Navigating Alkaline Hydrogen Evolution Reaction Descriptors for Electrocatalyst Design
Résumé
The quest for efficient green hydrogen production through Alkaline Water Electrolysis (AWE) is a critical aspect of the clean energy transition. The hydrogen evolution reaction (HER) in alkaline media is central to this process, with the performance of electrocatalysts being a determining factor for overall efficiency. Theoretical studies using energy-based descriptors are essential for designing high-performance alkaline HER electrocatalysts. This review summarizes various descriptors, including water adsorption energy, water dissociation barrier, and Gibbs free energy changes of hydrogen and hydroxyl adsorption. Examples of how to apply these descriptors to identify the active site of materials and better design high-performance alkaline HER electrocatalysts are provided, highlighting the previously underappreciated role of hydroxyl adsorption-free energy changes. As research progresses, integrating these descriptors with experimental data will be paramount in advancing AWE technology for sustainable hydrogen production.
Domaines
ChimieOrigine | Fichiers éditeurs autorisés sur une archive ouverte |
---|---|
licence |