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Abstract 

Drawing instabilities and rupture are a serious limitation in polymer fibre and film processing. 
Onset of these defects depends on the processing conditions, on heat transfer, and on the 
rheology of the polymer even if some may be encountered for Newtonian fluids. The main 
part of this paper is devoted to the different forms of the draw resonance instability 
encountered in fibre spinning, cast-film and film blowing. The time dependent equations are 
presented for the simplified situation of constant width cast-film. Results of the two possible 
modelling strategies, linear stability analysis and direct simulation, applied to the different 
fibre and film processes are discussed.   

1. Introduction  

 Numerous polymer processes (fibre spinning, cast film or film blowing) involve a 
stretching step after the initial extrusion step. Drawing instability (draw resonance) is a typical 
defect encountered during stretching in air. The existence of an air-polymer interface allows 
the onset of a periodic instability leading to very large variations of thickness, width and 
diameter. This paper deals with the different forms of the drawing instabilities encountered in 
classical processes such as fibre spinning, cast-film and blown film.  

In fibre spinning, a polymer (generally Polyester or Polyamide) is first melted by heat 
transfer and viscous dissipation in a screw/barrel device and then forced in a spinning pack 
consisting of a metal plaque with several (hundred) holes (typical diameter between 0.3 and 1 
mm). The several hundred filaments emerging from the spinning pack are then stretched in 
order to obtain the final required diameter of textile filaments (several ten micrometers). This 
requires high draw ratios (ratio between the drawing wheel velocity and the die exit velocity), 
under severe cooling conditions (air jet or water bath) in order to obtain a solidified spun fibre 
at the drawing wheel. In addition, stretching the filament allows the development of 
appropriate mechanical properties. The stretching distance may vary from a few centimeters 
for water bath cooling systems to several meters for classical air jet cooling.  

There are two families of processes for polymer film production:  
• In the cast-film process, the polymer is melted in an extruder and forced in a coat hanger flat 
die to produce an initial web (1 or 2 m in width, 1 mm in thickness) which needs then to be 
stretched between the die and a chill roll in order to obtain the required film thickness (several 
ten microns is required for packaging applications).  
• In the blown film process, the molten polymer is forced within a tube die. This tube is then 
simultaneously stretched in the vertical direction by nip rolls, inflated by an internal pressure 
and cooled by external air rings. A more precise description of these processes may be found 
in Agassant et al. (1996).  
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Let us note that both diameter of the holes of a spinning pack and final gap of a coat-
hanger or tube die need to be sufficiently large in order to limit the required extrusion 
pressure. It leads naturally to an important stretching rate (Draw ratio Dr). In fibre and film 
production, two kinds of defects may be observed at high draw ratios, periodic fluctuations of 
the diameter (fiber spinning) or of both the film thickness and width (cast-film) or the film 
thickness and the bubble diameter (film blowing) but also filament or web rupture. All these 
phenomena depend on the stretching distance, the cooling conditions and the rheology of the 
molten polymer, but it is important to mention that some of these instabilities may be 
encountered even for Newtonian fluids (glass fibre processing for example).These instabilities 
are the more drastic limitation for process productivity, and at present it is a real challenge to 
master and then to postpone their occurrence. 

Several extensive review papers have been devoted to the experimental and theoretical 
analyses of these instabilities : Co (2005) for cast film, Jung and Hyun ( 2005, 2006) for fibre 
spinning and film blowing. 

In the present paper, various drawing instability experiments performed at CEMEF-
Mines ParisTech or in cooperation with Ecole Polytechnique-Montreal are presented in the 
next paragraph. The time dependent stretching equations for the constant width cast film 
process are presented as a reference case in the third paragraph. The different strategies used 
to explain draw resonance instabilities as well as fibre or web breakage at high draw ratios are 
discussed in the last paragraphs.  

      2. Experiments 

Most of the published experiments have been devoted to filament stretching instabilities. 
The basic experiment may be done with purely viscous (corn syrup for example, Chang and 
Denn, 1979) or viscoelastic (molten polymers) fluids (Kase, 1974; Ishihara and Kase, 1975; 
Demay, 1983). The experiments consist in extruding a fluid from a capillary die at a constant 
flow rate (velocity 0u ) and increasing progressively the take-up velocityLu imposed at a short 

distance from the die, which corresponds to a quasi-isothermal situation. The fiber diameter is 
continuously recorded along the stretching path and after solidification (for molten polymers). 
Stretching step intensity is evaluated by the so called Draw ratio (a dimensionless number) 
defined as 0/LDr u u . At low Draw ratio, the stretching flow is stable which means that the 

