.

4http://gcc.gnu.org/ml/gcc-patches/

2005-09/msg01860.html

5

goto 2;3

goto 1;56

i2 = i1 + 1;

else goto 6;

4

if (i2 <= N) goto 5;

A[i1] = 0

1
x1 = phi(i2, 0)

tmp1 = A[i1];

tmp2 = B[i1][j1];

tmp3 = tmp2 + tmp1;

A[i1] = tmp3;

j2 = j1 + 1;

2

else goto 4;

if (j2 <= N) goto 3;

j1 = phi(j2, 0)

N <− parameter()

B <− variable(array(N,N))

{

 loop(i <− iv(), 0, ge(N, i), 1)

 {

A <− variable(array(N))

 stmt1(def(A, i))

 {

 stmt2(def(A, i), use(A, i), def(B, i, j))

 }

}

scop(inputs(A), outputs(B), parameters(N))

 }

 loop(j <− iv(), 0, ge(N, j), 1)

(i >= 0)

(N >= i)

(j >= 0)

(N >= j)

Domain

(N >= i)

(i >= 0)

Domain Schedule

(0,i,0)

GIMPLE PCP

0

i

j

0

1

0

GPOLY

 stmt1(def(A, i))

 stmt2(def(A, i), use(A, i), def(B, i, j))

Schedule

(0,i,1,j,0)

Figure 4: GIMPLE to PCP to GPOLY example.

A canonicalization pass is used to transform all expres-

sions to a uniform format that makes it easy to generate

constraints. The polyhedral library interface defines a

linear expression as a vector of coefficients in which the

position determines the variable or parameter the coeffi-

cient is multiplied with. The length of the vectors must

be identical for all linear expressions in a constraint. For

example:

and(ge(i, N), or(eq(j, 5), ge(j, N)))

is translated to:

or(and(ge(+(*(-1,i), *(0,j), *(1,N), 0), +(0)),

eq(+(*(0,i), *(-1,j), *(0,N), 5), +(0))),

and(ge(+(*(-1,i), *(0,j), *(1,N), 0), +(0)),

ge(+(*(0,i), *(-1,j), *(1,N), 0), +(0))))

The resulting constraint system consists of a union of

two polyhedra shown in matrix form:

(

1 −1 0 1 0

0 0 −1 0 5

)

(

1 −1 0 1 0

1 0 −1 1 0

)

The first column in the matrix encodes if the constraint

is an equality (= 0) or inequality (>= 0).

Uses and defs in the user statements are translated into

linear expressions of the polyhedral library. The canon-

icalization has transformed the subscripts so they can

be traversed and the coefficients can be extracted easily,

which makes the translation straightforward.

The schedule of a statement is the time at which the

statement is executed. There are two components to the

execution time of a statement: the static time is the or-

der in which a statement is executed in the sequence that

is defined by the PCP abstract syntax tree. To define

the static schedule, we use a Dewey numbering of the

PCP abstract syntax tree. The dynamic schedule is rep-

resented by the iteration domain. Producing the sched-

ule for all the statements is done by a traversal of the

PCP abstract syntax tree.

The iteration domain is extracted syntactically from the

PCP loop and guard constructs. In a PCP abstract syn-

tax tree, each statement is contained in a set of loops

and guards. Each surrounding loop defines a dimension

in the iteration domain of the statement. The iteration

domain for a statement defines the boundaries for the

available induction variables. The guards define extra

constraints and relations on the induction variables.

Figure 4 shows an example translating GIMPLE code to

GPOLY via PCP. The nested loops in the GIMPLE code

maps to two PCP loops. In basic block 1 there is an ini-

6

tialization of A, which maps to stmt1 in PCP. Basic

block 2 contains a computation consisting of four GIM-

PLE statements that map to stmt2. The translation

from PCP to GPOLY builds the iteration domains and

schedule for each statement. The domains are defined

by the loop bounds. The schedule is created by travers-

ing the PCP code. For stmt1 the schedule is (0, i,0),
which means it is the first statement at the top level and

the first statement inside the i loop. The schedule of

stmt2 is (0, i,1, j,0), which is the first statement at the

top level, the second statement inside the i loop, and the

first statement inside the j loop.

3.2 Translation of GPOLY to PCP

The translation from GPOLY back to an imperative pro-

gram is done by CLooG, which takes the iteration do-

mains and schedule and produces an AST containing

loops and guards.

Translating the CLAST to PCP is simple since both lan-

guages have the same constructs. In addition, CLAST

gives a mapping for each statement that maps old the

induction variables to expressions using new induction

variables. All expressions in PCP are rewritten using

this mapping.

3.3 Translation of PCP to GIMPLE

Translating PCP to GIMPLE is done by traversing the

PCP structure and building the GIMPLE loop and con-

ditions top-down. When a loop is encountered, a new

loop structure is created in GIMPLE with a new variable

that is the corresponding variable to the PCP induction

variable. Each PCP induction variable is mapped to a

new GIMPLE variable. When a user statement is found,

the array accesses are translated and replace the old ac-

cesses in the original GIMPLE code.

4 GPOLY interface

The polyhedral representation of a PCP program is

based on the following data structures:

• iteration domains

• scattering polyhedra

• data references

• data dependences

All these data structures can be accessed in read-only

mode. The GPOLY transformations interface creates

new scattering polyhedra from the original scattering.

The original scattering represents the identity transform.

The legality check for the transformed scattering is per-

formed based on the original scattering.

4.1 Black box

The black box B = (domain,drs,scattering) is defined

by the iteration domain domain, a set of data references

drs, and the scattering polyhedra.

4.2 Iteration domains

Each black box has an iteration domain represented with

a union of convex polyhedra of dimension d, where d is

the loop nesting depth where the black box occurs. The

iteration domain describes the set of iterations on which

the black box is executed. The iteration domain does not

describe the order in which the iterations are executed.

The execution order, or dynamic time, is defined by the

scattering dimensions of the scattering polyhedra.

4.3 Scattering polyhedra

A transform in the polyhedral model is a function that

maps, for each statement, the original dynamic and

static time to a new execution order. These transforma-

tion functions are also called scattering polyhedra, and

are used to define an execution order, which provides

the constrains necessary to produce an imperative code

back from the polyhedral representation. The scatter-

ing polyhedra are expressive enough to represent all the

loop and code motion transforms that are allowed in the

polyhedral representation. They are composed of the

following dimensions5:

• scattering dimensions represent the loops to be

generated,

5In this paper we will always use the name of the dimen-

sions, and we will not define a mapping order for the di-

mensions. The reader can find examples of CLooG scatter-

ing polyhedra on http://gcc.gnu.org/wiki/Graphite/

Scattering_polyhedron. Additional information about scat-

tering polyhedra can be found in the CLooG documentation http:

//www.bastoul.net/cloog/manual.php\#SEC8.

7

• original iteration domain are the dimensions of the

original loop nest,

• parameter dimensions correspond to the variable

names used in the program that are not varying in

the current SCoP; parameters can be considered as

induction variables of loops around the SCoP, and

• inhomogeneous term or constant dimension.

The scattering dimensions are a function of the original

iteration domain, of the parameters and of the inhomo-

geneous term.

4.4 Data references

A data reference DR = (aliasset,subscripts, type) is de-

fined by the alias set of the data reference. Every alias

set is mapped to an unique value. If the array is part of

more than one alias set, every array cell is mapped to

one point for every alias set the array is part of. Then,

each dimension of subscripts represents a subscript of

the data reference. Scalar values are handled like arrays

of dimension 0. The type of a data reference can either

be read, write, or may-write. Read means a data ref-

erence reads or may read any of the values marked in

accesses. Write means a data reference must overwrite

all the values marked in accesses. May-write means that

the values marked in accesses can be, but do not need to

be, overwritten.