filament diameter is constant in time and any perturbation decreases and goes to zero with 
time (figure 1a). When increasing the Draw ratio above a critical value *Dr which is of the 
order of magnitude of one to several tens, the flow becomes unstable: This means that a 
sustained periodic diameter fluctuation develops (figure 1b). It appears just at the die exit and 
then propagates till the extremity of the stretching path (Hyun, 1999). When the Draw ratio is 
increased again, the amplitude of the periodic instabilities increases till very large values (a 
ratio of 10 between the maximum and the minimum diameter may be reached) (figure 1c). 
Ghiljels and Ente (1980) identified directly the occurrence of these instabilities by recording 
continuously the stretching force which is obviously very small (of the order of several milli-
Newton). When increasing the stretching distance, the process becomes progressively non 
isothermal and the critical Draw ratio *Dr increases too (Blyler and Gieniewski, 1980; Gupta 
and Drechsel, 1981; Demay, 1983). When the stretching distance L is sufficiently large, more 
complex phenomena occur as stress induced crystallization involving changes in the 
temperature field. This may result in a strong necking phenomenon in the crystallization zone 
which prevents from the drawing instability development (Shin et al., 2006; Kohler and 
McHugh, 2008). When stretching polymers of increasing elasticity in quasi-isothermal 
conditions, the critical Draw ratio remains first more or less constant and then the periodic 
instability disappears and frequent fi lament breakages are then observed (Chang and Denn, 
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1979). Spinning experiments have been performed with Polyesters of various macromolecular 
architecture, which results in different viscoelastic properties (White and Yamane, 1985). As 
pointed out by Demay and Agassant (1985) different instabilities may be observed depending 
on the viscoelastic properties (figure 2). The Deborah number De weights the mean relaxation 
time of the polymer   to a characteristic time of the process 0/L u . For polyester A and C, 

whatever the value of the extrusion velocity0u , the spinning process becomes unstable for 

critical draw ratios *Dr between 15 and 20. For Polyester B, the periodic instability is never 
encountered, but filament breakage. The behaviour of polyester D is in-between the preceding 
ones: periodic instabilities at low extrusion velocity (low Deborah number) and filament 
breakage at high extrusion velocity (high Deborah number). 

In the cast-film process, both thickness and width periodic fluctuations are observed 
above a critical Draw ratio of the same order of magnitude as in fibre spinning. But the 
phenomenon is more complex because film stretching induces also width reduction (called 
neck-in) and related lateral over-thicknesses (called dog-bone defect). This is the reason why 
very few experimental results are available. Barq et al. (1990) performed careful and tedious 
width and thickness fluctuation measurements (in the central part of a PET film and along the 
edges) on very long distances (figure 3). They point out periodic fluctuations with the same 
period for width and thickness. The maximum thickness in the central part of the film 
corresponds more or less to the minimum width, but the two periodic fluctuations do not 
balance with another which means that the flow rate at take-up is also a function of time. Shin 
et al. (2007a) recorded the film thickness in the central part of HDPE and LDPE films as a 
function of time. Agassant et al. (2006) were able to identify the occurrence of the cast film 
instability by recording continuously the stretching force as a function of time for various 
LLDPE films (figure 4). This is easier than in fibre spinning because the stretching force is 
much more important (several Newtons). Bourrigaud et al. (2006) showed for a series of 
LDPE of various viscoelastic properties that web rupture may be observed at a Draw ratio 
which decreases when the Deborah number increases (figure 5). 

In film blowing, stretching intensity is evaluated by the Draw ratio but also by the 
Blow-up ratio ( 0/LBur R R , LR is the final bubble radius and 0R the tube die radius). The 

same type of phenomenon as in cast-film may be expected, that means a periodic fluctuation 
of thickness and diameter (figure 6) (Kanai and White, 1984; Minoshima and White, 1986; 
Ghaned-Fard et al., 1996; Laffargue et al., 2002, 2010). In fact a non-axisymmetric instability 
may also be observed, which corresponds to a helical shape of the bubble between the die exit 
and the film freezing line (figure 7). Ghaned-Fard et al. (1996) developed a sophisticated 
optical device to capture quantitatively simultaneously the diameter of the bubble and the 
location of its centre at each position between the die exit and the freezing line. Figure 8 
shows, for a Blow-up ratio (Bur) of 2.75, that the bubble radius remains constant for a Draw 
ratio (Dr) of 9.4. When increasing Dr to 9.9, pronounced periodic radius variations are 
observed. When decreasing again Dr to 9.4, the bubble radius stabilizes. At the same time, the 
centre of the bubble remains stable. On the contrary, for a Bur of 3.25, the bubble radius 
remains constant when increasing Dr from 6.6 to 7.1, but at the same time the centre of the 
bubble rotates (figure 9) in an horizontal plane giving a helical shape to the bubble. Laffargue 
et al. (2010) performed film blowing experiments on various extrusion lines but with the same 
LLDPE. They point out the existence of a stability hill splitting stable and unstable blowing 
conditions (for both axisymmetric and helical instabilities (figure 10)). 
 

2. Modelling strategy : constant width cast-film process 
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      The physics which governs the appearance of the drawing instability may be explained 
qualitatively. Having in mind that the requirement of the process is to accelerate the molten 
polymer from the die exit (velocity0u ) to the take up wheel (velocityLu ), one may consider 

that this may be done in two different ways: 
- at low Draw ratio the velocity increases progressively from x=0 to x=L, the flow is 
steady  and the dissipated energy is mainly due to stretching, 
- at higher Draw ratio, a time dependant flow will require less energy than the steady 
one: first flow packets are formed at die exit and then these packets are accelerated from 

0u to Lu at low deformation rate and then at low energy expense because inertia is 

negligible. 
 
Models will be built to account for the onset and the development of the draw resonance 

instability but “without necessarily revealing the fundamental cause of the instability itself” 
 (Hyun, 1999). The first step consists in obtaining a time dependant model for the stretching 
flow. A web with an initial thickness 0 1e mm  is stretched between a die and a chill-roll (or a 

water bath) on a distance 10L cm . The width W of the web is supposed to be constant (the 
neck-in phenomenon is neglected) and the velocity u and the current thickness e are assumed 
to be uniform in each cross-section (figure 11). As the aspect ratio (0 /e L  ) of the 

stretching flow is small, it is possible to build a simple but realistic membrane model (Yeow, 
1976; Antukar and Co, 1988 ; Barq et al., 1990, 1994). Let us note x the distance to the 
extrusion die (0<x<L) and t the time. 

- Mass  conservation writes: 

              ( ) ( ) 0e eu
t x

                                                                                         (1) 

- Assuming a Newtonian behaviour (viscosity ) and neglecting the shear terms in front 
of the elongation terms leads to the Trouton equation for film stretching: 

               4xx

du

dx
                                                                                                    (2) 

-  The force balance writes, neglecting mass forces and inertia: 
                           xxF eW = constant                                                                                    (3)  

         -   Boundary conditions imposed by the process are the following: 
                     u(t; 0) = 0u  ; u(t; L) = Lu  ; e(t; 0) = 0e                                                                                                 (4) 

Let us recall that 0u  and Lu  are respectively velocity at die exit and take up. It is to notice that 

the final thickness is imposed only if the process is steady. It is then possible (and in this case 
very easy) to compute a steady (not time dependant) flow. It writes: 

      0( ) ( )
x

Lu x u Dr            0( ) ( )
x

Le x e Dr
                                                                     (5) 

The key point is to know if this steady flow is stable (really observed in the 
experiments). It means that a small perturbation of the steady state solution (5) introduced in 
equations [1-4] decreases with time up to vanish. Two different strategies (giving in fact 
complementary information) may be used.  

- The first one is direct numerical simulation. Equations [1-4] are numerically solved 
according to variables t and x using a suited time and space scheme. The initial data at t 
= 0 is the stationary solution slightly disturbed. If this initial perturbation decreases and 
goes to zero, the process is stable. If the initial perturbation develops, the process is 
unstable. This method is relatively costly because of the time and space discretization 
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but is efficient to determine the periodic flow far away from transition (at relatively high 
Draw ratio). Some examples will be presented in the next paragraph. 
- The other one is linear stability analysis which allows determining rapidly the critical 
parameters (critical draw ratio) for onset of the instability. In this case a perturbed 
solution of the following form is introduced. 

           ˆ( ) ( ) exp( ) ( )u x u x t u x           ˆ( ) ( ) exp( ) ( )e x e x t e x                              (6) 

In this equation,   is an eigenvalue (a complex number) and ˆ( )u x and ˆ( )e x are 
eigenfunctions. Linearized equations are obtained by substituting the perturbed values of 
velocity and thickness (equation 6) in equations [1-4] and neglecting terms of order 2 
according to ˆ( )u x and ˆ( )e x . This system allows computing the dominant eigenvalues   
(there are theoretically an infinite number of eigenvalues) and associated eigenfunctions. The 
steady flow is stable if all the eigenvalues have a negative real part. The steady flow becomes 
unstable if the real part of a pair of complex conjugate dominant eigenvalues vanishes for 
Dr=Dr* ( i   ) and becomes positive for Dr > Dr* . This is the general framework of the 
Hopf bifurcation theory. For Dr > Dr*    the steady flow becomes unstable and generally a 
stable periodic flow appears. At transition between stable and unstable flow, the period is 
determined by the corresponding imaginary part of the eigenvalue (2 /T   ). This simple 
model predicts the onset of the instability for a critical Draw ratio Dr* =20.2 and it will be 
seen in the following that mechanical and thermal processing conditions as well as polymer 
rheology can influence largely the value of the critical Draw ratio. However this order of 
magnitude is in good agreement with experimental measurements. 