4.5 Legality and heuristics

The transformation engine in PCP will determine if a

given loop transformation is legal based on the informa-

tion obtained from the dependence analyzer and check if

the transformation is profitable based on the information

obtained from the transformation heuristics. To check if

a transformation is profitable, the transformation engine

will model the transformation by modelling the individ-

ual operations and comparing them with the machine

characteritics provided by GCC in the form of machine

descriptions. Based on the cost estimate, the transfor-

mation engine will decide the code generation and op-

timization. In some cases, the transformation engine

may not be able to acurately determine the cost of the

transformation because the passes after the transforma-

tion engine, like CLooG, can make further decisions to

manipulate the code and have better knowledge of gen-

erated code characteristics like code size. In that case, a

second profitability check will be done during PCP code

generation.

Each user statement has costs associated with it: an ex-

ecution time estimate and code size estimate. The exe-

cution time estimate is needed to determine the schedul-

ing. The code size estimate is used to avoid code explo-

sion when duplicating code, which could result in poor

i-cache locality. The loop optimizations primarily fo-

cus on memory reuse, vectorization, and parallelization.

Therefore the machine description must contain infor-

mation about the memory hierarchy, vector instructions,

and the configuration of the parallel system (e.g., num-

ber of cores and processors) and the latencies for com-

munication.

To generate vector code, PCP annotates loops that are

vectorizable (as independent), which can optionally be

translated by the compiler in vector code. The compiler

can encourage generation of vectorizable loops by giv-

ing lower costs to independent inner loops.

4.6 Polyhedral transform interface

Some of the operations in the polyhedral model have

been discussed6 in [1, 2]. These operations are ba-

sic transformations of the scattering functions of state-

ments. A similar interface will be provided in GPOLY,

but only applies transforms to the scattering polyhedra.

This polyhedral interface is internal to the PCP library

and is not exposed outside the polyhedral framework. A

classical loop transform interface can be used to anno-

tate transforms on the PCP abstract syntax trees and can

be used to direct the transformations performed by PCP.

5 Loop transformation interface

PCP exposes a classical loop transform interface that

can be used to drive the transformations that PCP ap-

plies. The interface is based on annotations that are set

on the PCP trees:

• loop1 (... | fuse (loop2))

Appends the code of loop1 to the end of loop2.

6http://www.lri.fr/~girbal/site_wrapit/

8

• stmt1 (... | move (stmt2))

Moves stmt1 after stmt2. This can be used to

distribute loops or partially fuse loops.

• loop1 (... | skew (factor))

Multiplies the stride of loop1 by factor.

• loop1 (... | shift (offset))

Adds offset to the initial value of the main in-

duction variable of loop1.

• loop1 (... | interchange (loop2))

Interchanges loop1 with loop2.

• loop1 (... | stripMine (factor))

Splits the iteration domain of loop1 into two

loops, the outer iterating with strides of factor,

the inner iterating with the strides of loop1. Loop

blocking is a composition of stripMine and

interchange.

• loop1 (... | unroll (factor))

Unrolls loop1 by factor.

• loop1 (... | reverse)

Reverses the iteration order of loop1.

• loop1 (... | parallelize)

Annotates loop1 with the parallel flag if loop1

is parallel.

A single operation can be applied per statement and the

composition of the loop transforms is supported only by

successive cycles of PCP code generation. This limita-

tion is specific to the classical imperative loop transform

interface, and it does not apply to the PCP internal poly-

hedral transforms.

6 PCP language extensions

The PCP language will evolve over time and there are

several important extensions that are needed to make

it more complete and capture dependencies and con-

straints more precisely. In the following sections we de-

scribe some extensions that are likely to be included in

future versions of PCP.