These mathematical approaches described in a simple case have to be extended to 
account for more realistic situations: 

- Geometry and kinematics: neck-in and varying thickness for the cast film process, 
axisymmetric situation in fibre spinning, non-uniform velocity profile through the 
thickness when the stretching distance decreases (the aspect ratio   is no more 
small), non-axisymmetric bubble shape to account for the helical defect in film 
blowing. 

- Heat transfer: as soon as the stretching distance is significant, the polymer 
temperature decreases and the energy equation as well as the temperature 
dependence of the viscosity have to be accounted for. 

- Constitutive equations: The Newtonian behaviour is a crude approximation for 
polymer stretching. Viscoelastic constitutive equations need to be accounted for and, 
surprisingly, even an upper-convected Maxwell constitutive equation provides 
qualitative results. 

Jung and Hyun (2005) proposed a more physical understanding of the development of 
these drawing instabilities based on different kinematic waves travelling along the stretching 
line. 

In the following sections, the stability of the different stretching processes will be 
studied, taking progressively into account heat transfer, enriched kinematics and constitutive 
equations.  

4. Cast-film process 

4.1. Influence of cooling 
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In the cast-film process, the stretching distance is generally as small as possible in order 
to limit neck-in and the related dog bone defect (Silagy, 1996) and so temperature remains 
more or less uniform. For some coating application, this stretching distance is more important 
(for geometrical constraints) and temperature decreases, but crystallization temperature is 
generally not reached before the contact point with the chill roll. The temperature balance 
equation writes: 

                 ( ) ( )c

T T
ce u h T T

t x
 

                                                                      (7)  

In this equation   denotes the polymer density (function of the temperature), c  the heat 
capacity, T  the mean temperature in the thickness, (which is consistent with the shell 
approximation for the kinematics), T  the surrounding temperature (a complex compromise 

between air and tool temperature) and ch  the heat transfer convection coefficient (free or 

forced convection depending on the web velocity). System of equations [1-4, 7] is completed 
to account for the influence of temperature on viscosity. Using the same perturbation 
procedure as in the preceding paragraph, the stability of the process is determined as a 
function of the Stanton number St which represents a non-dimensional value of the heat 
transfer coefficient. It is found that cooling stabilizes largely the process up to conditions 
stable for any values of the draw ratio at large enough values of the Stanton number. 

   4.2. Influence of the neck-in phenomenon 

In order to account for the width reduction the thin shell membrane model is enriched in 
two successive steps: 

- First, both thickness and velocity in the stretching direction u(x) are supposed to 
remain constant through the width of the web W(x). The velocity component v(x,y) 
in the transverse direction has to be introduced but the continuity equation allows to 
express it as a function of x: ( , ) ( )v x y yf x  . The linear stability analysis allows 
computing the value of the critical Draw ratio Dr* as a function of the shape factor 
of the film A=L/W (Silagy et al., 1996, 1998). The case A=0, corresponds to a very 
short stretching distance and in this situation the constant width cast-film analysis 
developed in the preceding paragraph is valid (the critical draw-ratio is Dr*=20.2). 
Increasing A value means increasing the drawing distance and the critical Draw ratio 
Dr*  increases too. For example, for A=1, the value of the critical Draw ratio is 
increased by 50% as compared to A=0 (figure 12). 

- The membrane model is then enriched  to capture both development of the dog bone 
defect and neck-in by considering thickness and mean velocities in stretching and 
transverse directions to be functions of x and y (e(x,y), u(x,y) and v(x,y)). Direct 
numerical simulation was used by Silagy et al., (1998). Figure 13 shows the 
thickness as a function of time for increasing values of the Draw ratio after 
introducing at t=0 a small arbitrary perturbation of the steady flow (A= 0.5). For 
Dr<21, the initial perturbation vanishes rapidly. For Dr=27, a small, but non 
periodic, perturbation is observed. For Dr=31.5 a periodic well marked perturbation 
develops and grows slowly in amplitude. It becomes very important for Dr=36 and 
saturation of the amplitude is rapidly reached (with a ratio of eight between the 
maximum and the minimum thickness). As compared to the linear stability analysis, 
the border between stable and unstable drawing regime is less precisely defined but it 
allows predicting the shape of the film in unstable conditions: figure 14 shows that 
width and thickness fluctuations (in the central part and at the periphery of the film) 
as a function of time are in phase opposition which is in agreement with experiments 
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of figure 3. Figure 12 compares the 2D direct numerical stability simulation and the 
1D linear stability analysis. The development of the dog bone defect in the 2D model 
could contribute to increase the stability of the process: for A=1, the critical Draw 
ratio is around 40 for the 2D model as it was around 30 for the 1D model. 

 
4.3 : Validity of the membrane model : 2D transverse simulation  
 

The membrane model previously described assumes a constant velocity profile through 
the thickness. This hypothesis is clearly valid in the stretching part of the flow i.e at a distance 
x larger than one or several thickness of the die gap. To describe precisely rearrangement 
from a shear flow in the slit die (the extremity of the coat hanger die) to a stretching flow, it is 
necessary to use a 2D model in the (x, z) plane (coordinates of figure 11). For sake of 
simplicity it is assumed as previously that the fluid has a Newtonian behaviour and that mass 
forces, inertia and surface tension are neglected. A 2D Stokes problem has to be solved on an 
unknown domain and determination of the polymer-air interface is a part of the solution. It is 
a so called free interface problem and two strategies are then possible: 

- If a surface tracking method is used the kinematic and dynamic interface boundary 
conditions are explicitly enforced. The Stokes problem is solved on a computation 
domain which is restricted to the polymer flow. Interface with air is determined by 
successive iterations (by adjusting the position of the nodes on the interface) to satisfy 
the kinematic interface equation. This first strategy is relatively precise but unable to 
describe transient evolution of the interface. The linear stability method is then used to 
predict onset of draw resonance (Souli et al.,1993). 
- If a surface capturing method is used the computation domain is extended to the 
neighbourhoods of the air interface and the Stokes problem is coupled with a transport 
equation. Classical approaches are the level set and the Volume of Fluid method. A 
complex mesh refinement is required in the vicinity of the interface but it allows 
capturing severe topological changes of the flow domain. Then a time and space 
numerical scheme (direct numerical simulation) is used to predict onset of draw 
resonance. In this case the periodic solution is obtained even for high values of the Draw 
ratio (Fortin et al.,1995). 

If this represents an important increase in the computation complexity, it brings also 
important precision illustrated in the following by two examples obtained at a Draw ratio Dr 
= 18 using the tracking method and modelling both extrusion and stretching.  

- Figure 15a presents the mesh and the flow domain computed for an aspect ratio  = 
1/15. A significant swelling at the die exit is observed as it would be expected that 
drawing will eliminate die swell. This explains that the experimental critical Draw ratios 
are always less than the theoretical ones (figure 2). The dominant eigenvalue ( =-0.084 
+ i11.99) is very close to the limit of stability (real ( ) =0). It is interesting to notice 
that this critical Draw ratio Dr*  =18 accounting for the transition between the slit die 
and the stretching flow is near the critical Draw ratio of the 1D membrane model Dr*  = 
20.2 . 
- Figure 15b presents the mesh and the flow domain computed for an aspect ratio  =1/5.There is no more visible swelling in this case and the flow is more stable as the 
real part of the eigenvalue ( =-0.38 + i12.149) is much more negative. It points out that 
2D simulation is required to determine stability conditions when the stretching distance 
decreases.  Figure 16 illustrates the variation of the real part of the dominant eigenvalues 
as a function of the stretching distance. 
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4.4. Influence of the rheology 

As a first approach, the viscoelastic behaviour of the polymer may be introduced 
through the simple upper-convected Maxwell (UCM) model which writes for the constant 
width model: 

                ( 2 ) 2xx xx
xx xx

du du
µ u

t x dx dx

                                                           (8a) 

                ( 2 ) 2zz zz
zz zz

du du
µ u

t x dx dx

                                                              (8b) 

µ is the relaxation time and xx   and zz   are the extra-stress components of the stress tensor. 

The thin shell approximation writes: 
                         xx xx zz                                                                                           (8c) 

   Solving stationary equations is not possible for every value of the Draw ratio Dr and 

the Deborah number De (it is the non-dimensional value of the relaxation time µ : 0u
De

L
 ). 

This has been mentioned by Denn et al. (1975) and Antukar  and Co (1988) who pointed out 
the existence of an unattainable drawing region  in the vicinity of which the stretching force 
increases by several orders of magnitude (figure 17) and this is related to the dramatic 
increase of the elongation viscosity observed for the upper-convected Maxwell model. Even 
the use of more realistic viscoelastic models, limiting the increase of the elongation viscosity, 
leads to non-physical values of the stretching force (Silagy et al., 1998). This could explain 
web breakage experimentally observed by Bourrigaud et al. (2006) for a collection of LDPE 
of varying viscoelasticity (figure 5). It is interesting to notice that the shape of the 
experimental film stretching limit is similar to the theoretical one, even if the experimental 
Draw ratios at rupture are more important than the ones theoretically predicted with the 
upper-convected Maxwell model. 
 

For stability analysis, equations [1, 3, 8] are linearized in the same way as in the 
preceding paragraph. Figure 18 discriminates stable and unstable drawing conditions in the 
(Dr, De) plane for different values of the film shape factor A.  At low Deborah number, which 
corresponds to a weak elasticity of the polymer, a low extrusion velocity or a long stretching 
distance, the critical draw ratio Dr* is slightly dependent on the film shape factor A. Above a 
critical Deborah  number De*, which decreases markedly when the film shape factor 
increases, the periodic instability disappears. It is note-worthy to observe another stable 
region, for small Deborah numbers, at high draw ratios. This is not a mathematical artifact 
and an US patent has been applied (Chambon et al., 1998) to draw films in these super-stable 
conditions. Silagy et al. (1998) and Kim et al. (2005) coupled the UCM model with a 2D 
membrane model accounting for width and thickness reduction. Kim et al. (2005) computed 
the transient thickness and width responses to small perturbations using a time-space 
numerical scheme. Shin et al. (2007a) developed the same approach but with a Phan-Thien 
Tanner model which limits the increase of the elongation viscosity.