6.1 Invariants

Invariants is an extension to define further restrictions

on scalar values. The compiler may have information

about parameters or induction variables (for example,

the type of a variable in the original program may re-

strict the range). The extension is an annotation that can

be attached to an object or an expression. For example:

// N < 256

N <- parameter(|invariant(ge(255, N)))

// Indexing restriction

stmt(use(A, i | invariant(ge(100, i))))

6.2 Reductions

The copy statement can be used to expand (duplicate)

data, but there is currently no way to express compres-

sion (reduction) other than a regular user statement. The

problem with using a user statement for a reduction is

that it induces a loop-carried dependence that cannot be

parallelized or transformed. For example:

loop(i <- iv(), 0, ge(N, i), 1)

{

userStmt(def(A), use(A), use(B, i))

}

The use(A) and def(A) encode the reduction. The

dependencies between two successive iterations of the

loop are fixing the evaluation order; it would be illegal

to parallelize or to perform some loop transforms.

To solve this problem, we introduce a reduction state-

ment that provides extra information about the associa-

tivity and commutativity of a binary reduction opera-

tion. The reduction statement takes as a first operand

the destination, and the second and third operands are

the sources. With this extension, the previous example

would be written as:

loop(i <- iv(), 0, ge(N, i), 1)

{

reduction(def(A), use(A), use(B, i))

}

This would now allow the loop to be marked as parallel:

loop(i <- iv(), 0, ge(N, i), 1 | parallel)

{

reduction(def(A), use(A), use(B, i))

}

9

6.3 User statements accessing induction variables

Currently a user statement may only access arrays.

However, some computations may use the induction

variables, which means a user statement must be able

to directly access an induction variable. For example:

loop(i <- iv(), 0, ge(N, i), 1)

{

stmt(use(i))

}

The assumption with this construct is that the use of an

induction variable does not contain any dependencies

that PCP must consider.

6.4 While loops

In some cases, the iteration domain may not be known

before a loop starts to execute. To handle this case, we

must introduce while loops. A while loop takes two ar-

guments, an induction variable and a scalar variable that

represents both the predicate and side effect of updating

p1 in every iteration. The proposed syntax would be:

// While loop example

while(i <- iv(),p1)

{

// Body

}

6.5 Range specification for data accesses

Since a user statement can represent a larger control flow

structure such as loop, it is possible that each invocation

can read or write more than a single element of an array.

To represent this in PCP, we must be able to specify a

range for a subscript that is read or written by a state-

ment. One proposal for specifying a range would be:

stmt(use(A, range(0, i), j))

6.6 The mayuse annotations

The PCP language only defines the data accesses neces-

sary to define correct semantics for the polyhedral trans-

forms: these are def, use, and maydef. A mayuse

could be used as a hint for the optimizers to detect lo-

cality properties of statements.

7 Conclusion

This paper provides a detailed description of the design

and future directions of the Graphite and PCP infras-

tructures. PCP provides a language and a transform

interface to represent and optimize data communica-

tions through array operations. The expressiveness of

the PCP language is that of the polyhedral model: PCP

programs can be translated in the polyhedral model and

back to their imperative PCP format. The benefits of the

PCP infrastructure are modularity, ease of debugging,

and testing of the polyhedral transforms and analyses.

The paper provides technical details of the translation

of PCP to the polyhedral representation GPOLY and

back. The GPOLY interface provides data structures

for a classical polyhedral representation, together with a

set of transformations operating on GPOLY. An imper-

ative loop transform interface is defined as annotations

on PCP constructs. Finally we discussed extensions of

the PCP language to capture a larger set of programs,

for providing more precise information to the data de-

pendence analysis, and hints for the cost models.

References

[1] Cedric Bastoul, Albert Cohen, Silvain Girbal,

S. Sharma, and Olivier Temam. Putting polyhedral

loop transformation to work. In Workshop on

Languages and Compilers for Parallel Computing

(LCPC’03), 2003.

[2] Albert Cohen, Silvain Girbal, and Olivier Temam.

A polyhedral approach to ease the composition of

program transformations. In In Euro-Par’04, 2004.

10