 
These models lead to the following interesting conclusions about the stability of the cast 

film process. 
- For short stretching distances, periodic thickness and width instabilities may be 

observed for a Draw ratio higher than a critical value around 20. 
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- Increasing the stretching distance will stabilize the process, due to both neck-in and 
cooling phenomena, but then the dog bone defect develops which necessitates 
trimming lateral sides of the film. 

- Curiously, decreasing the stretching length to a distance of the order of magnitude of 
the die gap dimension will also stabilize the process. 

- Using polymers of increasing viscoelasticity only slightly affects the web stability 
until a critical value above which the process becomes much more stable. The 
development of periodic instabilities is then no more a limitation, but web rupture 
may be observed. Let us point out that swelling at die exit will increase too and it is 
expected that it modifies the critical Draw ratio computed from the membrane 
model. Accounting for the coupled flow in the die and along the stretching distance 
for a viscoelastic fluid remains a challenge for a viscoelastic behavior as it is 
difficult in this case to deal with the stress singularity at die exit. 

5. Fibre spinning 

The basic equations of the fibre spinning process are essentially the same as for the 
constant width cast-film process. As a consequence the critical Draw ratio in isothermal 
Newtonian fibre spinning is equivalent (Dr* =20.2) (Kase and Matsuo, 1965; Pearson and 
Matovich, 1969; Kase, 1974; Ishihara and Kase, 1975; Fischer and Denn, 1975; Demay and 
Agassant, 1982) and this is in agreement with experiments presented in paragraph 2. 

In high velocity fibre spinning process (up to 5000 m/mn for Polyamide or Polyester) the 
stretching distance is important (several meters) and additional air-jet is applied in order to 
cool the filament which makes the process highly non-isothermal (Kase and Matsuo, 1965). 
The first linear stability analysis show (Shah and Pearson, 1972; Demay and Agassant, 1982) 
that the critical Draw ratio increases rapidly with the non-dimensional heat transfer coefficient 
when neglecting crystallization. This is in agreement with PET experiments (figure 19). 

When introducing a viscoelastic UCM constitutive equation, the same phenomena are 
obtained as in the constant width cast-film situation (Fisher and Denn, 1976; Demay, 1983): 
an unstable region with the development of periodic instabilities at moderate Deborah 
numbers and intermediate Draw ratios, and an unattainable region at high Deborah number 
and high Draw ratios where the stretching force becomes infinite which would explain 
filament breakage. This is consistent with experiments (figure 2). More realistic viscoelastic 
models have been introduced by Lee et al. (2001) as Jung et al. (1999) coupled the UCM 
model and heat transfer. Lee et al. (2005), Shin et al. (2006) as well as Kohler and McHugh 
(2007, 2008) introduced stress induced crystallization and the corresponding crystallization 
energy in the temperature balance equation. Kohler and McHugh (2007, 2008) used a linear 
stability analysis and both Giesekus and Pom-Pom viscoelastic models to describe the 
response of the spinning line to a small variation of a spinning parameter in stable processing 
conditions. Interestingly, Shin et al. (2006) followed the real part of the dominant eigenvalue 
as a function of the take-up speed and pointed out the stabilizing effect of the necking 
phenomenon. 

  
          The following conclusions may be drawn for the fibre spinning process. 

- As soon as the stretching distance and the cooling conditions are important, the 
periodic instability is not a true limitation. 

- When increasing the extrusion velocity or (and) the relaxation time at constant Draw 
ratio, the stretching force increases dramatically  which induces breakage. 
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- The rheology of the polymer during the crystallization step, especially at the high 
cooling rates encountered in the process, is not well mastered and this is the main 
limitation of the existing models (Jarecki and Ziabicki, 2004). 

4.3. Film Blowing 

       At a first glance, one may consider that film blowing is simply a non-isothermal rolled up 
cast-film process, with a uniform thickness and with an increasing width instead of a width 
reduction (neck-in). Heat transfer would stabilize the process and viscoelasticity would cause 
web breakage at high Draw ratios. However experiments listed in section 2 showed 
unexpected phenomena: the existence of axisymmetric instabilities (which after unrolling 
correspond to both thickness and width variations) but also of non-axisymmetric instabilities. 
The reason is that the molten polymer tube is subjected to a Draw ratio, but also to a pressure 
differential (between the air inside the bubble and the atmospheric pressure) which induces a 
Blow-up ratio (Bur) and that is the combination of these two orthogonal drawings which 
makes the stability of the process much more complex. 

      It is surprising that modeling such a widely used process presents so many mathematical 
difficulties. All models use a membrane approximation leading to a system of partial 
differential equations according to the drawing distance z and time t. Computation of the 
steady state solution remains a numerical challenge for some operating conditions: both non 
existence or multiplicity of numerical solutions are found according to processing parameters 
values. The early steady state Newtonian isothermal model (Pearson and Petrie, 1970) has 
been extended to account for non-isothermal effects (Han and Park, 1975) coupled with 
crystallization (Kanai and White, 1984, 1985). Introducing an isothermal Maxwell (UCM) 
viscoelastic constitutive equation may lead to multiple solutions depending on the boundary 
conditions (Cain and Denn, 1988). Andre et al. (1998) studied the Maxwell non-isothermal 
film blowing process and pointed also out that no or multiple solutions may be obtained 
depending on the processing conditions. Hyun et al. (2004) introduced a viscoelastic Phan-
Thien Tanner (PTT) non isothermal model. Doufas and McHugh (2001) and Pirkle and Braatz 
(2010) introduced flow induced crystallization with a two-phase model. 

      If the time dependent equations for the axisymmetric model were early introduced, the 
transient studies remain difficult because the boundary condition inside the bubble is not clear 
(fixed air volume or fixed pressure as a function of time). Yeow (1976), Cain and Denn 
(1988), Yoon and Park (1999) assume a Newtonian isothermal behavior and developed the 
same kind of linear stability analysis as in fibre spinning or cast film. They point out the big 
influence of the boundary condition inside the bubble on the instability onset. Pirkle and 
Braatz (2003) performed time dependent simulations and obtained the steady state result by 
integrating transient equations for a sufficient long time. Shin et al. (2007b) studied the 
stability of a PTT non-isothermal model as Henrichsen and McHugh (2007) used a 
viscoelastic Giesekus constitutive equation and compared there results to LDPE film blowing 
experiments. Both used a constant air volume condition inside the bubble. 

       All these models are only focused on the axisymmetric instabilities. Following 
Housiasdas and Tsamopoulos (1998), Laffargue et al. (2010) wrote and solved the film 
blowing equations in the frame affixed to the die geometry. This leads to complex 
developments which are detailed in Laffargue (2003) and Laffargue et al. (2010) but this 
allows capturing both axisymmetric and helical instabilities. Each variable (bubble radius, 
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bubble thickness, velocity, vertical stress, pressure, temperature…) is expressed as the sum of 
the stationary solution and a perturbation which writes: 

           
ˆ( , , ) ( , ) exp( ) ( )X t z X t z t im X z                                                                    (9) 

In this equation X corresponds to any geometrical, kinematics, stress or temperature variable 
listed before. X  is the corresponding stationary solution and  X̂   is an eigenfunction. The 
complex number    is as previously an eigenvalue describing growth or decay of 
perturbations. The positive integer m is the azimuthal wave number: m=0 corresponds to an 
axisymmetric instability as m=1 corresponds to a helical instability (higher order instabilities 
(m>1) have not been investigated yet). Figure 20 shows the real part of the most important 
eigenvalue as a function of the Draw ratio for m=0 (axisymmetric case) and for m=1 (helical 
case) when the Blow-up ratio (Bur) is 2. For m=0, the eigenvalue becomes positive for a 
Draw ratio of 29, as the eigenvalue corresponding to m=1 is negative. This means that the 
axisymmetric instability will be activated. On the contrary, figure 21 shows the real part of the 
eigenvalue corresponding to m=1 as a function of Bur for a fixed Dr=6. The real part of the 
eigenvalue remains negative till Bur=3.5 and then becomes positive. In that blowing situation 
the eigenvalue corresponding to m=0 is negative which means that the helical instability will 
be activated. Figure 22 summarizes the results in the (Dr, Bur) plane: When varying the 
temperature gradient along the bubble (which means varying the air flow in the surrounding 
air ring) it is possible to build an envelope delimiting stable and unstable film blowing 
conditions (figure 23). This figure allows drawing interesting conclusions for the stability of 
the film blowing process: 

- For given heat transfer conditions, increasing the Blow-up ratio stabilizes first the 
process (which means it is possible to impose more important Draw ratios and so to 
decrease significantly the film thickness in stable conditions) as it was likely to 
speculate the contrary. 

- Above a critical Bur, Dr needs to decrease in order to remain in stable conditions. 
- This “stability hill” is less pronounced when the temperature gradient (the air flow in 

the surrounding ring) increases. 

Recently Lee et al. (2011a) showed that crystallization may stabilize the film blowing process 
as in fibre spinning. Using a constant blowing pressure inside the bubble in a viscoelastic non-
isothermal model, Lee et al. (2011b) showed very different results than with the classical 
constant air volume boundary conditions. 

5. Conclusions 

         Instabilities are encountered in most polymer forming processes. In extrusion or co-
extrusion, these instabilities are directly linked to the viscoelastic behaviour of the polymer. In 
fibre and film stretching processes, drawing instabilities are present even for purely 
Newtonian fluids which means that their occurrence is, at the first order, governed by 
dissipation minimization mechanisms. However heat transfer and viscoelasticity will 
influence the onset and the development of the defect, and even suppress it. In shear dominant 
flows, as encountered in extrusion dies, sophisticated constitutive equations have to be used in 
order to account for instabilities. In fluid stretching operations, even a simple constitutive 
equation, as for example the upper-convected Maxwell model, is able to capture the main 
features. The reason is that in confined flows, a wide distribution of shear rates is present, as 
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in fluid stretching the elongation rates remain within a narrow range which induces activation 
of a dominant relaxation time. 
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Captions for the figures  

Figure 1: Recording of diameter vs time showing the response to an increase of take-up 
speed. The stretching ratio goes from 46.6 to 57 for (a), from 57 to 65.6 for (b) and from 
65.6 to 75.3 for (c) (from Demay and Agassant, 1985). 

Figure 2: Theoretical and experimental critical draw-ratio Dr*  vs. Deborah number De. 
A, B, C, D, refer to different polyesters. (▲) corresponds to 0u =2.09 cm/s. (●) 
corresponds to 0u =4.18 cm/s (from Demay and Agassant, 1985). 

Figure 3: Experimental measurement of thickness (a) and width (b) instabilities in the 
polyester cast-film process; Dr = 28.4 (from Barq et al., 1990). 

Figure 4: Stretching force as a function of time for various take-up velocities (from 
Agassant et al., 2006). 

Figure 5: Experimental unattainable zone for different LDPE films produced by the cast 
film process (from Bourrigaud et al., 2006). 

         Figure 6: Axisymmetric film blowing instability. 

Figure 7: Helical film blowing instability. 

Figure 8: Bubble radius variation and location of the centre of the bubble as a function 
of time for varying Draw ratio and a constant Blow up ratio (Bur= 2.75) (from   
Laffargue et al., 2002). 

Figure 9: Bubble radius variation and location of the centre of the bubble as a function 
of time for varying Draw ratio and a constant Blow up ratio (Bur=3.25) (from Laffargue 
et al., 2002). 

Figure 10:  Experimental stability map with the same LLDPE and various film blowing 
machines (from Laffargue et al., 2010) 

Figure 11: Sketch of a constant width cast-film model. 

 
Figure 12: Influence of the shape factor A on the critical Draw ratio Dr*  :( ) 1D model;    
() 2D stable situation; (●) 2D unstable situation (from Silagy et al., 1998). 
 
Figure 13: 2D cast-film model, film thickness as a function of time after imposing a 
small initial perturbation. The film shape factor is A = 0.6. (a) Dr = 10; (b) Dr = 15; (c) 
Dr = 18; (d) Dr = 21; (e) Dr = 24; (f) Dr = 27; (g) Dr = 31.5; (h) Dr = 36 (from Silagy 
et al., 1998) 
 
Figure 14: 2D Newtonian unsteady cast-film computation : Dr = 33 ; A = 0.44 ; (a) 
width fluctuations ; (b) film thickness fluctuations at the periphery of the film; (c) Film 
thickness fluctuations in the centre of the film (from Silagy et al., 1998). 
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Figure 15: Coupled die and stretching flow computation: (a)0 / 1/15e L ; (b) 

0 / 1/ 5e L . 

 
Figure 16: Real part of the leading eigenvalue as a function of the stretching distance (a 
dimensionless value is obtained using the residence time 0/L u  . 

 
Figure 17: Unattainable stretching zone as a function of the Draw ratio and the Deborah 
number. 
 
Figure 18: 1D viscoelastic cast-film model: influence of the film shape factor A on the  
drawing stability (from Silagy et al., 1998). 
 

 
Figure 19: Critical Draw ratio as a function of the Stanton number; ( ) theoretical 
result (from Demay and Agassant, 1982); (●) measurements (from Demay and 
Agassant, 1985). 
 

   Figure 20: Real part of the dominant eigenvalue as a function of the Draw ratio for the 
axisymmetric mode (m = 0) and  the helical mode (m = 1) (Bur = 2 )  (from Laffargue et 
al., 2010). 

 
Figure 21: Real part of the dominant eigenvalue as a function of the Blow-up ratio for 
the helical mode (m = 1) (Dr = 6) (from Laffargue et al., 2010). 
 
Figure 22: Stability curve in the (Dr, Bur) frame (from Laffargue et al., 2010). 
 

 
Figure 23: 3D stability map as a function of the Draw ratio, the Blow-up ratio and the    
temperature gradient (from Laffargue, 2003). 
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